

Cambridge University Press 978-1-107-14718-8 — Deep Homology? Lewis I. Held, Jr Table of Contents More Information

Contents

	Preface	page vi
	Foreword by Ehab Abouheif	XV
	Introduction	1
1	Body Axes	7
	The anterior–posterior axis is subdivided by <i>Hox</i> genes	7
	otd/Otx may have ruled the front as caudal/Cdx ruled the rear	19
	Segmentation is so rare among phyla that it must be convergent	20
	The dorsal–ventral axis is established by BMP and Chordin	23
	Left-right asymmetry emerges from cytoskeletal chirality	26
2	Nervous System	37
	A common matrix of transcription factors subdivides the CNS	37
	Neurons make excessive connections that are later pruned	43
	Coordination between left and right involves commissural axons	46
	After an axon crosses the midline it can never go back again	48
	Neurites emanating from the same neuron repel one another	50
	A command center in the brain controls circadian rhythms	53
3	Vision	59
	Photons are detected by 11-cis-retinal (a vitamin-A derivative)	59
	Detection is facilitated by elaborate phospholipid membranes	62
	Color vision relies on a subclass of dedicated photoreceptors	70
	The paired-homeobox gene Pax6 governs eye development	78
	But other facts undermine <i>Pax6</i> 's reputation as a master gene	79
4	Touch and Hearing	85
	The hair cells of the human cochlea develop like fly bristles	85
	Macular hair cells display a plane of symmetry like the fly eye	90

Cambridge University Press 978-1-107-14718-8 — Deep Homology? Lewis I. Held, Jr Table of Contents More Information

vi **Contents**

	Is there a gene complex for human hair like the one for fly bristles?	95
	Flies use their antenna as an ear but still rely on conserved genes	98
	The acoustic properties of human and fly ears are quite similar	100
5	Smell and Taste	103
	Odors and flavors are identified via combinatorial compilation	103
	Gustatory neurons are broadly tuned to only a few taste qualia	105
	Olfactory neurons use one receptor and project to one glomerulus	106
	Successful glomerular wiring requires sensory neuron activity	110
	Pheromones are processed separately from other kinds of odors	111
6	Limbs	113
	Appendages use a common set of genes to delineate their axes	113
	But the case for appendages in urbilaterians is not compelling	118
	Odd-skipped transcription factors are critical for joint formation	120
	Extra-joint syndromes are oddly correlated with polarity shifts	122
	Some vertebrate and arthropod taxa can regenerate their limbs	124
7	Heart	127
	The critical gene for specifying heart identity seems to be <i>tinman</i>	127
	But nematodes use <i>tinman</i> for a non-cardiac (pharyngeal) pump	130
	VEGF plays a regulatory role in circulatory system development	131
	Epilogue	133
	References	135
	Index	267