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Spectral Spaces and Spectral Maps

Spectral spaces are a class of topological spaces. They were ûrst described

in terms of three topological conditions (but not yet named) in [Sto37b, The-

orems 15, 16]. A slightly diûerent, but equivalent, axiomatization was given

in [Hoc67], [Hoc69], where the name spectral space was also introduced.

Hochster used four axioms, which we present and discuss in Section 1.1. The

axioms contain conditions familiar to every mathematician 3 the separation

axiom T0 and quasi-compactness. The other conditions say that there is a dis-

tinguished basis of open sets and that the nonempty closed and irreducible

subsets correspond to the points of the space.

Spectral spaces can be related to each other via continuous maps, since they

are topological spaces. But arbitrary continuous maps between spectral spaces

do not connect the distinguished bases of domain and codomain with each other,

thus disregarding decisive features of the spaces. Therefore, in Section 1.2, a

more suitable class of maps is introduced, the spectral maps. The spectral spaces

and the spectral maps together form a category, which provides an excellent

framework for the further study of spectral spaces.

Spectral spaces carry a great deal of structure 3 besides the deûning topology

there are two other topologies, the patch topology, also called the constructible

topology, cf. Section 1.3, and the inverse topology, cf. Section 1.4.

In every topological space a binary relation, called specialization, is deûned

by: x� y if and only if the neighborhood ûlter of y is contained in the neigh-

borhood ûlter of x. In the case of T0-spaces, hence of spectral spaces, the

relation is a partial order. In Section 1.5 the specialization order is analyzed in

the context of spectral spaces. A spectral space is uniquely determined by its

patch topology and the specialization order. This fact is the basis for another

approach to spectral spaces, which is due to H. Priestley and leads to the notion

of a Priestley space, see [Pri70] and numerous other publications. In Section

1.5 we show that spectral spaces and Priestley spaces are the same mathemati-
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2 Spectral Spaces and Spectral Maps

cal structures, just viewed diûerently. The focus of the book is on the topology

of spectral spaces, but Priestley spaces are a particularly valuable tool for the

construction of examples.

Various simple spectral spaces can be produced ad hoc and are presented

throughout to illustrate the basic notions. The chapter closes with Section 1.6,

where a detailed presentation of several examples and constructions is given,

highlighting the diûerent structural features of spectral spaces developed in the

preceding sections.

1.1 The Deûnition of Spectral Spaces

Summary Spectral spaces are a class of topological spaces deûned by four

axioms, see 1.1.5. We analyze each of the axioms on its own and explore the

consequences of combinations of diûerent axioms. The deûnition, as well as

the characterization given in 1.1.14, indicate that the quasi-compact open sets

play a key role in spectral spaces.

In 1.1.15 it is shown that every ûnite T0-space is spectral, which gives us a

ûrst collection of examples.

To start with, it is necessary to explain some terminology and notation that is

used throughout. References for basic facts from general topology are [Bou71b],

[Eng89] or [Kel75].

1.1.1 Some Notation and Terminology Let X be a topological space. The

set of open subsets (i.e., the topology) is denoted by O(X); the set of closed

subsets is denoted by A(X). Both O(X) and A(X) contain ' , X , and are closed

under ûnite unions and ûnite intersections. Thus, O(X) and A(X) are bounded

sublattices1 of the Boolean algebra P(X), the power set of X . It follows that

they are distributive lattices. Moreover, O(X) is closed under arbitrary unions

and A(X) is closed under arbitrary intersections. Thus, they are even complete

lattices 3 but usually inûnite meets in O(X) and inûnite joins in A(X) do not

coincide with those in P(X).

Our topological spaces are typically not Hausdorff. Therefore some care is

needed with regard to the terminology we use. In the literature a large part of

the terminology for topological spaces is adapted to the needs of analysis and

assumes the Hausdorû separation axiom. Whenever we use names that may

cause confusion, we shall always explain the way we use them.

1 That is, sublattices containing the smallest and largest elements of P(X).
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1.1 The Definition of Spectral Spaces 3

1.1.2 Quasi-Compact Sets A topological space is quasi-compact if every

open cover has a ûnite subcover. A space is compact if it is quasi-compact and

Hausdorû.2

Now let X be any topological space. A subset S of X is quasi-compact if it is

quasi-compact in its relative topology. Finite unions of quasi-compact subsets

of X are quasi-compact, but ûnite intersections need not be quasi-compact. The

subsets of X that are at the same time open and quasi-compact play a crucial

role in this book. We call them quasi-compact open sets and write

ç

K(X) := {O ¦ X | O is quasi-compact open}.

