Contents

List of Algorithms page xiii
Foreword xvii
Acknowledgments xix

1 Introduction 1
1.1 Why Compact Data Structures? 1
1.2 Why This Book? 3
1.3 Organization 4
1.4 Software Resources 6
1.5 Mathematics and Notation 7
1.6 Bibliographic Notes 10

2 Entropy and Coding 14
2.1 Worst-Case Entropy 14
2.2 Shannon Entropy 16
2.3 Empirical Entropy 17
 2.3.1 Bit Sequences 18
 2.3.2 Sequences of Symbols 20
2.4 High-Order Entropy 21
2.5 Coding 22
2.6 Huffman Codes 25
 2.6.1 Construction 25
 2.6.2 Encoding and Decoding 26
 2.6.3 Canonical Huffman Codes 27
 2.6.4 Better than Huffman 30
2.7 Variable-Length Codes for Integers 30
2.8 Jensen’s Inequality 33
2.9 Application: Positional Inverted Indexes 35
2.10 Summary 36
2.11 Bibliographic Notes 36
3 Arrays

3.1 Elements of Fixed Size

- Page 40

3.2 Elements of Variable Size

3.2.1 Sampled Pointers

- Page 46

3.2.2 Dense Pointers

- Page 47

3.3 Partial Sums

- Page 48

3.4 Applications

3.4.1 Constant-Time Array Initialization

- Page 49

3.4.2 Direct Access Codes

- Page 53

3.4.3 Elias-Fano Codes

- Page 57

3.4.4 Differential Encodings and Inverted Indexes

- Page 59

3.4.5 Compressed Text Collections

- Page 59

3.5 Summary

- Page 61

3.6 Bibliographic Notes

- Page 61

4 Bitvectors

4.1 Access

4.1.1 Zero-Order Compression

- Page 65

4.1.2 High-Order Compression

- Page 71

4.2 Rank

- Page 73

4.2.1 Sparse Sampling

- Page 73

4.2.2 Constant Time

- Page 74

4.2.3 Rank on Compressed Bitvectors

- Page 76

4.3 Select

- Page 78

4.3.1 A Simple Heuristic

- Page 78

4.3.2 An $O(\log \log n)$ Time Solution

- Page 80

4.3.3 Constant Time

- Page 81

4.4 Very Sparse Bitvectors

- Page 82

4.4.1 Constant-Time Select

- Page 83

4.4.2 Solving Rank

- Page 83

4.4.3 Bitvectors with Runs

- Page 86

4.5 Applications

- Page 87

4.5.1 Partial Sums Revisited

- Page 87

4.5.2 Predecessors and Successors

- Page 89

4.5.3 Dictionaries, Sets, and Hashing

- Page 91

4.6 Summary

- Page 98

4.7 Bibliographic Notes

- Page 98

5 Permutations

5.1 Inverse Permutations

- Page 103

5.2 Powers of Permutations

- Page 106

5.3 Compressible Permutations

- Page 108

5.4 Applications

5.4.1 Two-Dimensional Points

- Page 115

5.4.2 Inverted Indexes Revisited

- Page 116

5.5 Summary

- Page 117

5.6 Bibliographic Notes

- Page 117
Contents

6 Sequences

6.1 Using Permutations
 - 6.1.1 Chunk-Level Granularity
 - 6.1.2 Operations within a Chunk
 - 6.1.3 Construction
 - 6.1.4 Space and Time

6.2 Wavelet Trees
 - 6.2.1 Structure
 - 6.2.2 Solving Rank and Select
 - 6.2.3 Construction
 - 6.2.4 Compressed Wavelet Trees
 - 6.2.5 Wavelet Matrices

6.3 Alphabet Partitioning

6.4 Applications
 - 6.4.1 Compressible Permutations Again
 - 6.4.2 Compressed Text Collections Revisited
 - 6.4.3 Non-positional Inverted Indexes
 - 6.4.4 Range Quantile Queries
 - 6.4.5 Revisiting Arrays of Variable-Length Cells

6.5 Summary

6.6 Bibliographic Notes

7 Parentheses

7.1 A Simple Implementation
 - 7.1.1 Range Min-Max Trees
 - 7.1.2 Forward and Backward Searching
 - 7.1.3 Range Minima and Maxima
 - 7.1.4 Rank and Select Operations

7.2 Improving the Complexity
 - 7.2.1 Queries inside Buckets
 - 7.2.2 Forward and Backward Searching
 - 7.2.3 Range Minima and Maxima
 - 7.2.4 Rank and Select Operations

