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Free Fields in Vacuum

This chapter introduces notations and obtains results for free fields in vacuum

that we shall utilise in the rest of the book. In applications, one generally consid-

ers particles of spin 0, 1
2 , 1 and 3

2 , which are conventionally described respectively

by scalar, Dirac, vector and Rarita–Schwinger fields. Accordingly, we discuss each

of these fields separately and derive their spectral functions and Feynman prop-

agators. But we shall not limit ourselves to these fields only, and we will extend

their formal constructions to general fields describing particles of arbitrary spin.

The conventional approach to quantum field theory begins with the

Lagrangian, from which a Klein–Gordon equation is derived for each field compo-

nent. These are then expanded in terms of one-particle annihilation and creation

operators. There is also the other approach, expounded by Weinberg [1], that

starts from particle states and constructs fields requiring causality and Lorentz

covariance. In this brief review we exploit both points of view, starting with

the Lagrangian for low-spin fields and with the one-particle states for high-spin

fields. In either case, we do not need to construct explicitly the coefficient func-

tions in the expansion of fields. As we shall be interested only in the spectral

functions and propagators, all we require are the spin sums over the product of

such functions. These sums may be obtained directly by using the supplementary

conditions eliminating components in excess of those needed to describe different

spin degrees of freedom.

We begin with general fields to present a unified view of some properties of

free fields. Then, in the following sections, we treat separately the individual

fields of low spin and show how the supplementary conditions on the field suffice

to evaluate the spin sums. We come back to general fields in the last section.

1.1 Generalities

Let |q, σ〉 be the state vector of a particle of mass m, momentum q and spin j

with z-component σ in its rest frame (σ = j, j − 1, · · · ,−j). It is normalised in

a Lorentz invariant way:
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2 Free Fields in Vacuum

〈q′, σ′|q, σ〉 = (2π)32ωδσσ′δ3(q− q′), ω = +
√

q2 + m2. (1.1.1)

Define as usual the creation operator a†(q, σ) to produce this state by its action

on the vacuum state

|q, σ〉 = a†(q, σ)|0〉, (1.1.2)

and the annihilation operator a(q, σ) by its adjoint with a(q, σ)|0〉 = 0. Then

(1.1.1) gives the commutation/anticommutation relation

[a(q, σ), a†(q′, σ′)]∓ = (2π)32ωδσσ′δ3(q− q′). (1.1.3)

As always, the top and bottom signs refer to bosonic and fermionic degrees of

freedom. Thus the subscript ∓ indicates commutator or anticommutator accord-

ing to whether the particles destroyed and created by a and a† are bosons or

fermions respectively. If the field also describes a distinct antiparticle, we denote

the corresponding destruction and creation operator by b(q, σ) and b†(q, σ)

satisfying

[b(q, σ), b†(q′, σ′)]∓ = (2π)32ωδσσ′δ3(q− q′), (1.1.4)

all other commutatators/anticommutators being zero.

A multicomponent field ψl(x) is needed to describe particles of non-zero spin.

In the conventional description, the index l denotes one or more (Lorentz) vec-

tor indices for bosonic fields and an additional (Dirac) spinor index for fermionic

fields. Such a description introduces extra components, which are then elimi-

nated by imposing supplementary conditions on ψl(x). (The index structure and

supplementary conditions are reviewed in Appendix A.) We expand the field in

terms of annihilation and creation operators [1]:

ψl(x) =

∫

d3q

(2π)32ω

∑

σ

(

ul(q, σ)e−iq·xa(q, σ) + vl(q, σ)eiq·xb†(q, σ)
)

. (1.1.5)

Here and below, four-momenta qµ with space components integrated over, are

generally on mass-shell, q2 = m2, with q0 given by the positive square root, q0 =
√

q2 + m2. (For real fields describing a self-charge-conjugate particle, a ≡ b.)

The coefficient functions ul and vl are polarisation spin-tensors in the general

case. With the normalisation of creation and annihilation operators already fixed

by (1.1.3) and (1.1.4), that of the coefficient functions is determined by the

normalisation of the field.

In this chapter we are mainly interested in calculating for different fields the

commutator/anticommutator

∆ll′(x, x′) ≡ [ψl(x), ψ†
l′(x

′)]∓, (1.1.6)

and the Feynman propagator

∆F
ll′(x, x′) ≡ i〈0|T{ψl(x)ψ†

l′(x
′)}|0〉, (1.1.7)
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1.2 Scalar Field 3

where T is the time-ordering symbol

T{ψl(x)ψ†
l′(x

′)} = θ(t − t′)ψl(x)ψ†
l′(x

′) ± θ(t′ − t)ψ†
l′(x

′)ψl(x). (1.1.8)

Here θ(t) is a step function, being equal to +1 for t > 0 and zero for t < 0.