If τ denotes the topology of X , we also write
ç

K(τ) instead of
ç

K(X). Note that

' *
ç

K(X) for any topological space X . There are many spaces, in particular

in classical analysis, having no other quasi-compact open sets. The set
ç

K(X) is

closed under ûnite unions, hence is a join-subsemilattice of P(X).

1.1.3 Specialization Every topological space X carries a quasi-order,3 which

is called the specialization order and is deûned by:

x� y if and only if y * {x}.4

We say that y is a specialization of x, and x is a generalization of y. If the

topology is denoted by τ then we also write
τ

� .

Specialization can be checked using any subbasis S of open sets: x� y if

and only if y * O and O * S imply x * O.

A subset A ¦ X is closed under specialization, or specialization-closed,

if x * A and x� y implies y * A. The set is closed under generalization,

or generically closed, if y * A and x� y implies x * A. Closed subsets are

closed under specialization, open subsets are closed under generalization.

Any set A ¦ X is contained in a smallest set closed under specialization,

Spez(A) = {y * X | #x * A : x� y} =
"

x*A

{x},

and in a smallest set closed under generalization,

Gen(A) = {x * X | #y * A : x� y}.

2 The reader should be aware that there is no agreement in the literature on whether <compact
spaces= are Hausdorû or not.

3 A quasi-order is a reüexive and transitive binary relation and need not be antisymmetric,
A.1(i).

4 There is no uniform way in the literature to deûne specialization, cf. 7.1.7. See 12.1.14 for our
motivation.
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4 Spectral Spaces and Spectral Maps

If A = {a} is a singleton set then we also write Spez(A) = Spez(a) and

Gen(A) = Gen(a).

Continuous maps preserve specialization (i.e., if f : X ³ Y is continuous

and x� x � in X then f (x)� f (x �) in Y ).

Suppose that X carries two topologies σ and τ. If σ ¦ τ then the specializa-

tion relation
σ

� is stronger than
τ

� (i.e., x
τ

� x � implies x
σ

� x �).

1.1.4 Reminder (a) Suppose X is a set and S ¦ P(X). The set S separates

points in X if for all x � y in X there is some S * S that contains exactly one

of the points (we do not specify which one!). In particular, a topological space

X is a T0-space if O(X) separates points in X .5

(b) A subset C of a topological space X is irreducible if for all closed subsets

A,B ¦ X with C ¦ A * B we have C ¦ A or C ¦ B. Notice that a set

is irreducible if and only if its closure is irreducible. Thus, C is irreducible

if and only if C, as an element of the bounded distributive lattice A(X), is

join-irreducible (cf. A.6(vii)). Clearly, (closures of) singletons are irreducible.

1.1.5 Deûnition A spectral space is a topological space X that satisûes the

following four conditions.

S1: X is quasi-compact and T0.

S2:
ç

K(X) is a basis of open subsets of X .

S3: The intersection of two quasi-compact open subsets of X is again quasi-

compact.

S4: X is sober, that is, for every nonempty closed and irreducible subset C

of X , there is a point x * X , necessarily unique (by S1), with C = {x}.

The topology of X is called the spectral topology.

We start by looking at the conditions in Deûnition 1.1.5 separately, discuss

some basic facts, and record their impact on the set
ç

K(X).

1.1.6 The T0 Property It is easily checked that a topological space X has the

T0-property if and only if specialization is a partial order (i.e., is an antisym-

metric quasi-order). Thus, a spectral space is partially ordered by specialization.

The specialization relation is irrelevant for many spaces in classical analysis,

for these are mostly T1-spaces,6 and one characterization of T1-spaces says that

every singleton is a closed set. Thus, the specialization order of a T1-space is

the trivial partial order 3 every point is comparable only with itself. Usually

5 T0-spaces are also called Kolmogorov spaces.
6 Recall that a topological space is a T1-space if, given two distinct points, each one has a

neighborhood not containing the other one.
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1.1 The Definition of Spectral Spaces 5

spectral spaces are not T1-spaces, and we shall see that the specialization order

is one of their essential features.

Thus, partially ordered sets (also called posets, A.1(iii)) play an essential role

throughout this book. For notation and terminology, we refer the reader to the

Poset Zoo in the Appendix.

