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Introduction

Given the large number of exact solutions that exist today in (2 + 1) Einstein

gravity the purpose of the present book is to present a complete and concise list

of exact solutions with emphasis on their physical and geometrical properties

from the beginnings of the field in 1963 to the present, to be useful for the

audience of experts and young researchers. Emphasis is given to solutions to

the Einstein equations in the presence of matter and fields, for instance, point

particle solutions, perfect fluids, cosmological spacetimes, dilatons, inflatons, and

stringy solutions. The second part of this book deals with solutions to vacuum

topologically massive gravity with a cosmological constant, as there exist three

big families of spacetimes: the inhomogeneous Bianchi class of solutions, the

Kundt spacetimes and the Cotton type N wave fields.

To avoid unnecessary typing, the cosmological constant is denoted by Λ, AdS

spacetime stands for an asymptotically anti-de Sitter spacetime with Λ < 0,

dS spacetime stands for an asymptotically de Sitter spacetime with Λ > 0, 3D

stands for three dimensions, while (2+1)D spacetime denotes (2+1)-dimensional

spacetime, PF stands for perfect fluid, and ρ or µ denotes the fluid energy den-

sity. Occasionally we use SL for spacelike, TL for timelike, and ST to denote

spacetime. On the other hand, when publications by various authors are cited,

an abbreviation of their family names, including their first capital initials, are

given; for instance, EEqs. and EM mean, respectively, Einstein equations and

Einstein–Maxwell, MTW stands for Misner, Thorne, and Wheeler; FRW reads

Friedmann–Robertson–Walker, and BTZ denotes Bañados–Teitelboim–Zanelli.

1.1 Main Features of (2 + 1) Gravity

In the early work by Giddings, Abbott, and Kuchař (GAK) (Giddings et al.,

1984) it is stated that “the lowest dimension in which the Einstein Theory makes
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2 Introduction

sense is n = 3.” Consequently, bearing in mind the self-contained nature of this

book, the main features of (2 + 1)-dimensional gravity are presented following

the GAK pattern and essentially maintaining their wording.

1.1.1 Field Equations and Curvature Tensors

Einstein’s theory of relativity, as a theory of a gravitational spacetime, can be

based on two postulates which are independent of the spacetime dimensions;

these postulates demand that the field equations take the form of the Einstein

equations:

Gµν := Rµν − 1

2
R gµν = κTµν − Λ gµν , (1.1)

where Gµν is the Einstein tensor, Tµν is the energy–momentum tensor (which, by

virtue of the Bianchi identity, fulfills the energy conservation condition Tµ
ν;µ =

0), Λ is a cosmological constant, and κ is a coupling constant. And second, the

spacetime geometry is determined by the Riemann curvature tensor Rα
βγδ.

The Riemann tensor in three dimensions possesses six algebraically indepen-

dent components: as many as the number of independent components of the

Ricci tensor; therefore, the Riemann tensor is completely determined by the

Ricci tensor and the scalar curvature, namely:

Rαβγδ = gαγ Rβδ − gαδ Rβγ − gβγ Rαδ + gβδ Rαγ

−1

2
(gαγgβδ − gαδ gβγ)R. (1.2)

There is no room for the Weyl conformal tensor, which is thus zero.

Due to the Einstein equations, the Riemann tensor can be expressed in terms

of the Einstein tensor or, in turn, through the energy momentum tensor Tαγ as

Rαβγδ = κ[gαγ Tβδ − gαδ Tβγ ] + κ[gβδ Tαγ − gβγ Tαδ]

−κ(gαγgβδ − gαδ gβγ)T. (1.3)

In three dimensions, the coupling constant κ is measured in units of 1/mass, and

therefore defines a natural mass unit.

1.1.2 Matter Distribution Locally Curves the Spacetime

Since, in a 3D spacetime, the Riemann curvature tensor is expressible solely

through the energy–momentum tensor (1.3), thus, in an empty spacetime, where

Tαγ = 0, the spacetime is locally flat:

Rαβγδ = 0.

Therefore, the flat spacetime is the field solution to the vacuum Einstein equa-

tions Gµν = 0 → Rµν = 0 = R, (Tµν = 0 and Λ = 0). Staruszkiewicz (1963), in
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1.1 Main Features of (2 + 1) Gravity 3

his pioneering article, stressed this fact by writing: “three-dimensional gravita-

tion theory is a theory without a field of gravitation; where no matter is present,

space is flat. Curvature can arise only if matter or energy are present.”

1.1.3 Point Particles Produce Global Effects on the Spacetime

The first publication on gravity in (2 + 1) dimensions by Staruszkiewicz (1963)

was devoted to the description of static solutions determined by point sources.

