Index

Italicics indicate reference to an illustration.

accuracy, 52–53
acid deposition, 48
rain, 48
active layer, 104, 106, 283
Actively Heated Fiber Optic (AHFO), 63
Advanced Scatterometer (ASCAT), 63
Advanced Very High Resolution Radiometer (AVHRR), 127, 130
advection, 38
advective effects, 121–122
aerodynamic method, 75
resistance, 119–120, 162
aerosol, 48, 84, 245–247
optical depth, 247
African Great Lakes climatic effects, 267
albedo, 91–92
forest, 168, 173
snow, 195–196
and solar zenith angle for water, 92
species, 221
Amazon rainforest climate, 179
Amazonia, climate, 179–180
Anthropocene, 278
aerial spray systems, 25
atmospheric compositions
modification, 243–247
atmospheric pressure
measurement, 70–71
atmospheric stability, 74, 76
barometer, 71
barrier shading, 137
Barrow, AK, 150
Basal metabolic rate, 223–224
Beer’s law, 85, 175
Beijing, 246, 247, 258
bidirectional reflectance, 92
distribution function, 92–93, 196
bioclimatology, 218–232
black body, 81, 83
black spruce forest, 171
Blaney and Criddle, 115
blending height, 271–272
blowing snow, 138, 197
cereal forest
energy balance, 177
latent heat flux, 171
boundary layer, 121
over a city, 209, 250, 251
Bowen ratio, 74
Bowen ratio energy balance, BREB, 73, 74
Budyko, M.I., 130–131
built-up area, 209
burrowing, 234–236
C3 and C4 plants, 30–31, 141–142
response to elevated CO2, 285–286
canopy radiation, 93, 94, 169, 174–175
canopy resistance, 162
carbon cycle, 40
carbon dioxide, 39–40
atmospheric concentration, 40, 44, 174
carbon exchange, 39–40
chlorophyll, 86
Churchill, Manitoba, 152–153
circuits, series and parallel, 56–57
cities, 209–213
city size, 252–253
Clausius-Clapeyron equation, 22
Clean Air Act, 48
clarifications, 182, 198
climates, definitions, 1
global trends, 277–282
climatic change and microclimate, 277–287
clothesline effect, 122
clouds
effect on solar radiation, 84, 88, 91
forcing, 91
cloud transmittance, 89
coastal influences
on fog, 267
on local climate, 265–266
on wind 265–266

