Index

\(\langle \cdot, \cdot \rangle, 18\)
\(\langle \cdot, \cdot \rangle_2, 10\)
\(\pi_n, 196\)
A-conjugate, 190
ACA, 280, 297
adaptive cross approximation, 280, 297
additive Schwarz method, 310
adic
 \(-B, 30\)
adjoint, 320
admissible function, 288
AINV, 352
algebraic multigrid, 251, 258
algorithm, 12
 Strassen, 15
 thresholding, 390
angle, 326
approximation
 best, 23
approximation error, 97
approximation property, 253
Arnoldi method, 212, 213
associated preconditioner, 335
\(B\)-adic, 30
back substitution, 60
backward Gauss–Seidel method, 126
backward-stable, 54, 61, 72, 77
Banach’s fixed point theorem, 102
band-matrix, 11
base, 30
basis
 orthonormal, 19
basis function, 5, 261
basis pursuit, 372
 robust, 376
Bauer–Fike theorem, 139
best approximation, 23
BiCG, 230
BiCG method, 234
 stabilised, 242
BiCGSTAB, 242
biconjugate gradient method, 230
bidirectional, 172
binary tree, 270
block cluster tree, 289
block matrix, 283
block preconditioner, 357
bottom-up, 271
bounding box, 266
Bregman distance, 386
Bregman iteration, 386
 cancellation, 48
Cauchy–Schwarz inequality, 18, 33
cell, 264
CGNR method, 203
CGS method, 239
chain, 131
characteristic polynomial, 132
Chebyshev polynomial, 199
child, 270
Cholesky factorisation, 76
 incomplete, 346
cluster tree, 286
coarse-grid correction operator, 250
coherece, 381
compactly supported radial basis function, 7
companion matrix, 208
compatible, 37
compressible, 375
compressive sampling matching pursuit, 390
computational cost, 13
Index

condition number, 39, 46
 absolute, 47
 relative, 47
 reduced, 202
conjugate directions, 190
conjugate gradient method, 192
conjugate gradient squared method, 239
consistent, 102
consistently ordered, 116, 122
contraction mapping, 102
CoSaMP, 390
cost
 computational, 13
 cubic, 15
 linear, 15
 quadratic, 15
courant–fischer theorem, 136
cramer’s inequality, 280
cross validation
 generalised, 98
data error, 98
decomposition
 stable, 312
deflation, 171
degenerate kernel, 261
δij, 11
dense, 11
depth, 270
diagonal matrix, 11
diagonlisable, 20
diagonally dominant, 67, 133
 weakly, 108
dimension reduction, 370
direct method, 4
discrepancy principle
 morozov’s, 98
double precision, 30
degree, 270
eigenvalue, 4, 132
 dominant, 141
 generalised, 21
eigenvector, 4, 132
 frequency, 245
 generalised, 21
elementary lower triangular matrix, 62
elementary permutation matrix, 74
energy norm, 194
equality
 parallelogram, 29
equiangular, 383
 equilibration, 331
equation
 approximation, 97
cancellation, 48
data, 98
 input, 32
 overflow, 31
 relative, 36
euclidean norm, 17, 33
evaluation point, 263
expansion
 far-field, 263, 275
 multipole, 266
 unipole, 264
 exponent, 30
 extension matrix, 316
factorisation
 LU, 66
 cholesky, 76
 far-field expansion, 263, 275
 fast gauss transform, 279
 field of values, 208
 fill distance, 266
 fill in, 114
 fill level, 343
 fixed point, 101
 fixed point theorem, 102
 floating point arithmetic, 30
 floating point number, 30
 floating point number system, 30
 floating point operations, 13
flops, 13
FOM, 259
forward substitution, 61
Frobenius norm, 46, 295
full matrix, 6, 11
full orthogonal method, 259
full weighting, 247
function
 admissible, 288
 basis, 5, 261
 generating, 279
 gradient, 48
 hermite, 279
 lagrange, 6
 lebesgue, 305
 positive definite, 7
 radial, 7
Galerkin approximation, 9
Gauss–Seidel
 relaxation, 120
Gauss–Seidel method, 110, 126
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>backward</td>
<td>126</td>
</tr>
<tr>
