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1 Introduction

Without realistic failure mechanics, probabilistic analysis of structural safety is a fiction.

1.1 The Problem of Tail of Probability Distribution

Like most things in life, we must accept that the occurrence probability of any future

event cannot be exactly zero. We must be contented with a structural failure probability

that is negligible compared to other risks that people willingly take, such as car acci-

dents. It is generally agreed that adequate safety of engineering structures is achieved

by specifying a failure probability of 10−6 per lifetime as the maximum admissible in

design [Nordic Committee for Building Structures (NKB) 1978; Melchers 1987; Duck-

ett 2005; Ellingwood 2006]. This probability limit is generally accepted for engineering

structures, whether bridges or aircraft (Duckett 2005; Department of National Defense

of Canada 2007), although for some nuclear plant structures an even smaller limit is

required.

The smallness of this probability limit is a source of great difficulty. To check the

design merely by an experimental histogram, at least 108 tests of identical structures

or specimens would be required. Even a direct computational verification would neces-

sitate about 108 repetitions of Monte Carlo simulations with a fully realistic material

model. Therefore, estimations of loads of such a small failure probability must rely on

a model that is justified by a sound theory and is validated by experiments other than

histogram testing.

For many years, realistic theoretical models have been available for the probability

of ductile and brittle failures. The Gaussian and Weibull distributions, respectively, fit

this purpose. Failures of structures made of quasibrittle materials are more difficult to

predict and have been researched only recently. The difficulty is that the quasibrittle

failures are transitional in nature between ductile and plastic failures.

Quasibrittle materials are heterogeneous materials with brittle constituents. At the

scale of normal laboratory testing, they include concretes as the archetypical case, fiber-

polymer composites, fiber-reinforced concretes, toughened ceramics, many rocks, coal,

sea ice, wood, consolidated snow, particle board, rigid foams, particulate nanocompos-

ites, biological shells, mortar, masonry, fiber-reinforced concrete, asphalt concrete (at

low temperatures), stiff clays, silts, cemented sands, grouted soils, particle board, vari-

ous refractories, bone, cartilage, dentine, dental ceramics, paper, carton, and cast iron.
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Figure 1.1. Types of fracture process. The diagrams at the top show the relationships between the

cohesive stress and the averaged nominal strain across the crack extension line. The diagrams at

the bottom show the stress profiles along the crack ligament.

On the nano- and micrometer scales, virtually all materials become quasibrittle, includ-

ing silicon or thin metallic films.

In fracture, the degree of brittleness (or ductility, which is the opposite of brittleness)

is manifested in the size of the fracture process zone (FPZ) formed at the tip of a propa-

gating crack. In this regard, three cases, illustrated in Figure 1.1, may be distinguished:

1. In brittle failures, the FPZ is so small that it can be treated as a point (Fig. 1.1, left).

Consequently, all the volume of the structure behaves elastically and the classical

theory of linear elastic fracture mechanics (LEFM) is applicable.

2. In ductile (or plastic) failures, which are observed in elastoplastic materials (mainly

metals) and are characterized by a stress-strain diagram with a horizontal yield

plateau, there is a large nonlinear plastic (or yielding) zone. But the FPZ is still very

small, micrometer size, which is almost pointwise for most applications (see Fig.

1.1, middle). Unlike the brittle case, the profile of the so-called cohesive stress trans-

mitted in a quasibrittle material across the crack extension line is almost horizontal,

with a steep stress drop at the crack tip.

3. The quintessential feature of quasibrittle failure is that the FPZ at the front of a crack

is not negligible compared to the cross-sectional dimensions, and can sometimes

occupy even the entire cross section of the structure. The profile of stress along the

crack extension line has neither a long horizontal segment nor steep stress drop.

Rather, it varies along the FPZ gradually, except for superposed statistical scatter

due to heterogeneity (Fig. 1.1, right). The diagram of normal stress σ acting across

the crack extension line versus the average normal strain ǭ across the FPZ exhibits a

gradual post-peak decline.
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Figure 1.2. Portrait of Leonardo da Vinci (1452–1519). Source: Wikipedia

The FPZ length can vary enormously; it is typically about 50 cm in normal concretes,

5 cm in high-strength concretes, 10 μm to 1 mm in fine-grained ceramics, 10 nm in a

silicon wafer, and 1 to 10 m in an Arctic sea ice floe. If the FPZ is negligible compared

to the structure size, a quasibrittle structure becomes perfectly brittle, that is, follows

LEFM. Thus concrete is quasibrittle on the scale of normal beams and columns, but

perfectly brittle on the scale of a large dam. Arctic sea ice floe, fine-grained ceramic,

and nanocomposites are quasibrittle on the scales of 10 m, 0.1 mm, and 0.1 μm, but

brittle on the scales of 1 km, 1 cm, and 10 μm, respectively.