7.3 Multi-Parenthesis Sequences
 - 7.3.1 Nearest Marked Ancestors

7.4 Applications
 - 7.4.1 Succinct Range Minimum Queries
 - 7.4.2 XML Documents

7.5 Summary

7.6 Bibliographic Notes

8 Trees

8.1 LOUDS: A Simple Representation
 - 8.1.1 Binary and Cardinal Trees

8.2 Balanced Parentheses
 - 8.2.1 Binary Trees Revisited
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>DFUDS Representation</td>
<td>233</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Cardinal Trees Revisited</td>
<td>240</td>
</tr>
<tr>
<td>8.4</td>
<td>Labeled Trees</td>
<td>241</td>
</tr>
<tr>
<td>8.5</td>
<td>Applications</td>
<td>245</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Routing in Minimum Spanning Trees</td>
<td>246</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Grammar Compression</td>
<td>248</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Tries</td>
<td>252</td>
</tr>
<tr>
<td>8.5.4</td>
<td>LZ78 Compression</td>
<td>259</td>
</tr>
<tr>
<td>8.5.5</td>
<td>XML and XPath</td>
<td>262</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Treaps</td>
<td>264</td>
</tr>
<tr>
<td>8.5.7</td>
<td>Integer Functions</td>
<td>266</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary</td>
<td>272</td>
</tr>
<tr>
<td>8.7</td>
<td>Bibliographic Notes</td>
<td>272</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Graphs</td>
<td>279</td>
</tr>
<tr>
<td>9.1</td>
<td>General Graphs</td>
<td>281</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Using Bitvectors</td>
<td>281</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Using Sequences</td>
<td>281</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Undirected Graphs</td>
<td>284</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Labeled Graphs</td>
<td>285</td>
</tr>
<tr>
<td>9.1.5</td>
<td>Construction</td>
<td>289</td>
</tr>
<tr>
<td>9.2</td>
<td>Clustered Graphs</td>
<td>291</td>
</tr>
<tr>
<td>9.2.1</td>
<td>(K^2)-Tree Structure</td>
<td>291</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Queries</td>
<td>292</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Reducing Space</td>
<td>294</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Construction</td>
<td>296</td>
</tr>
<tr>
<td>9.3</td>
<td>(K)-Page Graphs</td>
<td>296</td>
</tr>
<tr>
<td>9.3.1</td>
<td>One-Page Graphs</td>
<td>297</td>
</tr>
<tr>
<td>9.3.2</td>
<td>(K)-Page Graphs</td>
<td>299</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Construction</td>
<td>307</td>
</tr>
<tr>
<td>9.4</td>
<td>Planar Graphs</td>
<td>307</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Orderly Spanning Trees</td>
<td>308</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Triangulations</td>
<td>315</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Construction</td>
<td>317</td>
</tr>
<tr>
<td>9.5</td>
<td>Applications</td>
<td>327</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Binary Relations</td>
<td>327</td>
</tr>
<tr>
<td>9.5.2</td>
<td>RDF Datasets</td>
<td>328</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Planar Routing</td>
<td>330</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Planar Drawings</td>
<td>336</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary</td>
<td>338</td>
</tr>
<tr>
<td>9.7</td>
<td>Bibliographic Notes</td>
<td>338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grids</td>
<td>347</td>
</tr>
<tr>
<td>10.1</td>
<td>Wavelet Trees</td>
<td>348</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Counting</td>
<td>350</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Reporting</td>
<td>353</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Sorted Reporting</td>
<td>355</td>
</tr>
</tbody>
</table>
Table of Contents

10.2 K^2-Trees
- 10.2.1 Reporting

10.3 Weighted Points
- 10.3.1 Wavelet Trees
- 10.3.2 K^2-Trees

10.4 Higher Dimensions

10.5 Applications
- 10.5.1 Dominating Points
- 10.5.2 Geographic Information Systems
- 10.5.3 Object Visibility
- 10.5.4 Position-Restricted Searches on Suffix Arrays
- 10.5.5 Searching for Fuzzy Patterns
- 10.5.6 Indexed Searching in Grammar-Compressed Text

10.6 Summary

10.7 Bibliographic Notes

11 Texts

11.1 Compressed Suffix Arrays
- 11.1.1 Replacing A with Ψ
- 11.1.2 Compressing Ψ
- 11.1.3 Backward Search
- 11.1.4 Locating and Displaying

11.2 The FM-Index

11.3 High-Order Compression
- 11.3.1 The Burrows-Wheeler Transform
- 11.3.2 High-Order Entropy
- 11.3.3 Partitioning L into Uniform Chunks
- 11.3.4 High-Order Compression of Ψ

11.4 Construction
- 11.4.1 Suffix Array Construction
- 11.4.2 Building the BWT
- 11.4.3 Building Ψ

11.5 Suffix Trees
- 11.5.1 Longest Common Prefixes
- 11.5.2 Suffix Tree Operations
- 11.5.3 A Compact Representation
- 11.5.4 Construction

11.6 Applications
- 11.6.1 Finding Maximal Substrings of a Pattern
- 11.6.2 Labeled Trees Revisited
- 11.6.3 Document Retrieval
- 11.6.4 XML Retrieval Revisited

11.7 Summary

11.8 Bibliographic Notes
12 Dynamic Structures 450
 12.1 Bitvectors 450
 12.1.1 Solving Queries 452
 12.1.2 Handling Updates 452
 12.1.3 Compressed Bitvectors 461
 12.2 Arrays and Partial Sums 463
 12.3 Sequences 465
 12.4 Trees 467
 12.4.1 LOUDS Representation 469
 12.4.2 BP Representation 472
 12.4.3 DFUDS Representation 474
 12.4.4 Dynamic Range Min-Max Trees 476
 12.4.5 Labeled Trees 479
 12.5 Graphs and Grids 480
 12.5.1 Dynamic Wavelet Matrices 480
 12.5.2 Dynamic k^2-Trees 482
 12.6 Texts 485
 12.6.1 Insertions 485
 12.6.2 Document Identifiers 486
 12.6.3 Samplings 486
 12.6.4 Deletions 490
 12.7 Memory Allocation 492
 12.8 Summary 494
 12.9 Bibliographic Notes 494

13 Recent Trends 501
 13.1 Encoding Data Structures 502
 13.1.1 Effective Entropy 502
 13.1.2 The Entropy of RMQs 503
 13.1.3 Expected Effective Entropy 504
 13.1.4 Other Encoding Problems 504
 13.2 Repetitive Text Collections 508
 13.2.1 Lempel-Ziv Compression 509
 13.2.2 Lempel-Ziv Indexing 513
 13.2.3 Faster and Larger Indexes 516
 13.2.4 Compressed Suffix Arrays and Trees 519
 13.3 Secondary Memory 523
 13.3.1 Bitvectors 524
 13.3.2 Sequences 527
 13.3.3 Trees 528
 13.3.4 Grids and Graphs 530
 13.3.5 Texts 534

Index 549