1.1.7 On Bases of Topological Spaces Suppose X is an arbitrary topological

space and L ¦ O(X) is a basis of the topology closed under ûnite unions

(e.g., L could be
ç

K(X) if S2 is satisûed, cf. 1.1.2, 1.1.5). Thus, L is a join-

subsemilattice of O(X). If O ¦ X is open, then the set

i(O) := {U * L | U ¦ O}

is an ideal of the join-semilattice L (i.e., i(O) is closed under ûnite unions and,

if U ¦ U � * i(O) and U,U � * L, then U * i(O), cf. A.7(i)). The hypothesis

that L is a basis allows us to recover O from i(O). For then, every open set O

can be written as

(7) O =
"

U*i(O)

U.

Let I(L) be the set of ideals of L. Then the deûnition of i(O) yields a map

i : O(X) ³ I(L).

Now (7) says that the function

j : I(L) ³ O(X); I �³
"

I =
"

U*I

U,

satisûes j ç i = idO(X). In fact, i(O) is the largest subset S ¦ L with O =
�

S.

Obviously, i ç j(I) § I for all I * I(L). In general, this inclusion is proper.

For example, let X ¦ R be the closed unit interval, take L = O(X), and let

I ¦ L be the ideal of open subsets of X whose closure does not contain 0.

Then j(I) = (0,1] * i ç j(I) \ I.

1.1.8 On Axiom S2 Let X be a topological space and suppose that B is a basis

of the topology, contained in
ç

K(X) and closed under ûnite unions (including

the empty union, which is '). Then every U * O(X) is a union of sets from B.

By quasi-compactness, every V *
ç

K(X) is a finite union of sets from B, hence

is a member of B. We conclude that B =
ç

K(X).

Thus, if X has a basis contained in
ç

K(X), then there is a unique one that is

closed under ûnite unions, namely
ç

K(X).
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6 Spectral Spaces and Spectral Maps

1.1.9 Proposition Suppose that X is a topological space satisfying S2 (i.e.,
ç

K(X) is a basis of the topology). Then j : I(
ç

K(X)) ³ O(X) and i : O(X) ³

I(
ç

K(X)) are mutually inverse bijective maps.

Proof As
ç

K(X) is closed under ûnite unions, we can apply 1.1.7. For each

I * I(
ç

K(X)) the inclusion I ¦ i ç j(I) holds trivially. It remains to show

that i ç j(I) ¦ I. So, pick an element U * i ç j(I) (i.e., U *
ç

K(X) and

U ¦ j(I) =
�

I). As U is quasi-compact there is a ûnite subset J ¦ I such

that U ¦
�

J. The ideal I is closed under ûnite unions, hence
�

J * I. Thus

U is contained in an element of I, and, since I is an ideal, we get U * I, as

claimed. �

1.1.10 On Axiom S3 Observe that we have not invoked axiom S3 so far. Now

suppose that a topological space X satisûes S3. Thus,
ç

K(X) is a sublattice of

O(X) since it is always closed under ûnite unions, 1.1.2, and, assuming S3, is

also closed under ûnite intersections. If, in addition, X is quasi-compact (e.g.,

if X is a spectral space), then
ç

K(X) ¦ O(X) is even a bounded sublattice.

Given a spectral space X , the lattice
ç

K(X) is an important part of its structure.

It builds a bridge between spectral spaces and lattices. In Chapter 3 we shall

see that this connection is much closer than the present considerations show. In

fact, the spectral space X can be fully recovered from the lattice
ç

K(X) alone.

Assuming the axioms S1, S2, and S3, the next result shows that the bijective

correspondence of 1.1.9 between the ideals of
ç

K(X) and the open sets of

X restricts to a bijection between the complements of nonempty closed and

irreducible subsets of X and the prime ideals of the lattice
ç

K(X).

1.1.11 Proposition Suppose that X is a topological space and L ¦ O(X) is

a bounded sublattice and a basis of the topology. Let C ¦ X be a closed set

and set

I = i(X \ C) = {U * L | U + C = '}.

Then I is an ideal of L and

(i) C � ' if and only if I is a proper ideal (i.e., I � L ).

(ii) C is a nonempty and irreducible set if and only if I is a prime ideal (i.e.,

I � L and for all U,V * L with U + V * I we have U * I or V * I).

Proof By 1.1.7 we know that I is an ideal of L.