Inserting the expansion (1.1.5) for ψ in ∆ and ∆F , both reduce to commuta-

tors/anticommutators of creation and annihilation operators. Then using (1.1.3)

and (1.1.4) we get

∆ll′(x, x′) =

∫

d3q

(2π)32ω

(

e−iq·(x−x′)
∑

σ

ul(q, σ)u∗
l′(q, σ)

∓eiq·(x−x′)
∑

σ

vl(q, σ)v∗
l′(q, σ)

)

, (1.1.9)

and

− i∆F
ll′(x, x′) =

∫

d3q

(2π)32ω

(

θ(t − t′)e−iq·(x−x′)
∑

σ

ul(q, σ)u∗
l′(q, σ)

±θ(t′ − t)eiq·(x−x′)
∑

σ

vl(q, σ)v∗
l′(q, σ)

)

. (1.1.10)

Thus the essential quantities are the spin sums over the products of coefficient

functions. Once these are found, it remains to combine the two terms in each of

∆ and ∆F in the form of four-dimensional Fourier transforms. While for ∆ it

can be done simply by introducing a mass shell delta function, it is a bit more

complicated for ∆F , involving derivatives of theta functions. The latter gives

rise to non-covariant terms for fields of spin greater than 1
2 , which may be traced

to the too-singular behaviour of commutators of such fields at the origin of the

light-cone. However, these terms are local and so may be removed by adding

a non-covariant piece in the Hamiltonian, making the resulting theory Lorentz

covariant [1, 2].1

1.2 Scalar Field

The familiar Lagrangian (density) for a free real (hermitian) field

L (φ) =
1

2
∂µφ∂µφ − 1

2
m2φ2 (1.2.1)

gives the dynamical (Euler–Lagrange) equation

(� + m2)φ(x) = 0. (1.2.2)

1 Another justification for ignoring the non-covariant terms can be obtained from the path
integral formalism, where the propagator is obtained directly from the quadratic terms in
the Lagrangian (and the vertices are read off from the interaction terms) [1].
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4 Free Fields in Vacuum

The field φ(x) can then be expanded as

φ(x) =

∫

d3k

(2π)32ω

(

a(k)e−ik·x + a†(k)eik·x
)

, ω = +
√

k
2 + m2. (1.2.3)

Here the coefficient functions are unity, there being no polarisation. So the field

commutator (1.1.9) reduces to

∆(x − x′) =

∫

d3k

(2π)32ω

(

e−ik·(x−x′) − eik·(x−x′)
)

(1.2.4)

≡ ∆+(x − x′) − ∆+(x′ − x) (1.2.5)

where ∆+ is the standard function

∆+(x − x′) =

∫

d3k

(2π)32ω
e−ik·(x−x′). (1.2.6)

On using the formula

δ(k2 − m2) =
1

2ω
{δ(k0 − ω) + δ(k0 + ω)}

it can be written as a four-dimensional Fourier transform

∆+(x − x′) =

∫

d4k

(2π)4
e−ik·(x−x′)2πθ(k0)δ(k

2 − m2). (1.2.7)

With this representation the commutator (1.2.5) takes the form

∆(x − x′) =

∫

d4k

(2π)4
e−ik·(x−x′)ρ0(k) (1.2.8)

where ρ0 is the free spectral function given by

ρ0(k) = 2πǫ(k0)δ(k
2 − m2). (1.2.9)

Here ǫ(k0) is another step function, ǫ(k0) ≡ θ(k0) − θ(−k0), which is +1 for

k0 > 0 and −1 for k0 < 0.

The Feynman propagator formula (1.1.10) gives directly the spatial Fourier

transform

− i∆F (x, x′) = θ(t − t′)∆+(x − x′) + θ(t′ − t)∆+(x′ − x)

= −i

∫

d3k

(2π)3
eik·(x−x′)∆F (ω, t − t′) (1.2.10)

where2

∆F (ω, t − t′) =
i

2ω
{θ(t − t′)e−iω(t−t′) + θ(t′ − t)eiω(t−t′)} (1.2.11)

2 To prove the second equality, we do the k0 integral by closing the integration contour by a
large semicircle: If t > t′, it is clockwise in the lower half-plane, when the integral picks up
the residue at k0 = ω − iη; if t < t′, it is anticlockwise in the upper half-plane, when the
integral picks up the residue at k0 = −ω + iη.
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1.2 Scalar Field 5