It is clear that the ratio between the overall structural size and the FPZ size deter-

mines the failure behavior of quasibrittle structures, transitioning from ductile to brittle

as the ratio increases. Therefore, the main problem is the scaling of the failure behav-

ior of quasibrittle structures, which has attracted significant research efforts over the

last three decades. While previous research focused mainly on the scaling of the mean

failure behavior, recent research has been directed toward the probabilistic aspect of

this problem, in particular how such a size-dependent transitional failure behavior influ-

ences the strength and lifetime statistics of quasibrittle structures, and its consequences

for the reliability-based structural design. This book presents a recently developed the-

ory that addresses this topic, which is crucial for reliability-based analysis and design

of quasibrittle structures.

1.2 History in Brief

1.2.1 Classical History

Let us start with a brief sketch of the history of the topic of size effect and scaling.

Leonardo da Vinci was the pioneer in investigation of scaling law of material strength

(Fig. 1.2). He speculated that “Among cords of equal thickness the longest is the least

strong” (da Vinci 1500s). He also wrote that a cord “is so much stronger . . . as it is

shorter”. This scaling rule implied the nominal strength of a cord to be inversely pro-

portional to its length, which is of course a strong exaggeration of the actual size effect.
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Figure 1.3. Portrait of G. Galilei (1564–1642) and the title page of Discorsi e Dimostrazioni

Matematiche Intorno a Due Nuove Scienze. Source: Wikipedia

More than a century later, Leonardo’s scaling rule was rejected by Galileo Galilei

(1638) in his famous book Two New Sciences (Fig. 1.3). Galileo argued that cutting a

long cord at various points should not make the remaining part stronger (which is now

known not to be true). Nevertheless, he proposed the famous “square-cube” scaling law

to describe the effect of the object size on the ratio between the volume and surface area

of the object. Based on this law, he explained the fact that large animals have relatively

bulkier bones than small ones, which he called the “weakness of giants.”

About fifty years later, Edmé Mariotte (1686) made a major advance by reexamin-

ing da Vinci’s scaling rule (Fig. 1.4). He experimented with ropes, paper, and tin, and

observed that “a long rope and a short one always support the same weight unless that

in a long rope there may happen to be some faulty place in which it will break sooner

than in a shorter. The same thing will happen in small slips of tin; for in a long one

there may be perhaps some defect that may not be in a short one; and if you should

take that part of it which did not break, it would sustain a greater weight. . . . ” Mariotte

later expressed this observation more generally in terms of the variability of the mate-

rial strength, which is essentially the principle of “the Inequality of the Matter whose

absolute Resistance is less in one Place than another.” This statement can be considered

as the first qualitative description of the statistical theory of size effect. However, at

that time the probability theory was at its inception and was not yet ready to handle the

problem within a formal mathematical framework. As discussed later, the mathematical

formulation of statistical size effect for brittle solids was completed by Weibull (1939)

almost three centuries later.
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Figure 1.4. Edmé Mariotte (1620–1684) and the title page of Traité du mouvement des eaux,

posthumously edited by M. de la Hire. (“Principals découvertes de l’église” means “Principal

discoveries of the chruch”.) Source: Grzybowski, A, and Aydin, P. (2007) Edmé Mariotte

(1620–1684) “Pioneer of Neurophysiology” Survey of Ophthalmology, 52(4), 443–451

Mariotte’s conclusions were later rejected by Thomas Young (1807), who took a deter-

ministic approach and stated that the length of a solid has no effect on its strength. This

was a step backwards from Mariotte’s idea on the statistical size effect. Nevertheless,

Young did make a remark that the cohesive strength of a wire or bar is not always pro-

portional to its diameter owing to some “accidental irregularities.”

The second major advance was the seminal work of Griffith (1921), which laid the

foundation of the theory of fracture mechanics. Meanwhile, in his paper he also pio-

neered the use of fracture mechanics to study the size effect. Griffith concluded that “the

weakness of isotropic solids . . . is due to the presence of discontinuities or flaws . . . The

effective strength of technical materials could be increased 10 or 20 times at least

if these flaws could be eliminated” (Griffith 1921, page 179). He demonstrated this

conclusion by an experimental investigation on the strength of glass fibers showing

that the breaking stress was raised from 42,300 psi for a diameter of 0.0042 in. to