(i) Clearly, I = L if C = '. Conversely, I = L implies X * I, hence C =

X + C = ' .
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1.1 The Definition of Spectral Spaces 7

(ii) First suppose that C is irreducible and take U,V * L with U +V * I. Then

U + V + C = ' and so C ¦ (X \ U) * (X \ V). As C is irreducible we have

C ¦ X \ U or C ¦ X \ V (i.e., U * I or V * I).

Conversely, suppose C is not irreducible. Take closed sets A1, A2 ¦ X with

C � Ai , but C ¦ A1* A2. There are points ci * C+(X \ Ai) and neighborhoods

Ui * L of ci with Ui ¦ X \ Ai . We see that Ui � I. On the other hand, the

inclusion U1 + U2 ¦ (X \ A1) + (X \ A2) shows that

(U1 + U2) + C ¦ U1 + U2 + (A1 * A2) = '.

Thus U1 + U2 * I, and I is not prime. �

1.1.12 Corollary Let X be a topological space satisfying axioms S13S3. Then

the map

{C * A(X) | C � ' irreducible} ³ {I * I(
ç

K(X)) | I prime}

C �³ i(X \ C)

is bijective. �

1.1.13 On Axiom S4 and Soberness Suppose that X is a topological space.

Every set {x} is closed, irreducible, and nonempty. If A = {x}, then x is called

a generic point of A, cf. A.2. In general, a nonempty closed and irreducible set

need not have a generic point and, if it has one, there might be several of them

(e.g., if X is an indiscrete space with at least two points). Axiom S4 says that

the sets {x} are the only nonempty closed and irreducible sets.

A space is T0 if and only if every closed and irreducible set A has at most one

generic point. Thus, in this case A has a smallest element for specialization.

Hence the points of a sober T0-space are in bijection with the nonempty closed

and irreducible sets.

1.1.14 Conclusion The preceding considerations yield the following alterna-

tive characterization of spectral spaces, which highlights the key role played by

the lattice
ç

K(X). A topological space X is spectral if and only if

(i) the set
ç

K(X) is a bounded sublattice of O(X), separates points of X , is a

basis of the topology, and

(ii) for every prime ideal I ¦
ç

K(X) there is a unique point x * X such that

I = {U *
ç

K(X) | x � U}.

In 1.1.10 we announced that a spectral space X is completely determined by

the lattice
ç

K(X). This will be proved in Chapter 3. The present characterization
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8 Spectral Spaces and Spectral Maps

is a ûrst step in this direction. It shows how the points of X can be reconstructed

from the lattice
ç

K(X).

We exhibit a collection of ûrst examples of spectral spaces. They are all ûnite

spaces. Trivially, if X is a ûnite topological space then every subset is quasi-

compact, hence
ç

K(X) = O(X). Only the T0-property and soberness have to be

discussed.

1.1.15 Proposition Every finite T0-space is spectral.

Proof It suûces to show soberness (axiom S4). So, let C be a nonempty

closed and irreducible set. Since C is ûnite, the set
"

c*C

{c}

is closed, hence equals C. As C is irreducible it cannot be covered by ûnitely

many proper closed subsets. Therefore there is some c * C with C = {c}, as

required. �

1.1.16 Finite Spectral Spaces vs. Finite Posets According to 1.1.15 the ûnite

T0-spaces are exactly the ûnite spectral spaces. Moreover, we emphasize that

the ûnite T0-spaces essentially coincide with the ûnite posets. One assigns the

underlying specialization poset to a ûnite T0-space. Conversely, one notes that

a ûnite poset (P,f) carries a unique T0-topology having specialization order f.

Namely, the open sets are exactly the down-sets (i.e., the ûne lower topology of

(P,f), which coincides with the coarse lower topology, has this property; see

Poset Zoo, A.8).

1.1.17 Example There is a unique topology on the empty set. The topology

is trivially T0, hence ' is a spectral space.

Every singleton carries a unique topology, which, again, is trivially T0, hence

makes the set a spectral space. We write1 for the spectral space with underlying

set 1 = {0}.

1.1.18 Example The set 2 = {0,1} carries four diûerent topologies. The

only one that is not T0 is the indiscrete topology. The other three topologies are

spectral. Explicitly:

(i) The discrete topology is spectral. The specialization order is trivial (i.e.,

every element is comparable only with itself).

(ii) The ûne lower topology for the total order 0 < 1 has the open sets ', {0},2.

The set 2 with this topology is called the SierpiEski space and is denoted

by 2. The SierpiEski space is spectral, the point 0 is isolated and not
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1.1 The Definition of Spectral Spaces 9

closed, whereas the point 1 is closed and not isolated. The specialization

order is the natural total order, that is, 0 � 1.