Point particles move along geodesics. In the points where the particles are located

there arise conical defects (conical singularities) that can be felt at infinity; the

total mass in the spacetime is proportional to the deficit angle at infinity. Because

the angle deficit cannot increase by 2π, the mass is bounded from above. See

Chapter 2 for details.

1.1.4 Newtonian Limits

This section has to be subdivided into three subsections: first, to recall the con-

tent of the Newtonian theory; second, to reveal the existence of the Newtonian

limit in the standard (3 + 1), or (1 + (n− 1)), gravity via the weak gravitational

field treatment; and finally, to show that the slow motion limit of the (2 + 1)

gravity occurs without acceleration.

Newtonian Theory of Gravity

The Newtonian theory of gravity is based on the Newtonian potential φ fulfilling

the Poisson equation with matter density ρ,

∇2φ = 4π Gρ, (1.4)

which generates the Newtonian field causing the accelerated motion of test

particles in it:

d2 xi

dt2
= −δi j∂j φ. (1.5)

G stands for the Newton constant of gravitation.

Weak Gravitational Theory in n Dimensions

In this paragraph, starting from the n-dimensional Einstein equations for weak

gravitational fields (expansion of the metric components), the equation obeyed

by the weak fields, and related to the energy density, is derived. The limit of the

geodesic equation of motion for test particles in the case of slow velocities and

weak gravitational fields is derived and its consequences analyzed.

GAK Linearized Approach

Following GAK, the linearized Einstein equations in the Hilbert–de Donder gauge

reduce to the inhomogeneous wave equation
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�hαβ = −2κ

[

ταβ − τ

n − 2
ηαβ

]

. (1.6)

For small perturbations,

hαβ = gαβ − ηαβ , (ηαβ) = diag (−1, 1, 1, 1). (1.7)

In weak fields, the linearized stresses τij (spatial components) are negligible in

comparison to the mass density τ00 = ρ, and assuming additionally the quasi-

staticity of the field and sources, one arrives from (1.6) at

∇2 h00 = −2κ
n − 3

n − 2
τ00, (1.8)

or, identifying h00 = −2φ, one gets

∇2 φ = κ
n − 3

n − 2
ρ. (1.9)

The geodesic equation

dxα

ds2
+ Γα

µν
dxµ

ds

dxν

ds
= 0, (1.10)

for slow motion in the linearized limit, becomes

dxi

dt2
− 1

2
δij∂j h00 = 0 → dxi

dt2
= − δij∂j φ. (1.11)

Carlip Linearized Approach

In Chapter 1 of Carlip (1998), it is stated that “general relativity in 2+1

dimensions has a Newtonian limit in which there is no force between static

point masses.” The starting point to establish this assessment is the approxima-

tion (1.7), and it continues with the n-dimensional field equations given in the

harmonic gauge (which can always be chosen) such that:

−1

2
ηµν∂µ ∂ν h̄αβ + O(h2) = κTαβ ,

ηµν∂µ h̄νβ = 0, (1.12)

where

h̄αβ = hαβ − 1

2
ηαβ ηµνhµν → hαβ = h̄αβ − 1

n − 2
ηαβ ηµν h̄µν . (1.13)

The Newtonian limit is obtained:

by setting T00 = ρ, where ρ is the mass density;

by equating to zero all other components of the stress–energy tensor;

by ignoring time derivatives;

then, identifying

h̄00 = −4φ, (1.14)

the linearized equations (1.12) reduce to
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1.1 Main Features of (2 + 1) Gravity 5

∇2φ =
κ

2
ρ. (1.15)

In this limit, the geodesic equation (1.10) reduces to

d2xi

dt2
− 1

2
∂i h00 = 0 (1.16)

and, taking into account (1.13) and (1.14), becomes

d2xi

dt2
= −2

n − 3

n − 2
δij∂j φ. (1.17)

Discrepancies

Comparing these results reported by GAK, Giddings et al. (1984), and Carlip

(1998), one notices that the numerical coefficients in the GAK equations for the

limits of Newton and particle motion equations correspond to those in the limit

of the geodesic motion and to the Newton equation respectively of Carlip (1998).