<td>Gauss–Seidel relaxation</td>
<td>120, 318</td>
</tr>
<tr>
<td>Gaussian</td>
<td>7, 279</td>
</tr>
<tr>
<td>generalised cross validation</td>
<td>98</td>
</tr>
<tr>
<td>generalised eigenvalue</td>
<td>21</td>
</tr>
<tr>
<td>generalised eigenvector</td>
<td>21</td>
</tr>
<tr>
<td>generating function</td>
<td>279</td>
</tr>
<tr>
<td>Gershgorin circle theorem</td>
<td>133</td>
</tr>
<tr>
<td>Givens rotation</td>
<td>100, 155, 222</td>
</tr>
<tr>
<td>GMRES method</td>
<td>203</td>
</tr>
<tr>
<td>restarted</td>
<td>220</td>
</tr>
<tr>
<td>gradient</td>
<td>48</td>
</tr>
<tr>
<td>Gram–Schmidt</td>
<td>19, 212</td>
</tr>
<tr>
<td>grid</td>
<td></td>
</tr>
<tr>
<td>coarse, 246</td>
<td></td>
</tr>
<tr>
<td>H_n</td>
<td>279</td>
</tr>
<tr>
<td>Y-matrix</td>
<td>291</td>
</tr>
<tr>
<td>Hölder inequality</td>
<td>33</td>
</tr>
<tr>
<td>hard-thresholding operator</td>
<td>387</td>
</tr>
<tr>
<td>Hermite function</td>
<td>279</td>
</tr>
<tr>
<td>Hermite polynomial</td>
<td>279</td>
</tr>
<tr>
<td>Hessenberg form</td>
<td>160</td>
</tr>
<tr>
<td>Hessenberg matrix</td>
<td>214</td>
</tr>
<tr>
<td>hierarchical partitioning</td>
<td>285</td>
</tr>
<tr>
<td>hierarchical bisectional partitioning</td>
<td>274</td>
</tr>
<tr>
<td>hierarchical matrix</td>
<td>291</td>
</tr>
<tr>
<td>hierarchical partitioning</td>
<td>264</td>
</tr>
<tr>
<td>hierarchical subdivision</td>
<td>264</td>
</tr>
<tr>
<td>Hilbert space</td>
<td>325</td>
</tr>
<tr>
<td>Horner scheme</td>
<td>351</td>
</tr>
<tr>
<td>Householder</td>
<td>174</td>
</tr>
<tr>
<td>Householder matrix</td>
<td>79</td>
</tr>
<tr>
<td>I, 11</td>
<td></td>
</tr>
<tr>
<td>identity matrix</td>
<td>11</td>
</tr>
<tr>
<td>IEEE 754</td>
<td>30</td>
</tr>
<tr>
<td>ill-conditioned</td>
<td>47</td>
</tr>
<tr>
<td>ILU(p)</td>
<td>344</td>
</tr>
<tr>
<td>in situ</td>
<td>64</td>
</tr>
<tr>
<td>inequality</td>
<td></td>
</tr>
<tr>
<td>Cauchy–Schwarz</td>
<td>18, 33</td>
</tr>
<tr>
<td>Hölder, 33</td>
<td></td>
</tr>
<tr>
<td>Kantorovich, 186</td>
<td></td>
</tr>
<tr>
<td>inertia, 137</td>
<td></td>
</tr>
<tr>
<td>Inf. 31</td>
<td></td>
</tr>
<tr>
<td>inner product</td>
<td>18</td>
</tr>
<tr>
<td>input error</td>
<td>32</td>
</tr>
<tr>
<td>inverse</td>
<td></td>
</tr>
<tr>
<td>pseudo-, 27</td>
<td></td>
</tr>
<tr>
<td>inverse iteration</td>
<td>144</td>
</tr>
<tr>
<td>inverse multiquadric</td>
<td>7</td>
</tr>
<tr>
<td>invertible, 12</td>
<td></td>
</tr>
<tr>
<td>irreducible</td>
<td>109, 131, 176</td>
</tr>
<tr>
<td>iteration</td>
<td></td>
</tr>
<tr>
<td>inverse, 144</td>
<td></td>
</tr>
<tr>
<td>Richardson, 131, 318</td>
<td></td>
</tr>
<tr>
<td>von Wielandt, 144</td>
<td></td>
</tr>
<tr>
<td>iteration matrix</td>
<td>102, 103</td>
</tr>
<tr>
<td>iterative method, 4</td>
<td></td>
</tr>
<tr>
<td>Jacobi, 316</td>
<td></td>
</tr>
<tr>
<td>Jacobi preconditioning</td>
<td>331</td>
</tr>
<tr>
<td>Jacobi method</td>
<td>106, 244</td>
</tr>
<tr>
<td>block relaxation</td>
<td>316</td>
</tr>
<tr>
<td>for computing eigenvalues, 156</td>
<td></td>
</tr>
<tr>
<td>cyclic, 158</td>
<td></td>
</tr>
<tr>
<td>relaxation, 117</td>
<td></td>
</tr>
<tr>
<td>Jacobi relaxation, 117</td>
<td></td>
</tr>
<tr>
<td>kd-tree, 275</td>
<td></td>
</tr>
<tr>
<td>Kantorovich inequality</td>
<td>186</td>
</tr>
<tr>
<td>kernel, 7, 9</td>
<td></td>
</tr>
<tr>
<td>degenerate, 261</td>
<td></td>
</tr>
<tr>
<td>positive definite, 7</td>
<td></td>
</tr>
<tr>
<td>Kronecker symbol, 11</td>
<td></td>
</tr>
<tr>
<td>Krylov space, 194</td>
<td></td>
</tr>
<tr>
