ULTRASONIC SPECTROSCOPY

Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

ROBERT G. LEISURE is Professor Emeritus in the Department of Physics at Colorado State University, where he served as chair of the Physics Department from 1984–1990. He is also Fellow of the Acoustical Society of America and the Institute of Physics. His work focuses on ultrasonic studies of solids.
ULTRASONIC SPECTROSCOPY
Applications in Condensed Matter Physics and Materials Science

ROBERT G. LEISURE
Colorado State University
Contents

Preface

1 Introduction

2 Elasticity

2.1 Strain

2.2 Stress

2.3 Elastic Constants

3 Acoustic Waves in Solids

3.1 Acoustic Waves in the Classical Elasticity Limit

3.2 Lattice Dynamics

3.3 Debye Theory of Solids

4 Experimental Methods

4.1 Plane-Wave Propagation Methods

4.2 Resonant Ultrasound Spectroscopy

4.3 Picosecond Ultrasonics

5 Elastic Constants

5.1 Introduction

5.2 Relevant Thermodynamics and Statistical Mechanics

5.3 Relation between Adiabatic and Isothermal Elastic Constants

5.4 Elastic Constants and the Helmholtz Free Energy

5.5 Ab Initio Computations

5.6 Analytical Methods

5.7 Phase Transitions

5.8 Simple Quantum Systems with a Small Number of Levels
Contents

6 Ultrasonic Loss 166
6.1 Introduction 166
6.2 Complex Elastic Constants 166
6.3 Measures of Ultrasonic Loss (Attenuation, Q, Internal Friction, Loss Tangent, etc.) 168
6.4 Kramers-Kronig Relations 169
6.5 Response Functions, Fluctuations, and Dissipation 173
6.6 Relaxational Attenuation 177
6.7 Resonance Attenuation 181
6.8 Velocity-Dependent Damping 182
6.9 Qualitative Discussion of Various Sources of Loss 182

Appendix A Phase Shifts Due to Transducers and Bonds 210
Appendix B Diffraction 215
Appendix C Transducer Effects on Resonant Frequencies 217
Appendix D Damped, Driven Oscillator and Complex Force Constant 220
Appendix E Comparison of the Quasistatic and Experimental Temperature Dependence for Specific Cases 222
E.1 Silver 222
E.2 Diamond 224

References 227
Index 238
Preface

The use of ultrasonic methods for the study of materials continues to flourish and evolve. These methods find uses in many areas including fundamental condensed matter physics, materials science, various branches of engineering, geophysics, and applied studies of device-related material parameters. Advancements in experimental methods, especially resonant ultrasound spectroscopy, have enabled quantitative measurements on dramatically reduced specimen sizes, thereby vastly expanding the possibilities for the study of novel materials. The title of the book “Ultrasonic Spectroscopy” is taken here to mean simply the investigation of material properties by the use of ultrasonic waves.

A major purpose of this book is to present an in-depth coverage of the main issues underlying the planning and interpretation of ultrasonic investigations of materials. It is intended that the level of the presentation be accessible to dedicated upper-level undergraduate students, but at the same time achieve a depth of coverage useful to graduate students and other researchers. The approach is to present in careful detail a number of topics, with two objectives in mind. One objective, of course, is to educate the reader about basic concepts in the field – concepts that should become familiar to any researcher in this area. A second objective, perhaps more important, is to illustrate theoretical ideas that can be applied to a wide variety of problems. The emphasis is on basic concepts, not specific materials. The goal is to provide a fundamental background for beginning researchers so that with the help of a good scientific Internet search engine to obtain more focused information – they are able to attack any of the gamut of interesting problems amenable to ultrasonic methods.

The mathematical methods used should be familiar to upper-level undergraduate students. Some knowledge of thermodynamics, statistical mechanics, and solid-state physics is required, but an effort is made to present the key concepts from these subjects as needed, and provide references to more detailed sources.
Preface

The book includes one chapter on experimental methods. Both continuous wave and pulse techniques are discussed.

I have benefited from interactions with many people over the years, too many to list here. Special thanks go to Albert Migliori, Hassel Ledbetter, Ricardo Schwarz, Paul Heyliger, David Hsu, Tatsuo Kanashiro, Alan Levelut, Jean-Yves Prieur, Ori Yeheskel, many wonderful students, and my thesis advisor, the late Dan Bolef. Special thanks also go to Dennis Agosta, Kate Ross, and Frank Willis for reading large parts of the manuscript.

Most of all, I am especially thankful to my wife, Jeanine Smith Leisure, for her contributions through steadfast support, encouragement, and thought-provoking discussions.