491,000 psi for a diameter of 0.00013 in. It is clear that Griffith’s analysis of micro-

scopic flaws or cracks provided a physical basis for Mariotte’s statistical concept of size

effect.
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The mathematical description of the statistical size effect was made possible by the

significant advances in probabilistic theories as well as extensive experimental investi-

gations in the early twentieth century. Tippett (1925), Fréchet (1927), Fisher and Tippett

(1928), and Peirce (1926) pioneered the mathematical formulation of extreme value

statistics, which was later refined by von Mises (1936), Gnedenko (1943), and others

(see also Gumbel 1958 and Freudenthal 1968). Weibull (1939) independently discov-

ered a probability distribution function of structural strength using the weakest-link

model (Weibull 1939), which is one of the three extreme value distribution functions

proposed by Fisher, Tippett, and Fréchet.

The essential point of Weibull’s analysis is that the structure can be statistically mod-

eled by a chain of a large number of elements, and the tail distribution of strength of each

element follows a power law. The resulting probability distribution of structural strength

is now known as the Weibull distribution. The Weibull distribution of structural strength

was later supported theoretically by probabilistic modeling of the distribution of micro-

scopic flaws (see, e.g., Freudenthal 1968, 1981). It is noted that the Weibull distribution

has also been widely applied to various other physical phenomena (Rinne 2009).

Another important aspect of Weibull’s work is that he also derived a size effect equa-

tion on the mean structural strength based on the Weibull distribution. This is the

first mathematical description of statistical size effect. Most subsequent studies until

the 1980s dealt basically with refinements, justifications, and applications of Weibull’s

theory (Zaitsev & Wittmann 1974; Mihashi & Izumi 1977; Zech & Wittmann 1977;

Mihashi & Zaitsev 1981; Mihashi 1983; Carpinteri 1986; Kittl & Diaz 1988; Carpinteri

1989; Kittl & Diaz 1989, 1990; Danzer, Supancic, Pascual, & Lube 2007; Danzer, Lube,

Supancic, & Damani 2008). The essential feature of the Weibull statistical size effect is

that it follows a power-law form, which implies the absence of a characteristic length

(see detailed discussion in Section 1.5).

For a long time, it was generally assumed that, if a size effect was observed, it had to

be of the Weibull type. Today we know this is not the case because the Weibull statistical

size effect is limited to structures that (1) fail (or must be considered as failing) right

at the initiation of the macroscopic fracture and (2) have at failure only a small FPZ

compared to the structure size. Condition (1) is necessary for allowing the structure to

be statistically modeled as a chain of elements, and condition (2) essentially implies that

the number of elements in this chain is so large that it can be considered infinite. This is

certainly the case for various fine-grain ceramics and for metal structures embrittled by

fatigue. But this is not the case for quasibrittle materials, the main subject of this book.

1.2.2 Recent Developments

The most widely used quasibrittle material is concrete. The study of its fracture mechan-

ics, initiated by Kaplan (1961), led to the discovery of a new type of size effect in qua-

sibrittle fracture, which is fundamentally different from the statistical size effect.

Long ago it has been concluded that the classical LEFM is not applicable to con-

crete (Leicester 1969; Kesler, Naus, & Lott 1972; Walsh 1972). Leicester (1969) tested

geometrically similar notched beams of different sizes and used a power law to fit the
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Figure 1.5. Measured size effect on the nominal strength of concrete beams.

measured size effect on the nominal strength: σN ∝ D−n(n > 0). Based on the optimum

fitting, the value of n was less than 1/2. Such an n-value was inferred by assuming

failure to be caused by a finite-angle notch, because its stress singularity exponent is

weaker than that for a sharp crack. However, the optimum value of n was found to be

less than the magnitude of the dominant stress singularity at the notch tip, as required

by the LEFM. Furthermore, like the Weibull size effect, Leicester’s power-law scaling

also implied the nonexistence of a characteristic length, which cannot be the case for

concrete owing to the large size of its FPZ.

The inapplicability of LEFM was further evidenced by Walsh’s size effect exper-

iments on geometrically similar notched beams (Walsh 1972, 1976). The nominal

strength was plotted against the beam size in a double logarithmic diagram (Fig. 1.5), in

which σ0 is a reference strength and da is the average aggregate size. Without attempting

a mathematical description, he made the point that this diagram deviates from a straight

line of slope −1/2, and that this deviation must be regarded as a departure from LEFM.