The Outcome of the Dilemma

A detailed derivation of the linearized Einstein theory is done in 3+1 dimensions

by Tonnelat (1959), Chapter 12, §1, 2, 3, which can be extended to (1+ (n− 1))

dimensions, practically without any changes. In this manner, using the de Don-

der conditions, σβ = 1
√

−g
∂α(

√−g gα β) = 0 – which allow for the existence of

(isothermal) harmonic coordinates and the use of the subclass of quasi-Lorentzian

coordinates in the linearization problem of the Einstein equations – one gets the

Newton limit in the form (1.15). Moreover, the limit of the geodesic equation

for slow motion is also established by Tonnelat (1959), which in terms of the

“bar” quantities, in the terminology of MTW, Misner et al. (1973, Chapter 18),

gives (1.16), and consequently, in term of the Newtonian potential, it reduces to

(1.17).

Weak Gravitational Theory in (2 + 1) Dimensions

Having at hand the linearized expressions of the Einstein equations and of the

geodesic equations, in any dimension n, by means of the equations (1.15) and

(1.17), correspondingly, one easily recognizes that in (2 + 1) gravity the Newto-

nian limit holds in the two spatial dimensions, but the Newtonian acceleration

equation fails to be true; the geodesic slow motion occurs without acceleration,
d2xi

dt2 = 0.

1.1.5 No Geodesic Deviation for Dust

It is apparent that the geodesic deviation for neighboring moving particles has

to vanish. Consider a congruence of geodesics with tangent vectors uα, and let

the separation vectors from one geodesic to another be V µ; then the geodesic

deviation equation is
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∇u ∇u V α = Rα
βγδu

β uγ V δ. (1.18)

Assume now that this congruence is modeled by a tube of dust with energy–

momentum tensor

Tαβ = ρ uα uβ . (1.19)

Substituting this tensor into the expression of the Riemann tensor (1.3) and

contracting it with u, one gets

Rα
βγδu

β uγ = 0, (1.20)

which in turn implies

∇u ∇u V α = 0. (1.21)

Therefore, in a (2 + 1) spacetime the world lines of dust do not deviate. In par-

ticular, the trajectories of point particles do not approximate to one another;

in other words, there is no acceleration between them. This final observation is

another effect which is present in (2 + 1) gravity. Summarizing, in this theory

there is no action at distance: in a 3D spacetime, gravitational effects do not

propagate outside the matter content; test particles outside the matter region

move along geodesics without experiencing acceleration and geodesic deviation.

1.1.6 No Dynamic Degrees of Freedom

In more than three dimensions, the Weyl tensor encodes the information about

the Riemann curvature not caused by matter. Since in 3D spacetime the Weyl

tensor vanishes – that is, there is no room for it – then, because curvature

is only produced by matter, the gravitational field has no dynamic degrees of

freedom. Another way to arrive at this absence of degrees of freedom is through

a counting argument appealing to the canonical geometrodynamics, as was done

in 3D by Giddings et al. (1984) and by Carlip (1998) in nD. Roughly speaking,

in the canonical geometrodynamics, the spacetime is foliated by means of a one-

parameter family of spacelike hypersurfaces, xα = xα(xa, t); thus one can define

an intrinsic metric

gab = gαβ Xα
a Xβ

b , Xα
a :=

∂xα

∂xa
, a = 1, . . . , n − 1, α = 1, . . . , n − 1, t,

and a field of unit normals Uα, to these hypersurfaces, together with the extrinsic

curvatures, Kab = −Uα;βXα
a Xβ

b . The Einstein equations are then decomposed

with respect to the normal and tangential directions to the hypersurfaces; then

we introduce the lapse function N , the shift vector Na, the intrinsic metric

gab and the momentum conjugate to the metric pab, defined by means of the

extrinsic metric, which are elevated to the category of canonical variables. Ein-

stein equations are then expressed in terms of all of them, with constraints:

the projections GαβUα Uβ , (1), GαβUα Xβ
a , (n − 1), the evolution eq. for

p: ṗab ∼ GabX
α
a Xβ

b , n(n − 1)/2, and the evolution eq. for g: ġab, n(n − 1)/2.
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In n dimensions, the intrinsic metric possesses n(n − 1)/2 components, and the

conjugate momentum also has n(n−1)/2 components, and together the number

of their components is n(n − 1). On the other hand, one can fix n of them by

choosing n coordinates, and additionally n by the constraints; consequently, the

number of degree of freedom in the canonical data is: n(n− 1)− 2n = n(n− 3).

Hence, in three dimensions there is no freedom in the prescription of the initial

data in the initial hypersurface.

As a consequence of this lack of degrees of freedom, there are no gravitational

waves in 3D flat spacetime; in the terminology of Gott and Alpert (1984), there

are no gravity waves in flatland; no gravitons.