311
Index

cold island, 253
cold nights, 279
combustion energy generation, 248
Community Land Model (CLM), 143
condensation, 33
conduction, 102, 229–230
coniferous forests, 168–171
convection, 38, 109–110, 228–229
body resistance, 229
forced, 109–110
free, 109–110
convective boundary layer resistance, 222
convectively available potential energy (CAPE), 121
Cosmic-ray Soil Moisture Observing System, 62–63
cotton crop, 163
cropland, 162–163
cutaneous cooling, 226
Cyprus Hills, Alberta, 271
dalton’s law, 71
damping depth, 103
Darcy’s Law, 28–29
dielectric permittivity, 62, 63
digital elevation models (DEMs), 264
discomfort index, 231–232
disdrometer, 69
double Fence Intercomparison Reference (DFIR), 68–69
downscaling, 8, 143–144
dynamic, 143
statistical, 144
drought, 35–36
dry adiabatic lapse rate, 73
dryness ratio, 131
drainage, 71
damping depth, 103
Darcy’s Law, 28–29
dielectric permittivity, 62, 63
digital elevation models (DEMs), 264
discomfort index, 231–232
disdrometer, 69
Double Fence Intercomparison Reference (DFIR), 68–69
downscaling, 8, 143–144
dynamic, 143
statistical, 144
drought, 35–36
dry adiabatic lapse rate, 73
dryness ratio, 131
ECMWF Land Surface Parameterization Scheme, 133
Ecosystem–Atmosphere Simulation Scheme (EASS), 286
eddy covariance, 77, 115
El Niño-Southern Oscillation (ENSO), 278
emissivity, 81–82, 94
of snow, 198
endotherms, 218
energy balance, 74, 99–144
equation, 218–220
tree cover effects, 258
energy budget
building orientation, 212
components, 211
diurnal variation, 100, 111–113
land cover change effects, 286–287
urban modification, 247–250
energy storage, 101, 248–249
Enhanced Vegetation Index (EVI), 128–130
ENVI-met, 140–141
epilimnion, 189–190
evaporation, 29–34
from drying soils, 118–119
estimate from AVHRR, 127
pan, 114
potential, 116, 118
reference, 117–118
from sparse crops, 162
Index
evaporative cooling, 225–228
evapotranspiration, 114
city lawn, 210
Pan-Arctic, 128
temperature-based formula, 115–116
exposure, effect on radiation, 210–211
experimental studies, 283–287
farmland, 159–163
field capacity, 26
First ISLSCP Field Experiment (FIFE), 132
FLUXNET sites, 130
flooding, 194
föhn, 208
fog, 33
deposition, 33
forest edge effects, 181–182
forests, 168–183
types in Russia, 173
forest-tundra ecotone, 155
form drag, 39
Free Air Carbon Experiment (FACE), 285
freeze-thaw cycles, 282
freezing and thawing, 282
degree-days, 16
frequency distribution, 12
friction velocity, 75, 108
frost-free season, 6, 279
gamma distribution, 34–35
gases
greenhouse, 278
urban, 244–255
gaps, net radiation, 183
Geiger, Rudolf, 4
dgeobotanical vegetation categories, 131
dgeothermal heat, 101–102
dglobal dimming, 280
glossary, 297–304
grazing, 156–163
canopy temperature profiles, 158
chalk, 158–159
dclimate
evapotranspiration, 158
microclimatic profiles, 157–158
Transdanubian Middle Mountains, 159
graupel, 38
Great Lakes, energy balance, 193–194
snow belt, 267
Great Slave Lake, 191
ground temperatures, 103–105, 283
growing degree-day, 16, 280
growing season, 281–282
Gstetneralm, 203
habitat temperatures, 5–6
hail, 38
Hargreaves, 116
Harz Mountains, 158
heat capacity, 102
heat flux, see sensible heat, latent heat in soil, see soil heat flux
heat index, 233–234
heat island, 250–255
vertical extent, 253–254
heat storage in forest and tundra soils, 153
homeostasis, 219
humidity measurement, 71–72
relative, 23, 72
specific, 71
humidity mixing ratio, 21, 71
HydraProbe, 62
hydrological cycle, 24–25
hygrometer, 72–73
ice jams, 195
ice thickness on lakes, 190–191
on rivers, 195
incident solar radiation, on a horizontal surface, 88–89
on an inclined surface, 89
ideal gas law, 74
infrared gas analyzer (IRGA), 72–73
infrared mapping of surface temperature, 5, 18
instrumentation, 52–79
interception of rainfall (see rainfall, interception)
International Satellite Land Surface Climatology Project (ISLSCP), 130
International Tundra Experiment (ITEX), 286
inversion, 113, 159, 253
irrigated land, 159–160
isotopic ratios, 32
Joint UK Land Environment Simulator (JULES), 133–134
katabatic flow, 208
Kelvin scale, 55
krummholz, 37, 155
lake breeze, 192, 267
lake-effect snow, 194, 267
lakes, 187–194
dimictic, 191
effect on regional energy and water balances, 192
freezing, 189
seasonal temperature regime, 190
temperature, 189
Lake Ontario, 96
Lancaster weather station, 6
land breeze, 266
landform elements, 265
Land Surface Models, 132–135
latent heat, 106–107
flux, 73–74, 76, 78, 114–120
of fusion, 106
of vaporization, 114
lapse rates, 204–205
Large-scale Biosphere Atmosphere Experiment, 179
latitude effects on solar radiation, 85
Leaf Area Index (LAI), 93, 126–127, 148–149, 169, 172, 173, 174, 178
leaf phenology, 176
leaf thickness, 128
light
in canopies, 93, 179
penetration in lakes, 187–188
visible, 82
Linacre, 116
Linke turbidity, 89
local climates, 3, 241–271 see also topoclimates
urban, 267–272
London, 243, 253–254
heat island, 251–252
Loess Plateau, 161
lysimeter, 114–115
Mali, West Africa, 127–129
Manhattan, KS, 159
mass exchange, 107–110
Matto Grosso, evapotranspiration, 179
measurement fundamentals, 52–54
Melbourne, 252
metabolic equivalent, 225
metabolic heat production, 223–225
metabolic theory of ecology, 224
microclimate, 1–3
built-up area, 209
controls of, 9
in different environments, 148–183
of different physical systems, 185–213
microclimates and macroclimates related, 4–5
microclimatic elements, 11–49
microclimatology, 1–3, 5–6
mixing layer depth, 253–254
mixing length, 109
models
Community Land Model, 143
heat and water balance, 139–144
land surface, 132–135
physically based, 136–143
soil thermal, 282
urban canopy layer, 211
Weather Research and Forecasting, 143
Moderate Resolution Imaging Spectroradiometer (MODIS), 127, 128, 130
moisture
atmospheric, 22–26
in cities, 257–259
soil, 26–29
momentum, 76, 107–110
diffusivity, 73, 75
flux, 73–75, 77–78
Monterith, John, 4
mosaic landscapes, 270–273
Mountain Climate (MTClim) model, 135–136
mountains, 201–209
minimum temperatures in Russia, 264
Mt. Fuji, 206–207
Mt. Wilhelm, 18, 262–263
mulch effects, 163
Neotoma
habitats, 5–6
net radiometer, 58
New York, 255
Index