= −
∫ ∞

−∞

dk0

2π

e−ik0(t−t′)

{k0 + iηǫ(k0)}2 − ω2
. (1.2.12)

Here η is a positive infinitesimal quantity introduced to define the poles of the

integrand.3 As the integration is over all values of k0, it is not restricted to

mass-shell, k2
0 = ω2. Inserting (1.2.12) into (1.2.10) we get the four-dimensional

Fourier transform

∆F (x − x′) =

∫

d4k

(2π)4
e−ik·(x−x′)∆F (k), (1.2.13)

with ∆F (k) given by

∆F (k) =
−1

{k0 + iηǫ(k0)}2 − ω2
=

−1

k2 − m2 + iη
(1.2.14)

on noting that 2k0ηǫ(k0) may be replaced simply by η. Notice that although both

∆(x) and ∆F (x) are written as integrals over four momenta, only ∆F (x) involves

off-shell (virtual) momenta, originating from the integral (1.2.12). We can also

put the free propagator (1.2.14) in the form of a spectral representation4:

∆F (k) =

∫ ∞

−∞

dk′
0

{δ(k′
0 − ω) − δ(k′

0 + ω)}/(2ω)

k′
0 − k0 − iηǫ(k0)

=

∫ +∞

−∞

dk′
0

2π

ρ0(k
′
0, k)

k′
0 − k0 − iηǫ(k0)

(1.2.15)

in an apparently non-covariant form. As we shall see in Chapter 4, complete

(interacting) thermal propagators will arise naturally in this form.

* * *

Theories with a multiplet of scalar fields are of much interest, as we shall see

in the next chapter. Here we mention only the special case of a doublet, having

the Lagrangian

L (φ1, φ2) =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2) −

m2

2
(φ2

1 + φ2
2). (1.2.16)

For a compact notation we introduce a complex (non-hermitian) field defined by

φ(x) = (φ1 + iφ2)/
√

2, when the Lagrangian becomes

L (φ) = ∂µφ†∂µφ − m2φ†φ. (1.2.17)

Clearly the complex field has the same expressions for the spectral function and

propagator as the real field, if we define them following (1.1.9) and (1.1.10).

3 Besides the time-ordered (Feynman) propagator, one can also define the retarded/
advanced propagator by replacing the denominator in (1.2.12) with (k0 ± iη)2 − ω2

respectively. Taking the retarded case and integrating over k0 as before, we get zero for
t < t′. Similarly for the advanced case, it is zero for t > t′.

4 The argument of ǫ function can also be k′

0
, as it is only at the pole, k′

0
= k0, that its

presence matters.
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6 Free Fields in Vacuum

1.3 Dirac Field

The free Lagrangian for the Dirac field is

L = ψ(iγµ∂µ − m)ψ, (1.3.1)

where γµ are the so-called Dirac gamma matrices of dimension 4 × 4. It gives

the Euler–Lagrange equation

(iγµ∂µ − m)ψ(x) = 0. (1.3.2)

Applying (iγν∂ν +m) from the left and requiring the gamma matrices to satisfy

the anticommutation relation

{γµ, γν} = 2gµν14×4, (1.3.3)

we get the Klein–Gordon equation

(� + m2)ψ(x) = 0, (1.3.4)

for each component of the Dirac field. As we discuss in Appendix A, the Dirac

equation (1.3.2) itself may be interpreted as a supplementary condition, reducing

the number of independent components of the field from four to two, which is

the number of physical degrees of freedom of a spin-1
2 particle[3]. If an explicit

choice of gamma matrices is necessary, we shall use the Weyl representation5:

γ0 =

(

0 1

1 0

)

, γi =

(

0 σi

−σi 0

)

, γ5 = iγ0γ1γ2γ3 =

(

−1 0

0 1

)

, (1.3.5)

where 1 is the unit 2 × 2 matrix and σi are the Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

, (1.3.6)

satisfying

σiσj = δij + iǫijkσk. (1.3.7)

By inspection, we see that γ0 is hermitian, while γi are antihermitian; the two

results may be put together by writing γµ† = γ0γµγ0. Also γ5† = γ5.