1.1.7 Black Holes in (2 + 1) Gravity

So there are no black holes in asymptotically flat spacetime; the asymptotically

flat space is flat everywhere, and as such it does not allow for any solution

different to the one corresponding to the Minkowskian 3D metric. However, let

us consider a different situation from the flat asymptotic: for asymptotically anti-

de Sitter (2 + 1) spacetime there exists a black hole solution found by Bañados,

Teitelboim, and Zanelli: the BTZ black hole, Bañados et al. (1992). Since that

original discovery, various classes of black hole solutions, in the presence of fields

and matter, have been reported in the literature.

1.1.8 Gravity in the Presence of Other Fields and Matter

3D gravity in the presence of other fields is worthy of deep study; many

achievements have been made since studies began. The present text is sim-

ply designed to show the existence of big families of exact solutions in three

dimensions and their parallelism, if any, with those classes of the standard

4D gravity. For instance, one may attempt a bridge between 3D conformally

flat metrics and nD conformally flat metrics for incompressible perfect flu-

ids, Friedmann–Robertson–Walker cosmology, and FRW dilaton–inflaton theory,

among others.

1.2 Algebraic Classification

In 4D gravity, to characterize adequately the gravitational field, there exist two

main classifications: the Petrov classification of the Weyl conformal tensor –

Petrov types of gravitational fields – and the Plebański–Pirani classification of

the tensor of matter or of the traceless Ricci tensor. In (2+1) gravity the situation

simplifies considerably: one is dealing with symmetric tensors for the matter from

one side, and, to characterize the conformal properties of the metric, the Cotton

tensor from the other.

1.2.1 Classification of the Cotton–York Tensor

The role of the conformal tensor in (2 + 1) gravity is played by the Cotton

tensor, Cotton (1899); see Stephani et al. (2003) for a more recent reference. In
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3D geometry, the conformal property of the space is guaranteed by the vanishing

of the conformal Cotton tensor. This tensor is defined by means of the covariant

derivatives of the Ricci tensor and of the scalar curvature according to

Cαβ = Cβα = ηµν(α

(

Rβ)
µ − 1

4
R δβ)

µ

)

;ν

, (1.22)

where the symmetry has been introduced explicitly. Notice that the Cotton

tensor is traceless:

Cα
α = 0. (1.23)

To classify the Cotton tensor with respect to its eigenvalues, one has to solve a

generalized eigenvalue problem:
(

Cαβ − λ gαβ
)

Vβ = 0 , C [αβ] = 0 , Cαβ gαβ = 0 . (1.24)

By lowering one index, one can reformulate this task as an ordinary eigenvalue

problem for the matrix Cα
β . However, in that case, the symmetry Cαβ = Cβα

is no longer present:
(

Cα
β − λ δβ

α

)

Vβ = 0 , Cα
α = 0 . (1.25)

Accordingly, the matrix Cα
β is no longer symmetric and the roots of the

characteristic polynomial

det
(

Cα
β − λ δβ

α

)

= 0 (1.26)

may be complex. This point seems to have been overlooked by Barrow et al.

(1986).

I will present a classification of Cα
β along the lines of Garcia–Hehl–Heineke–

Maćıas (GHHM), Garćıa et al. (2004), where the components are referred to an

orthonormal basis:

g = gαβdxα dxβ = ηab Θa Θb, (ηab) = diag(−1, 1, 1). (1.27)

The trace-free condition (1.25)2 reads explicitly

C1
1 + C2

2 + C3
3 = 0 . (1.28)

Accordingly, we can eliminate C3
3, e.g., from (1.25)1. Then the secular determi-

nant reads

det

∣

∣

∣

∣

∣

∣

C1
1 − λ C1

2 C1
3

−C1
2 C2

2 − λ C2
3

−C1
3 C2

3 −C1
2 − C2

2 − λ

∣

∣

∣

∣

∣

∣

= 0 , (1.29)

with the five matrix elements C1
2, C1

2, C1
3, C2

2, C2
3. The equation to determine

the eigenvalues λ amounts explicitly to

λ3 + b λ + c = 0 , (1.30)

where

b : = −(C1
1)2 − C1

1C2
2 − (C2

2)2 + (C1
2)2 + (C1

3)2 − (C2
3)2 , (1.31)
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c : =
[

(C1
1)2C2

2 + C1
1(C2

2)2 + C1
1(C1

2)2 + C1
1(C2

3)2 (1.32)

+(C1
2)2C2

2 + 2C1
2C1

3C2
3 − (C1

3)2C2
2
]

.

The roots of (1.29) are given by

λ1 = A , λ2 = −A

2
+ i

√
3

2
B , λ3 = −A

2
− i

√
3

2
B , (1.33)

with

A :=
D2 − 12b

6D
, B :=

D2 + 12b

6D
, D :=

(

−108c + 12
√

12b3 + 81c2
)1/3

.

