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72 Elements of the representation theory of associative algebras III, DANIEL SIMSON &

ANDRZEJ SKOWROŃSKI
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76 Number theory in the spirit of Liouville, KENNETH S. WILLIAMS
77 Lectures on profinite topics in group theory, BENJAMIN KLOPSCH, NIKOLAY NIKOLOV &

CHRISTOPHER VOLL
78 Clifford algebras: An introduction, D. J. H. GARLING
79 Introduction to compact Riemann surfaces and dessins d’enfants, ERNESTO GIRONDO &

GABINO GONZÁLEZ-DIEZ
80 The Riemann hypothesis for function fields, MACHIEL VAN FRANKENHUIJSEN
81 Number theory, Fourier analysis and geometric discrepancy, GIANCARLO TRAVAGLINI
82 Finite geometry and combinatorial applications, SIMEON BALL
83 The geometry of celestial mechanics, HANSJÖRG GEIGES
84 Random graphs, geometry and asymptotic structure, MICHAEL KRIVELEVICH et al

85 Fourier analysis: Part I – Theory, ADRIAN CONSTANTIN
86 Dispersive partial differential equations, M. BURAK ERDOĞAN & NIKOLAOS TZIRAKIS
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Introduction

Hurwitz theory is a beautiful algebro-geometric theory that studies maps of
Riemann Surfaces. Despite being (relatively) unsophisticated, it is typically
unapproachable at the undergraduate level because it ties together several
branches of mathematics that are commonly treated separately. This book
intends to present Hurwitz theory to an undergraduate audience, paying special
attention to the connections between algebra, geometry and complex analy-
sis that it brings about. We illustrate this point by giving an overview of the
material in the book.

Hurwitz theory is the enumerative study of analytic functions between Rie-
mann Surfaces – complex compact manifolds of dimension one. A Hurwitz
number counts the number of such functions when the appropriate set of dis-
crete invariants is fixed. This has its origin in the 1800s in the work of Riemann,
who first had the insight that multi-valued inverses of complex analytic func-
tions can be naturally seen as functions defined on a domain which is locally,
but not globally, identifiable with the complex plane: i.e. a Riemann Surface.

Studying analytic functions defined on Riemann Surfaces leads to the geom-
etry of oriented topological surfaces, which Riemann Surfaces are. The local
behavior of functions reveals a high degree of structure: analytic functions are
ramified coverings; that is, coverings except at a discrete set of points where a
phenomenon called ramification occurs.

Ramified coverings naturally give rise to monodromy representations, which
are homomorphisms from the fundamental group of the punctured target sur-
face to a symmetric group. The ramification at the preimages of a point b in the
base is captured by the cycle type of the permutation associated with a small
loop winding around the point b.

The count of all such representations can be identified with a coefficient of
a specific product of vectors in the class algebra of the symmetric group: with
a vector space which has a basis indexed by conjugacy classes. Elements of

ix
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x Introduction

this basis are given by formal sums of all permutations in the same conjugacy
class. A commutative multiplication is then defined by extending the group
operation of the symmetric group by bilinearity.

The class algebra is known to be semisimple: it admits a basis with respect
to which multiplication is idempotent. Computing the product above in the
semisimple basis yields closed formulas for Hurwitz numbers in terms of
characters of the symmetric group.

To summarize, the count of analytic functions was translated to a geometric
count of topological covers, then to an algebraic count of group homomor-
phisms, and finally reduced to a representation theoretic computation.

In a different direction, Riemann Surfaces can be degenerated to nodal sur-
faces by shrinking loops. These nodal surfaces look like “smaller” Riemann
Surfaces glued at points, and so degeneration creates infinite families of recur-
sive relations among Hurwitz numbers. We conclude the book by showing
that when Hurwitz numbers are encoded as coefficients of a formal power
series (a generating function called the Hurwitz potential), some of these recur-
sions translate into partial differential equations that are solved by the Hurwitz
potential.

Whether this summary makes perfect sense or no sense at all depends
on the background of the reader. In any case, we hope that at least two
things are apparent: first, that keywords from several different undergraduate
courses have been used; and second, that no exceptionally sophisticated term
appeared.

This book arises from two experimental undergraduate courses that the first
author taught at Colorado State University in 2014 and 2015. The courses were
offered as a follow-up to classes in topology and differential geometry; a main
goal was to depart from the structure of a traditional course and offer the
students a mode of approaching the study of mathematics closer to that of a
researcher facing a new problem.

At a school like Colorado State University, most advanced math majors
have typically taken semester-long courses in some of the areas mentioned
in the above synopsis, and typically have not taken all those courses. There
is some analogy with the situation that mathematical researchers are in when
they tackle an open problem. First of all, translation and reformulation of a
problem is often a very important tool in mathematical research. Problems that
are too difficult when studied in a certain way may become approachable when
the point of view is changed. When mathematical researchers translate a ques-
tion in order to find ways to solve it, they are often taken into mathematical
areas out of their comfort zone. And they don’t have the opportunity to take
a semester-long course, or to read a whole book on each topic that they use,

www.cambridge.org/9781107149243
www.cambridge.org


Cambridge University Press
978-1-107-14924-3 — Riemann Surfaces and Algebraic Curves
Renzo Cavalieri , Eric Miles 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction xi

but must be able efficiently to develop a working understanding of the aspects
needed for their problem.

This analogy informed the way we structured the narration of our story. We
have background chapters that introduce complex analysis, manifolds, the fun-
damental group, representation theory of the symmetric group and generating
functions in a skeletal way, touching only on content that we considered essen-
tial to our scope. Such background is not collected all together at the beginning,
but is introduced at the moment when it is needed in the story, which we believe
develops the exposition in a more organic way.

We made the choice of having exercises interspersed in the narration of
the book, serving as an integral part of the exposition, rather than collecting
exercises at the end of each section. The exercises are designed to develop
familiarity with the concepts introduced, which is necessary before using the
concepts in new ways. Exercises also appear in proofs, partly to avoid the
excessive proliferation of parts of proofs that consist mostly in bookkeep-
ing, but also to encourage the reader to be actively involved and test his/her
understanding.

This book can and should be used differently by different readers, but we
hope that, whether you are an instructor preparing a course, a student reading
this independently, or something in between, you find this book a helpful guide
through the first steps in this fascinating topic.

Although the main body of the text covers a lot of ground, this is really
only the beginning of the story in Hurwitz theory. By nature, Hurwitz theory
is interdisciplinary and is part of the basic toolkit in many areas of mathemat-
ics. In the appendices we offer a glimpse of what is beyond through a small
number of essays by guest writers: active researchers in various areas of math-
ematics who use Hurwitz theory in their work. The scope of the appendices
is to pique the reader’s interest; to leave them a bit dazed and confused, and
with the desire to continue learning – which is the constant state of mind of
any mathematician.
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