Niche Mapper, 140
nitrogen cycle, 46–47
nitrogen dioxide, 48, 244, 245
Nisot Ridge, C.O., 156, 157, 197
Normalized Difference Vegetation Index (NDVI), 127
Nusselt number, 110
oak forest, 174
oasis effect, 121
observation methods, 52–79
Ombok stability length, 77
Ohrn’s law, 44–46, 141
optical air mass, 85, 88
optical path length, 85
ozone, 84, 86
tropospheric, 244–245
paddy rice, 161
Palmer Drought Severity Index (PDSI), 35–36
Parameter-elevation Relationships on Independent Slopes Model (PRISM), 136
Paris climate conference 2015, 278
partial pressure
measurement, 71–73
particulate matter, 245
Peary Land, Greenland, 149
Pennman, Howard, 116–117
Penman-Monteith equations, 117, 119, 171
permantfrost, 105–106, 283
temperatures, 104, 105, 283
Peter Sinks, 204–205
phase change, 106
photosynthesis, 30–31, 41–42, 141–142
photosynthetically active radiation (PAR), 31, 86–87, 94, 175
plant response, to elevated CO2, 285–286
to elevated temperatures, 283–285
pollutants, 48–49
spectral transmissivities, 246
trends, 280–281
potato crop, 160, 161
power law, 39, 107, 257
precipitable water, 28
precipitation, 34–36
lake effect, 267
measurement, 67–70
in mountains, 207
solid, 68–69
precision, 52–53
Priestley and Taylor, 117
model, 130
problems, 291–296
profile methods to calculate turbulent fluxes, 73–74
Project for Intercomparison of Land surface Parameterization Schemes (PILPS), 132
psychrometer, 72–73
pyranometer, 58, 64
pyrgeometer, 58, 64
pyrheliometer, 64
radar reflectivity, 69
radiation, 81–96
biological controls on, 220–221
diffuse, 87–88, 89, 90
direct beam, 87
infrared, 82, 94–95, 203
longwave, 84, 82, 95, 221–222
measurement, 63–65
net radiation, 19, 65, 95–96, 203, 222
short-wave, 64
slope effect, 261–263
solar, 81–94
surface, 91–94
ultraviolet, 82, 202–203
radiative forcing, 49, 91, 278
radiative resistance, 222
rainfall, 34–35
interception, 120, 179
rain gauge, 34, 67–68
Rayleigh scattering, 88
reference evaporation, 117–118
remote sensing, 126–130
respiration, 42–44
latent heat production, 228
Richardson Number (Ri), 77
rime, 33–34
riparian zone, 194
river ice, 195
rivers, 194–195
roughness length, 75, 108, 173
salination, 138
scales of meteorological phenomena, 2
scaling up, 126
scattering, 88
Scots pine energy balance, 170
sea breeze, 265–266
sea ice
Arctic, 280
sensible heat
body loss, 229
flux, 73–74, 76–78, 110–113
shading, 213
shear stress, 154
shelter, local and large-scale, 205
thermal modification, 236–237
shelterbelts, 136–139
shelter porosity, 137
Simultaneous Heat and Water (SHAW) model, 139–140
skin friction, 39
sky view, 182, 209
Slatyer and McIlroy, 4, 116
slope exposition
effect on soil temperature, 149, 261–262
effect on solar radiation, 89, 261–263
snow, 36–37
course, 139
density, 197
depth, 37, 207
emissivity, 198
liquid water content, 36
snow cover, 36–37
effect on soil temperature, 21, 23
energy budget, 197
extent, 279
insulating effect, 197
microclimate, 196–197
seasonal classification, 199–201
spectral albedo, 196
snow drift, 37, 137–138, 157
snow fence, 139
snow melt on the prairies, 197
snow pillow, 139, 200
snow properties, 139, 197
snow transport, 138–139, 197
snowfall, 36
SNOpack TELmetry (SNOTEL) sites, 139, 199–200
snow water equivalent, 36, 199
retention by landscape types, 197–198
soil conductivity, 102, 104
porosity, 102
seasonally frozen, 104–106
thermal diffusivity, 102–103
soil heat flux, 60, 102–107
soil moisture, 19
measurement, 60–63
Soil Moisture Active-Passive (SMAP) system, 63
Soil Moisture and Oceanic Salinity (SMOS) sensor, 63
soil temperature, 3, 5, 18, 20–21, 22, 151, 235, 282–283
altitudinal gradients, 206
changes in United States, 282
exposition, 149, 261–262
forest and tundra sites, snow cover effect, 20–21, 23
measurement, 60
variation with depth, 20, 103–104
Soil Thermal Model (STM), 282
Soil-Vegetation-Atmosphere-Transfer (SVAT) scheme, 132
solar constant, 82
solar cycle, 277
solar declination, 85
solar radiation, 81–94, 280
on a horizontal surface, 88–89
on an inclined surface, 89
in mountains, 202–203
Solar Radiation and Climate Experiment (SORCE), 82
sonic anemometer, 67, 77–78
sorghum crop, 162–163
space and time scales of meteorological phenomena, 2
specific heat capacity, 15
specific humidity, 21
spectrum of solar and terrestrial radiation, 83
spruce forest
radiation, 152
stability, functions, 76
neutral, 107
Standard Atmosphere, 202
standard deviation, 12
Stanton number, 119
Statistical Downscaling Models (SDMs), 6
Stefan-Boltzmann law, 81
Stevenson screen, 1
stomata, 30–32, 141, 163–164
stomatal conductance, 141, 156, 169
stomatal resistance, 45, 119, 141, 162, 170
sugar beet, 161
sulfur dioxide, 48
Sun’s energy, 84, 245
sun flecks, 93
surface characteristics, modification, 255–259
suspension of snow, 138
symbols, 305–308
System International units, 309
temperate cereals, 162–163
temperature, air, 11–21
annual cycle, 18
daily mean, 11–12
dew point, 25
differences between habitats, 12
diurnal variation, 15, 18, 151
effective, 231
equivalent, 222
extremes, 16, 104–105
global, 13, 279
gradients in mountains, 204–205
inversion, 113
maximum surface, 18
mean maximum shade, 14
measurement, 55–60
near-surface profiles, 16–18
needle, 169
plumes, 271
potential, 12
profiles in plant canopies, 150
surface, 18–19, 263–264
virtual, 15, 77
in woodrat (Neotoma) habitats, 6
terrain analysis, 264–265
thermal admittance, 209–219
thermal conductivity of materials, 230
thermal comfort, 222
thermal offset, 104
thermistor, 56
thermocline, 189, 190
thermocouple, 55, 56, 58
thermometer
glass bulb, 57
infrared, 57–60
thermopile, 56, 57, 63–64
thermoregulation, 219–220
Thorntwaite, C.W., 115
Tibetan Plateau, 144
time constant, 53–54
Time Domain Reflectometry (TDR), 62
topoclimate, 3, 241–271
effects on microclimate, 261–272
topoclimatic data sets, 136
topoclimatology, 3
topography effect on temperature, 265
Torricelli, Evangelista, 71
transpiration, 29–32, 179
treeline (alpine), 153
tropical cities, 253, 255
tropical forest 178–181
tundra, 148–156
alpine, 153–156
arctic, 148–153
browning, 281
energy balance, 149–151, 152, 156
greening, 281
soils, 151, 152
turbidity, 187, 247
turbulence, 255–256
turbulent flux
measurement, 73–79
Turc, 116