A cubic polynomial with real coefficients has at least one real root and the

complex roots have to be complex conjugates. The Petrov types, Jordan normal

forms and Segré notations of the Cotton tensor read:

Table 1.2.1 Algebraic classification of the Cotton tensor

“Petrov” type Jordan form Segré notation eigenvalues relation

I





λ1 0 0
0 λ2 0
0 0 −λ1 − λ2



 [111] λ1 �= λ2, λ3 = −λ1 − λ2

D





λ1 0 0
0 λ1 0
0 0 −2λ1



 [(11)1] λ1 = λ2 �= 0, λ3 = −2λ1

II





λ1 1 0
0 λ1 0
0 0 −2λ1



 [21] λ1 = λ2 �= 0, λ3 = −2λ1

N





0 1 0
0 0 0
0 0 0



 [(21)] λ1 = λ2 = λ3 = 0

III





0 1 0
0 0 1
0 0 0



 [3] λ1 = λ2 = λ3 = 0

O





0 0 0
0 0 0
0 0 0





This parallels exactly the Petrov classification of the Weyl tensor in four dimen-

sions in Stephani et al. (2003). This comes about since the Weyl tensor in 4D

is equivalent to a (complex) 3 × 3 trace-free matrix, as Cα
β in 3D; for a similar

classification of Cαβ , see Hall and Capocci (1999). A detailed derivation of the

Cotton tensor in any dimension together with an account of its properties is

presented here in Chapter 20; see also Garćıa et al. (2004).

1.2.2 Classification of the Energy–Momentum Tensor

The standard classification of the energy–momentum tensor Tab takes advantage

of its symmetry property, Tab = Tba, where the Latin letters denote the indices
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with respect to the orthonormal basis (1.27). For that reason the eigenvectors

are found by solving the matrix equation

Tab V b = λ ηab V b,→ (Tab − λ ηab) V b = 0. (1.34)

Searching the values of λ that cancel the determinant of the matrix
⎡

⎢

⎢

⎣

T11 + λ T12 T13

T12 T22 − λ T23

T13 T23 T33 − λ

⎤

⎥

⎥

⎦

, (1.35)

namely the roots of the eigenvalue polynomial

λ3 + c2 λ2 + c1 λ + c0 = 0,

c0 := T11,T22 T33 − T13
2T22 + 2T12 T23 T13 − T12

2T33 − T11 T23
2,

c1 := −T11 T22 − T11 T33 + T12
2 + T22 T33 + T13

2 − T23
2,

c2 := T11 − T22 − T33, (1.36)

which allows for three roots, with its possible degenerations,

λ1 = − c2

3
+

1

6
3
√

Rd − 6F
−3
√

Rd,

λ2,3 = −c2

3
− 1

12
3
√

Rd + 3F
−3
√

Rd ± 1

12
i
√

3
(

3
√

Rd + 36F
−3
√

Rd
)

,

Rd := 36 c1 c2 − 108 c0 − 8 c2
3 + 12D,

D :=
√

12 c13 − 3 c12c22 − 54 c1 c2 c0 + 81 c02 + 12 c0 c23,

F =
1

3
c1 −

1

9
c2

2, (1.37)

one would be able to determine the eigenvectors corresponding to each root.

The nomenclature used for eigenvectors and algebraic types of tensors is bor-

rowed from Plebański (1964): timelike, spacelike, null, and complex vectors are

denoted respectively by T, S, N, and Z. For algebraic types are used the sym-

bols: {λ1T, λ2S2, λ3S3} ≡ {T, S, S}, meaning that the first real eigenvalue λ1

gives rise to a timelike eigenvector T, the second real eigenvalue λ2 is associ-

ated with a spacelike eigenvector S2, and finally the third real eigenvalue λ3 is

related to a spacelike eigenvector S3; for the sake of simplicity I use the sym-

bols {T, S, S}. It is clear that {N,N, S} stands for the algebraic type allowing

for two different real eigenvalues giving rise to two null eigenvectors while the

third real root is associated with a spacelike eigenvector. When there are single

and double real eigenvalues giving rise correspondingly to timelike and spacelike

eigenvectors, the algebraic type is denoted by {T, 2S}; consequently, for a triple

real eigenvalue, if that were the case, the types could be {3T}, {3N}, or {3S}.
For a complex eigenvalue λZ , in general, the related eigenvectors are complex

and are denoted by Z and Z̄ for its complex conjugate; the possible types are

{T,Z, Z̄}, {N,Z, Z̄}, or {S,Z, Z̄}.
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