The field ψ(x) can be expanded as (ω =
√

p2 + m2):

ψ(x) =

∫

d3p

(2π)32ω

∑

σ

{

u(p, σ)e−ip·xa(p, σ) + v(p, σ)eip·xb†(p, σ)
}

.(1.3.8)

Inserting this expansion in (1.3.2), the spinor coefficient functions u and v are

found to satisfy

(p/ − m)u(p, σ) = 0, (p/ + m)v(p, σ) = 0. (1.3.9)

5 The other useful representation is that of Dirac, obtained by interchanging γ0 and γ5 in
(1.3.5).
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1.3 Dirac Field 7

We now evaluate the spin sums

M(p) ≡
∑

σ

u(p, σ)u(p, σ), N(p) ≡
∑

σ

v(p, σ)v(p, σ) (1.3.10)

without solving for u and v. Recall that any 4 × 4 matrix may be expanded in

terms of the 16 covariant matrices 1, γµ, σµν ≡ i
2{γµ, γν}, γµγ5 and γ5. Here

only one four-vector pµ is available. So we may expand, for example, M(p) as

M(p) = ap/ + b + cp/γ5 + dγ5,

where a, b, c, d are constants. Apply (p/−m) on it from the left and also from the

right. Subtracting one from the other, we get c = d = 0. Then any one of the

equations gives b = ma. With the conventional normalisation of the field ψ(x),

we get both M(p) and N(p) in this way as

M(p) = p/ + m, N(p) = p/ − m, (1.3.11)

satisfying M2 = 2mM and N2 = 2mN . Note also that the two spin sums are

related as N(p) = −M(−p).

From (1.1.9) the field anticommutation relation is now given by

{ψ(x), ψ(x′)} =

∫

d3p

(2π)32ω

{

(p/ + m)e−ip·(x−x′) + (p/ − m)eip·(x−x′)
}

=

∫

d4p

(2π)4
e−ip·(x−x′)σ0(p) (1.3.12)

where σ0(p) is the free spectral function

σ0(p) = 2πǫ(p0)(p/ + m)δ(p2 − m2). (1.3.13)

The Feynman propagator (1.1.10) becomes

− iSF (x − x′) = θ(t − t′)

∫

d3p

(2π)32ω
(p/ + m)e−ip·(x−x′)

−θ(t′ − t)

∫

d3p

(2π)32ω
(p/ − m)eip·(x−x′)

= θ(t − t′)(i∂/ + m)∆+(x − x′) + θ(t′ − t)(i∂/ + m)∆+(x′ − x).

(1.3.14)

If we could pull the theta functions past the (time) derivatives, the Dirac prop-

agator would be related to the scalar one. But it produces an additional term

−iγ0δ(t− t′)∆(x−x′), which, however, turns out to be zero (Problem 1.1a). We

thus get the Dirac propagator:

SF (x − x′) = (i∂/ + m)∆F (x − x′)

=

∫

d4p

(2π)4
e−ip·(x−x′)SF (p), SF (p) =

−(p/ + m)

p2 − m2 + iη
. (1.3.15)
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8 Free Fields in Vacuum

Like (1.2.15) in the scalar case, we have the spectral representation of the free

Dirac propagator

SF (p) =

∫ +∞

−∞

dp′0
2π

σ0(p
′
0,p)

p′0 − p0 − iηǫ(p0)
. (1.3.16)

As we shall see at the end of Section 1.6, Feynman propagators for all higher-spin

fields also admit such spectral representations.

1.4 Vector Field

We first derive the free Lagrangian for the vector field Bµ and the supplementary

condition on it to describe a spin-one particle. The most general form may be

written as [1, 4]:

L =
1

2

{

a ∂µBν∂µBν + b ∂µBν∂νBµ + c (∂µBµ)2
}

+
m2

2
BµBµ, (1.4.1)

where a, b, c and m2 are arbitrary constants. The Euler–Lagrange equation is

a�Bµ + (b + c)∂µ(∂νBν) − m2Bµ = 0. (1.4.2)

Taking divergence it gives

(a + b + c)�∂µBµ − m2∂µBµ = 0, (1.4.3)

which is the equation of motion for the scalar field ∂µBµ with −m2/(a + b + c)

as the squared mass. Since we want here to describe only particles of spin one

and not zero, we can avoid ∂µBµ as a propagating field by setting a + b + c = 0,

when we have ∂µBµ = 0. Eliminating b, the Lagrangian (1.4.1) becomes

L =
a

2
∂µBν(∂µBν − ∂νBµ) +

c

2
(∂µBµ∂νBν − ∂µBν∂νBµ) +

m2

2
BµBµ.

(1.4.4)

The second term turns out to be a total divergence,

∂µBµ∂νBν − ∂µBν∂νBµ = ∂µ{Bν(gµν∂ρB
ρ − ∂νBµ)}. (1.4.5)

Omitting this term and absorbing a in the definition of Bµ and m, we get6

L = −1

4
FµνFµν +

m2

2
BµBµ, Fµν = ∂µBν − ∂νBµ. (1.4.6)

The dynamical equation for Bµ(x) is then simply

(� + m2)Bµ(x) = 0, (1.4.7)

with the supplementary condition

∂µBµ = 0. (1.4.8)

6 We choose a to be negative so that the space-like components, which are the physical
ones, can contribute negatively to the Lagrangian density. Then, for these components,
the signs of different terms agree with those for the scalar case (1.2.1).
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1.4 Vector Field 9

The condition (1.4.8) reduces the independent components of Bµ(x) from four

to three, which is the number of degrees of freedom of a spin-one particle. (This

is the subsidiary condition (A.3) of Appendix A.)