ultraviolet radiation, 82, 84, 202–203
Urals, 151
urban canopy layer, 209
urban climates, 243–259
urban energy balance, 268, 270
urban heat island (UHI), see heat island
urban land use categories, 267–268
urban local climates, 267–272
local climate zones, 268–270
urban microclimates, 209–213

Vancouver, B.C., 268
vapor, body resistance to, 227
vapor pressure, 21–26, 72–73, 206–207
saturation, 21, 25, 72, 117
surface profiles, 17
vegetation
increased carbon dioxide effect
greenness, 281
range shifts, 280
Vegetation Dynamics Model (VDM), 128
volcanic eruptions, 277
von Karman constant, 75, 108

water flow in soils, 28–29
water potential, 26–27, 161

Index

water vapor, 21, 22, 86
weather station, urban, 244
Weather Research and Forecasting (WRF) model, 143
wettest places in the world, 34
wetlands, 163–168
wheat, 161
Wien’s law, 82
willing point, 26
wind, 38–39
direction, 67
effect on alpine plants, 154–155, 265
measurement, 65–67
power law, 39, 107, 257
profile in forest canopies, 169–170
resultant vector, 66–67
vertical velocity, 38, 67
wind-chill index, 231–233
wind gust, maximum, 39
windshield, 68–69
wind speed, 65–66, 208
extremes, 208
with height, 17, 39, 107
urban, 255–257
wind velocity, 65–66
woodrat habitats, 5–6
Yoshino, M.M., 4

zero plane displacement, 39, 75, 173