The major milestone in application of fracture mechanics to concrete was the devel-

opment of the fictitious crack model by Hillerborg et al. (1976). The concept of the

fictitious crack model is analogous to the softening cohesive crack model of Baren-

blatt (1959, 1962), and is similar to the plastic fracture process zone model of Dug-

dale (1960) (later extended by Knauss 1973, 1974; Wnuk 1974; and Kfouri and Rice

1977). Hillerborg et al. used the fictitious crack model to simulate the failure of
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unnotched plane concrete beams in bending and further demonstrated a deterministic

size effect, different from the Weibull statistical size effect, on the flexural strength of

beams. The softening cohesive crack model by Palmer and Rice (1973) did the same for

shear.

Around the same time, it was discovered (Bažant 1976) that the damage localization

of strain-softening material would lead to a size effect on the post-peak deflections and

energy dissipation of structures. The essential idea of crack band model was proposed

as a remedy for realistic and objective finite element simulation of quasibrittle frac-

ture (Bažant 1976, 1982; Bažant & Oh 1983). It was shown that the crack band model

could accurately capture the size effect observed, by that time, on concrete structures.

A more general nonlocal integral approach that can handle strain-softening damage in

a more fundamental and, in some respect, more realistic manner followed soon (Bažant

1984b; Bažant, Belytschko, & Chang 1984; Pijaudier-Cabot & Bažant 1987; Bažant &

Pijaudier-Cabot 1988; Bažant & Lin 1988a, 1988b). The nonlocal approach also led to

the later development of the nonlocal implicit gradient models for quasibrittle materials

(Peerlings, de Borst, Brekelmans, & de Vree 1996; Geers, Peerlings, Brekelmans, &

de Borst 2000; Peerlings, Geers, de Borst, & Brekelmans 2001).

In early 1980s, Bažant (1984b) used an approximate energy analysis to derive a sim-

ple size effect law for the nominal strength of quasibrittle structures containing notches

or traction-free (fatigued) large cracks formed prior to the peak load. This size effect

law was later derived by using the equivalent LEFM with Taylor series expansion of

the energy release rate function, by which the size effect curve was directly related

to the fracture properties, such as the fracture energy, the softening law, and the R-

curve, of quasibrittle materials (Bažant & Kazemi 1990a, 1991). Beginning with the

mid-1980s, the interest in the size effect in quasibrittle fracture surged enormously.

Besides an intensive focus on concrete (Petersson 1981; Carpinteri 1986; Planas &

Elices 1988; Planas & Elices 1989; Bažant 1992b; Wittmann 1995), significant atten-

tion has also been paid to various other engineering materials such as ice (Bažant 1992a;

Bažant & Li 1994; Li & Bažant 1994; Dempsey, Adamson, & Mulmule 1995; Mulmule,

Dempsey, & Adamson 1995; Bažant & Kim 1998a, 1998b; Dempsey, Adamson, & Mul-

mule 1999); ceramics (McKinney & Rice 1981), rocks (Bažant, Gettu, & Kazemi 1991;

Bažant, Lin, & Lippmann 1993; Le, Manning, & Labuz 2014), foam (Bažant, Zhou,

Zi, & Daniel 2003), fiber composites (Bažant, Daniel, & Li 1996; Bažant et al. 1999,

2006; Bažant, Zhou, Novák, & Daniel 2004), braided composites (Caner et al. 2011),

and bones (Bažant, Kim, & Yu 2013).

Recent research has focused back on the weakest-link model of strength statistics of

quasibrittle structures that fails under controlled load at macrocrack initiation (Bažant

& Pang 2006; Bažant & Pang 2007; Bažant, Le, & Bazant 2009; Le, Bažant, & Bazant

2011; Salviato, Kirane, & Bažant 2014). Different from Weibull’s analysis, which is

based on an infinite weakest-link model, recent studies proposed a finite weakest-link

model to account for the fact that, for quasibrittle structures, the FPZ size is not negligi-

ble compared to the structure size. This model was further extended to lifetime statistics

under both static and cyclic fatigue (Bažant et al. 2009; Le & Bažant 2011, 2012, 2014;

Salviato et al. 2014). The finite weakest-link model predicts the size dependence of the
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probability distributions of structural strength and lifetime, which has been shown to

have an important implication for reliability analysis of quasibrittle structures.

1.3 Safety Specifications in Concrete Design Codes and Embedded
Obstacles to Probabilistic Analysis

The concept of structural reliability has penetrated into the design of many engineering

structures. However, most existing design codes are not yet based on a calculation of

the actual structural failure probability. Instead, they prescribe empirical safety factors

of various kinds. The safety factor is understood as the ratio of the mean failure load

measured by experiments to the failure load calculated deterministically. This kind of

safety factor is used for some types of structures (e.g., for airframes, where it is generally

considered to be 1.5). The design codes for structural concrete (as well as steel) were,

in the 1970s, converted to the load factor and resistance design (LFRD), in which the

safety factor is split into two types of partial factors:

1. The load factors, which account for the random variability of various kinds of load

(live and dead loads, wind, earthquake, earth pressure, water pressure)

2. The resistance factors, aka strength reduction factors (popularly, “understrength”

factors), applied to the calculated structural strength. These factors reflect the dif-

ferences in risks in different types of failure; e.g., they are 0.9 for flexure and 0.75

for shear of concrete beams.