<td>LU factorisation</td>
<td>66</td>
</tr>
<tr>
<td>incomplete, 339</td>
<td></td>
</tr>
<tr>
<td>l_p-norm, 33</td>
<td></td>
</tr>
<tr>
<td>L-curve principle, 99</td>
<td></td>
</tr>
<tr>
<td>Lagrange function, 6</td>
<td></td>
</tr>
<tr>
<td>Lanczos method, 222</td>
<td></td>
</tr>
<tr>
<td>biorthogonalisation</td>
<td>227</td>
</tr>
<tr>
<td>regular termination</td>
<td>229</td>
</tr>
<tr>
<td>two-sided, 227</td>
<td></td>
</tr>
<tr>
<td>look-ahead, 230</td>
<td></td>
</tr>
<tr>
<td>serious breakdown, 229</td>
<td></td>
</tr>
<tr>
<td>Lanczos orthogonalisation method, 222</td>
<td></td>
</tr>
<tr>
<td>Landau symbols, 14</td>
<td></td>
</tr>
<tr>
<td>leaf, 270</td>
<td></td>
</tr>
<tr>
<td>least-squares problem</td>
<td>87</td>
</tr>
<tr>
<td>penalised, 95</td>
<td></td>
</tr>
<tr>
<td>Lebesgue function, 305</td>
<td></td>
</tr>
<tr>
<td>level, 264</td>
<td></td>
</tr>
<tr>
<td>lower triangular matrix, 11</td>
<td>normalised, 63, 66</td>
</tr>
<tr>
<td>M-matrix, 131</td>
<td></td>
</tr>
<tr>
<td>machine number, 30</td>
<td></td>
</tr>
<tr>
<td>machine precision, 31</td>
<td></td>
</tr>
<tr>
<td>mantissa, 30</td>
<td></td>
</tr>
<tr>
<td>mapping</td>
<td></td>
</tr>
<tr>
<td>contraction, 102</td>
<td></td>
</tr>
<tr>
<td>matrix M^r, 131</td>
<td></td>
</tr>
</tbody>
</table>
elementary lower triangular, 62
normalised lower triangular, 66
permutation, 73
positive definite, 19
positive semi-definite, 19
band-, 11
bidiagonal, 172
block, 283
companion, 208
dense, 11
diagonal, 11
elementary permutation, 74
full, 6, 11
Hessenberg, 160, 214
hierarchical, 291
Householder, 79
identity, 11
irreducible, 176
iteration, 102, 103
lower triangular, 11
normal, 45, 135, 139
normalised lower triangular, 63
null space, 19
pattern, 339
range, 19
rank, 19
reducible, 109
sparse, 8, 11
square, 11
square root, 20, 312
trace, 46
tridiagonal, 11, 15
unitary, 84
upper triangular, 11
Vandermonde, 6
matrix norm, 37
compatible, 37
induced, 37
multiplicative, 38
subordinate, 37
method
Arnoldi, 212, 213
BiCG, 230, 234
BiCGSTAB, 242
block Jacobi relaxation, 316
CGNR, 203
CGS, 239
conjugate gradient, 192
Gauss–Seidel, 110
GMRES, 203
Gram–Schmidt, 212
Jacobi, 106, 244
Lanczos, 222
Lanczos biorthogonalisation, 227
look-ahead Lanczos, 230
MINRES, 203, 222, 225
multiplicative Schwarz, 318
power, 124, 142
QMR, 235
von Mises, 142
MINRES method, 203, 222, 225
Morozov’s discrepancy principle, 98
multigrid, 244
algebraic, 251
approximation property, 253
smoothing property, 253
multiplicative matrix norm, 38
multipole expansion, 266
multiquadric, 7, 261
NaN, 31
near neighbours, 272
node, 270
depth, 270
non-zero pattern, 338
norm, 17
distance, 194
Euclidean, 17, 33
Frobenius, 46, 295
matrix, 37
outer, 154
normal, 45, 135, 139
normal equations, 87
normalised, 63
normalised lower triangular matrix, 63, 66
null space, 19
null space property, 373
robust, 377
stable, 375
number
machine, 30
numerical radius, 209
\(O \), 14
oct-tree, 270
operator
coarse-grid correction, 250
hard-thresholding, 387
prolongation, 246
restriction, 246
Schwarz, 309
Schwarz additive, 309
ordered
consistently, 116
Index

orthogonal, 19
orthogonal matching pursuit, 386
orthogonal projection, 22, 251, 326
orthonormal basis, 19
Ostrowski, 138
outer norm, 154
outer product, 79
over-determined, 4, 87
overflow, 31
panel, 263, 264
parallelgram equality, 29
parameter
 regularisation, 95
 relaxation, 117
partitioning, 283
 hierarchical, 264, 285
 hierarchical bisectional, 274
tensor product, 283
 uniform hierarchical box, 267