(iii) Interchanging the role of 0 and 1 in the SierpiEski space (i.e., starting

with the total order 1 < 0), we obtain a spectral space with universe 2 and

specialization relation 1 � 0.

1.1.19 Example Given n * N, the set n = {0, . . . ,n 2 1} carries many

topologies (except for the cases discussed in the previous examples), but we are

interested in only three of them.

(i) The discrete topology is spectral, again with trivial specialization order.

(ii) The natural total order yields a T0-topology whose open sets are the

intervals {0, . . . , k 2 1}, 0 f k f n. The set n with this topology is

denoted by n. The space n is spectral and the specialization order is the

natural total order, that is

0 � 1 � · · · � n 2 1.

(iii) Reversing the natural order in n we obtain a spectral space with universe

n and specialization relation

n 2 1 � n 2 2 � · · · � 0.

In fact, any topology on n with total specialization order is homeomorphic to

n via a suitable permutation of {0, . . . ,n 2 1}.

1.1.20 Saturated and Coherent Sets We shall encounter topological spaces

that have some properties in common with spectral spaces, but are not neces-

sarily (or not a priori) spectral. One important such property is coherence. The

deûnition of coherence requires the following notion.

Let X be a T0-space with topology τ. A subset Q ¦ X is called saturated if

Q is an intersection of open sets. As X is a T0-space this is the same as saying

that Q is generically closed (i.e., x� q * Q implies x * Q, 1.1.3).7 Note that

open sets are generically closed, hence so are their intersections. Conversely, if

Q is generically closed then Q =
�

x�Q X \ {x}, hence Q is saturated.

A saturated set Q is called quasi-compact saturated if it is also quasi-

compact. In every topological space there are plenty of quasi-compact saturated

sets. Namely, for each x * X , the set Gen(x) of generalizations of x is quasi-

compact saturated.

7 Equivalently, Q is a down-set of the poset (X ,

τ

� ), or is open for the ûne lower topology,
A.8(ii).
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10 Spectral Spaces and Spectral Maps

Claim Assume that
ç

K(X) is a subbasis of open sets for X . Then every quasi-

compact saturated set is an intersection of quasi-compact open sets.

Proof of Claim Let Q ¦ X be quasi-compact saturated and pick x * X \ Q.

Then X \ {x} =
�

i*I

�
k*Fi

Uik , where the Fi are ûnite and the Uik belong to
ç

K(X). For each i there is some ki * Fi with x � Uiki . Thus, Q ¦
�

i*I Uiki ¦

X \ {x}, and, by quasi-compactness of Q, there is a ûnite subset J ¦ I with

Q ¦
�

i*J Uiki ¦ X \ {x}. Finite unions of quasi-compact open sets are quasi-

compact open. Thus,
�

i*J Uiki *
ç

K(X), proving the claim. �

Later we shall see that in a spectral space the quasi-compact saturated sets are

precisely the subsets of X that are closed for the inverse topology, cf. 1.4.7,

also see 1.5.5 and 4.1.6.

The saturated sets are closed under arbitrary unions and intersections,

whereas, in general, quasi-compact sets are only closed under ûnite unions

and not under intersections. Thus, ûnite unions of quasi-compact saturated sets

are quasi-compact saturated, but intersections need not be quasi-compact satu-

rated. Therefore the following deûnition is introduced: the space X is coherent

if the intersection of two quasi-compact saturated sets is again quasi-compact

saturated.

Spectral spaces are coherent. This is immediate from the fact (mentioned

above) that the quasi-compact saturated sets are exactly the subsets closed for

the inverse topology. So, we could have replaced the spectral space axiom S3

by the condition that coherence holds.

1.2 Spectral Maps and the Category of Spectral Spaces

Summary Spectral maps are the appropriate tool to describe connections

between diûerent spectral spaces. Spectral maps are continuous, but satisfy a

stronger requirement, see 1.2.2 and, for motivation, 1.2.1. The spectral spaces

together with the spectral maps form the category of spectral spaces, cf. 1.2.3,

which is denoted by Spec. The category plays a key role in the development

of the theory and in many applications, see Section 2.5 for ûrst examples.

Properties of Spec are an important topic throughout the book.

The notion of a spectral map is illustrated by examples involving ûnite spectral

spaces. The examples are used to obtain ûrst pieces of information about the

category Spec, 1.2.7 and 1.2.8.
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