From the statistical viewpoint, three problems with these factors have recently been

identified [for details, see Bažant & Frangopol (2002) and Bažant & Yu (2006)]:

1. While the safety factor of 1.6 for live loads seems reasonable, the safety factor

(American Concrete Institute Committee 318 2011) for the self-weight acting alone,

which is specified as 1.4, is excessive, by far. The value of 1.4 implies a 40% error

in the self-weight, which is impossible to occur in practice. The errors in the mass

density of concrete and in structural dimensions cannot justify errors of more than a

few percent. Since, in a small-span bridge, the self-weight can represent 5% of the

total load and in a large-span one 95%, such an excessive load factor unjustly penal-

izes large structures. So this penalty is equivalent to introducing in design a certain

hidden size effect. But the trend of this hidden size effect is incorrect, with respect to

not only the structure size, but also the structure type. For example, compared to the

normal strength and non-prestressed concretes, the prestressed concrete structures

and high-strength ones are lighter and thus receive less protection from the hidden

size effect, but actually would need a higher protection because they are more brittle

and exhibit a stronger size effect [for detailed discussion see Bažant & Yu (2006)].

2. Another problem is that various concrete design formulas have been set not to pass

through the mean of experimental data but at the margin of a highly scattered data

cloud, and that one must go to the original reports to find out. For example, in the case

of shear failure of beams, the design formula passes about 65% below the mean
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strength, which is near the bottom margin of the data cloud in which beams of dif-

ferent sizes, reinforcement, shear spans, aggregate sizes, etc. are commingled. This

approach is necessary to make the deterministic design method adequately safe, but

it implies covert understrength factors which, in many cases, lead to excessive safety,

and in some cases not. The fact that the mean fit of the experimental data and the

coefficient of variation (CoV) of its error (as well as the type of probability distri-

bution) are unknown makes meaningful probabilistic analysis of structural strength

impossible.

3. A similar problem occurs for the concrete strength. The design according to the code

is based on the so-called required compression strength, f ′

c , which is set by the ACI

code at about f̄c − 1.34δ f where f̄c = mean strength from cylinder tests and δ f =

their standard deviation (which is normally not known to the designer). Because the

random scatter in concrete is high, f ′

c can be 30% lower than f̄c. Again this approach

is necessary to make the deterministic design approach safe, but it implies another

covert understrength factor. The fact that the mean strength and its CoV are nor-

mally not reported and are unknown to the designer renders meaningful probabilistic

design impossible [Model code 2010 sets f ′

c = f̄c − 8 (units are in MPa) but the ratio

of 8 MPa to δ f is not known and varies].

Relatively sophisticated methods have been developed for the reliability analysis of

civil engineering structures. They include the first-order and second-order reliability

methods (FORM and SORM), where the failure risk of the structure can be estimated

by using reliability indices, such as the Cornell and Hasofer–Lind indices (Benjamin &

Cornell 1970; Hasofer & Lind 1974; Rackwitz & Fiessler 1976; Rackwitz & Fiessler

1978; Ang & Tang 1984; Haldar & Mahadevan 2000a). However, these methods are

usually applied without regard to, or even in ignorance of, the aforementioned obstacles.

Such an attitude limits their applicability to quasibrittle structures. Besides, these meth-

ods need restructuring to take into account the size effect on the strength distribution and

its deviations from Gaussian and Weibull distributions established in this book.

Although the design code must be satisfied, it is nevertheless always prudent to also

check the design of large and daring structures probabilistically, using the data from

concrete strength tests conducted on the concrete chosen for the structure, or at least a

reasonably estimated mean and standard deviation of such tests. This is how the prob-

abilistic theory in this book is applicable to concrete structures, in spite of the afore-

mentioned obstacles to probabilistic analysis. Another application should, of course, be

the improvement of concrete design codes. And, of course, in the engineering practice

of many other quasibrittle materials, e.g., fiber composites, tough ceramics, and rocks,

the theory expounded here does not face similar obstacles. In aeronautical engineering

there are no design codes, only performance requirements.

1.4 Importance of Size Effect for Strength Statistics

If the scaling of a theory is not understood, the theory itself is not understood. This motto

has guided the development of fluid mechanics for more than 100 years, and recently
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