The vector field may again be expanded in terms of creation and annihilation

operators,

Bµ(x) =

∫

d3k

(2π)32ω

∑

σ

{

eµ(k, σ)e−ik·xa(k, σ) + eµ∗(k, σ)eik·xb†(k, σ)
}

(1.4.9)

when the supplementary condition gives

kµeµ = 0. (1.4.10)

The spin sum

Eµν(k) =
∑

σ

eµ(k, σ)eν∗(k, σ) (1.4.11)

must be a linear combination of the two available second rank tensors gµν and

kµkν . The condition (1.4.10) fixes the relative coefficient and we choose the

normalisation to write

Eµν(k) = −gµν +
kµkν

m2
, (1.4.12)

satisfying EµνEνλ = −Eµ
λ. Then the field commutator (1.1.9) becomes

∆µν =

∫

d4k

(2π)4
e−ik·(x−x′)ρµν

0 (k), (1.4.13)

where the free spectral function is given by

ρµν
0 (k) =

(

−gµν +
kµkν

m2

)

2πǫ(k0)δ(k2 − m2). (1.4.14)

Also, the Feynman propagator (1.1.10) is given by

− i∆µν
F (x − x′) = θ(t − t′)

(

−gµν − ∂µ∂ν

m2

)

∆+(x − x′)

+θ(t′ − t)

(

−gµν − ∂µ∂ν

m2

)

∆+(x′ − x). (1.4.15)

In pulling the theta functions past the tensors, the time derivatives may pro-

duce additional terms. As we saw in the case of the Dirac propagator, the first

derivative does not produce any, but the second derivative produces one. Using

the properties of ∆(x − x′) in Problems 1.1(a) and (b), one gets

θ(t − t′)∂2
t ∆+(x − x′) + θ(t′ − t)∂2

t ∆+(x′ − x)

= −i∂2
t ∆F (x − x′) + iδ4(x − x′). (1.4.16)
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10 Free Fields in Vacuum

The propagator (1.4.15) then becomes

∆µν
F (x − x′) =

(

−gµν − ∂µ∂ν

m2

)

∆F (x − x′) +
1

m2
δµ
0 δν

0 δ4(x − x′). (1.4.17)

Taking a Fourier transform, one gets

∆µν
F (k) =

(

−gµν +
kµkν

m2

) −1

k2 − m2 + iǫ
+

1

m2
δµ
0 δν

0 . (1.4.18)

As already mentioned, we may drop the non-covariant local term to write it

simply as

∆µν
F (k) =

(

−gµν +
kµkν

m2

) −1

k2 − m2 + iǫ
. (1.4.19)

* * *

For a massless vector field Aµ(x), the propagator (1.4.19) may still be used if

the interaction is linear in Aµ(x), Lint ∼ Jµ(x)Aµ(x) and the current Jµ(x)

is conserved, (∂µJµ = 0), as in electrodynamics. Then in matrix elements,

where the photon propagator is sandwiched between currents, the kµkν/m2 term

vanishes. So it amounts to taking

∆µν(k)|m=0 =
gµν

k2 + iǫ
. (1.4.20)

1.5 Rarita–Schwinger Field

A spin 3
2 particle can be described by a Rarita–Schwinger field ψµ

A, a vector-spinor

having 4× 4 = 16 components [5]. Following Appendix A we reduce the number

of independent components to four, needed to describe the spin components.

Suppressing the Dirac index as before, we impose

γµψµ(x) = 0 (1.5.1)

to take away four components and then the Dirac equation

(i∂/ − m)ψµ(x) = 0 (1.5.2)

to remove another eight components, retaining just four of them. A different

supplementary condition

∂µψµ(x) = 0 (1.5.3)

follows from the first two conditions7.

We shall not try to write the general form of the Lagrangian for this field,

which is somewhat involved [6]. As before we expand ψµ(x) in terms of positive

and negative frequency modes,

7 To get it, multiply (1.5.2) by γµ from the left and use anticommutation relation (1.3.3) of
gamma matrices and the other supplementary condition (1.5.1).
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