penalised least-squares problem, 95
penalty term, 95
Penrose conditions, 27
permutation, 73
permutation matrix, 73
 elementary, 74
 pivoting, 72
 partial, 73
 total, 73
point
evaluation, 263
source, 263
polynomial
 characteristic, 132
 Chebyshev, 199
 Hermite, 279
polynomials, 196
 positive definite, 19
 positive definite function, 7
 positive semi-definite, 19
 post-order, 270
power method, 124, 142
pre-Hilbert space, 18
pre-order, 270
preconditioner
 associated, 335
 block, 357
 incomplete LU, 339
 polynomial, 346, 348
 sparse approximate, 352
preconditioning
 Jacobi, 331
problem
 least-squares, 87
 projection, 22, 251
 orthogonal, 22, 251
 prolongation, 246
 pseudo-inverse, 27
QR-method with shifts, 170
QMR method, 235
 transpose-free, 243
QMRCGSTAB, 243
quad-tree, 270
quasi-minimal residual method, 235
quasi-uniform, 267
radial, 7
radius
 numerical, 209
 separation, 266
 spectral, 103, 244
range, 19
rank, 19
rank deficiency, 94
Rayleigh, 135
Rayleigh quotient, 42, 145
reduced singular value decomposition, 26, 172
reduced vector, 308
reducible, 109
regular termination of Lanczos method, 229
regularisation
 Tikhonov, 95
 relative error, 36
 relaxation, 116
 block Jacobi, 316
 Gauss–Seidel, 120, 318
 Jacobi method, 117
 symmetric Gauss–Seidel, 127
relaxation parameter, 117
residual, 116
residual correction, 131
restart GMRES, 220
restricted isometry constant, 378
restricted isometry property, 378
restriction, 246
Richardson iteration, 131, 318
RIP, 378
robust basis pursuit, 376
robust null space property, 377
root of a tree, 270
s-sparse, 371
Sassenfeld criterion, 111
Schwarz method
additive, 310
multiplicative, 318
Schwarz operator, 309
additive, 309
self-adjoint, 251
separation radius, 266
serious breakdown of Lanczos method, 229
signal, 370
singular value decomposition, 25, 172
reduced, 26, 172
singular values, 26
slack variable, 384
smoothing property, 253
SOR, 120
source panel, 263
source point, 263
space
Hilbert, 325
Krylov, 194
pre-Hilbert, 18
PAI, 352
sparse, 8, 11
r-, 371
sparse solution, 371
spectral radius, 103, 244
splitting
symmetric, 126
splitting dimension, 274
splitting preconditioner, 335
splitting value, 274
square matrix, 11
SSOR, 127
stabilised BiCG method, 242
stable, 312
backward, 54, 61, 72, 77
steepest descent, 185
stopping criterion, 107
Strassen algorithm, 15
strictly row diagonally dominant, 67, 108
sub-diagonal, 15
sub-tree, 270
subdivision
hierarchical, 264
substitution
back, 60
forward, 61
super-diagonal, 15
support, 371
SVD, 25, 172
reduced, 26, 172
Sylvester’s theorem of inertia, 137
symmetric, 12
symmetric Gauss–Seidel relaxation, 127
symmetric order, 270
symmetric splitting, 126
SYMMLQ, 225
T_n, 199
tensor product partitioning, 283
TFQMR, 243
theorem
Bauer–Fike, 139
Courant–Fischer, 136
quotient, 140
Sylvester’s, 137
thresholding algorithm, 390
Tikhonov regularisation, 95
top-down, 271
trace, 46
transpose-free QMR, 243
tree, 270
balanced, 270
block cluster, 289
child, 270
cluster, 286
depth, 270
post-order, 270
pre-order, 270
symmetric order, 270
triangular matrix
elementary lower, 62
tridiagonal, 11
tridiagonal matrix, 15
under-determined, 4
uniform hierarchical box partitioning, 267
unisolvant, 306
unit ball, 33
unit vector, 33
unitary, 84
upper triangular matrix, 11
V-cycle, 255, 257
Vandermonde matrix, 6
vector iteration, 142
von Mises method, 142
von Wielandt iteration, 144
W-cycle, 257
weakly diagonally dominant, 108
well-conditioned, 47, 49
well-separated, 263, 264, 272, 290
Welsh bound, 382