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PART I

FUNDAMENTALS OF PASS IVE
SE I SM IC MON ITOR ING

There is a crack in everything, that’s how the light gets in.

Leonard Cohen (Anthem, 1992)
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1 Constitutive Relations and Elastic Deformation

In the beginning, God said let the four-dimensional divergence of an antisymmetric

second-rank tensor equal zero . . . and there was light.

Michio Kaku (The Universe in a Nutshell, 2012)

Constitutive relations provide a foundation upon which to construct a theoretical frame-

work for the response of a system to external stimuli. Formally, a constitutive relation

defines the mathematical relationship between physical quantities that determine the

response of a given material to applied forces (Macosko, 1994). In general, constitutive

relations are based on experimental observation or mathematical reasoning other than a

fundamental conservation equation (Pinder and Gray, 2008). This chapter deals primarily

with a particular constitutive relationship that applies to elastic media; this relationship,

known as the generalized Hooke’s Law, describes a linear deformation regime in which

the response to applied forces is fully recoverable and proportional to the magnitude of the

net force. Countless experimental results confirm the applicability of this relationship to

Earth materials when subject to small strains. As outlined in subsequent chapters, combin-

ing this constitutive relation with a few basic physical principles and boundary conditions

leads to a remarkable wealth of wave-propagation phenomena.

As well as a description of the constitutive relations for an anisotropic elastic contin-

uum, this chapter provides a brief introduction to various effective-medium theories that

can be used to represent a complex medium with models that are more easily described

and characterized. The types of media considered are of particular interest for investi-

gations of reservoir processes and induced seismicity in sedimentary basins, including

multiphase materials, vertically inhomogeneous (stratified) media and fractured elastic

media. In addition, constitutive relationships for a poroelastic medium are introduced.

This type of medium has two components: an elastic frame, plus a network of fluid-filled

pores. A mathematical framework is also briefly introduced that governs the diffusion of

pore-pressure in a poroelastic medium.

1.1 Stress and Strain

Forces that operate in Earth’s interior drive a variety of deformation processes. The net

internal force per unit area that acts at a point x on an arbitrary surface within a medium

is called the traction, denoted by the vector T(x) (Figure 1.1). The surface on which this is

defined may not necessarily correspond with a boundary, like a fracture or bedding plane.
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4 Constitutive Relations and Elastic Deformation

�Fig. 1.1 Elements of the stress tensor. a) The traction acting on the shaded surface, denoted by T, can be decomposed into

shear and normal components, denoted by τ andσn, respectively. b) Components of the stress tensor. δV

represents an elementary volume.

To avoid the need to specify information about surface orientation, it is convenient to rep-

resent internal forces more generally using the stress tensor, which can be expressed with

respect to an elementary volume as

σ =

⎡

⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤

⎦ . (1.1)

For each element of the stress tensor, the first index denotes the direction of the axis that

is normal to the respective face for the elementary volume, while the second index denotes

the direction in which the stress component acts. Both stress and traction have SI units

of Pascal (Pa = N/m2). For a surface with unit normal vector n̂, the stress tensor and jth

element of the traction vector are related by

Tj = σ · n̂ =

3
∑

i=1

σijn̂i ≡ σijn̂i , (1.2)

where the standard tensor summation convention for repeated indices is employed in the

expression on the right side of Equation 1.2 (see Box 1.1). It follows that the net force F

acting on a volume within a closed surface S may be written as

Fj =

∫

S

TjdS =

∫

S

σijn̂idS . (1.3)

In a state of equilibrium, force balance applies to the volume enclosed by S such that

|F| = 0.

The stress tensor has a number of salient characteristics. Maintaining continuity of a

medium implies a condition of zero net torque on an elementary volume. This condition,

in turn, implies that the stress tensor is symmetric (i.e. σij = σji). For a given surface
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5 1.1 Stress and Strain

Box 1.1 Tensor Notation

Tensors are a generalization of vectors and provide a multidimensional representation of physical quanti-

ties that depend on spatial coordinates, including direction. Tensors are widely used in geophysics, as they

are important for describing the physical properties of fields and systems in the disciplines of continuum

mechanics and fluid mechanics. Tensor components are represented using index notation, where the order

(also called rank) denotes the number of required indices. The stress tensor σ is a second-order tensor,

sometimes referred to as a dyadic, and its ijth component is written as σij. The summation convention for

repeated indices, also known as Einstein summation convention, is used throughout this book. In this short-

hand notation, repeated indiceswithin products of tensors imply summation. Thus, the use of the summation

convention means that

aijbjk ≡

N
∑

j=1

aijbjk,

where N is the number of dimensions in the system (generally 2 or 3). The summation convention is

sometimes applied to a single tensor quantity, such that

aii = a11 + a22 + a33.

A tensor is invariant under a transformation of the coordinate system. For example, clockwise rotation of the

coordinate system by θ about the x3 axis can be expressed as

σ ′
mn = RmiRnjσij

where, in this case, the rotation operatorR is given by

R =

⎡

⎢

⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤

⎥

⎦
.

Spatial derivatives of tensors are represented using a subscripted comma. For example,

σij,j ≡
∂σij

∂xj

.

Finally, time derivatives are denoted with a dot, so that u̇ ≡
∂u

∂t
and ü ≡

∂2u

∂t2
.

specified by a unit normal vector, n, the off-diagonal elements of the stress tensor (i �= j)

represent forces applied in the plane of the face and are called shear stresses, whereas the

diagonal elements are called normal stresses. In general, any stress tensor is diagonalizable

and may be written in the form

σ = ���
−1 , (1.4)

where � is a matrix whose columns are unit eigenvectors of σ , while � is a diagonal

matrix whose elements are the corresponding eigenvalues. The eigenvectors are mutually

perpendicular and are known as principal stress axes. These axes have particular physical
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6 Constitutive Relations and Elastic Deformation

significance, as they represent the normals to planes within which shear stresses vanish.

The eigenvalues, called principal stresses, are denoted as σ1, σ2 and σ3 and are ordered

such that σ1 ≥ σ2 ≥ σ3. For notational reference, in the case of Cartesian coordinates

these principal stresses are sometimes, but not always, equivalent to the magnitude of stress

(traction) acting in the vertical direction (SV ), the maximum stress magnitude acting in a

horizontal direction (SH) and the minimum stress magnitude in a horizontal direction (Sh).

Tensor quantities can be difficult to visualize. In the case of stress tensors, a Mohr dia-

gram, named in honour of its inventor, Otto Mohr, is often used to depict the state of stress

(Parry, 2004). As discussed in the next chapter, the Mohr diagram also provides a useful

tool to represent fault/fracture stability with respect to various failure criteria. Consider an

arbitrary plane defined by unit normal n̂; for any given stress state, the traction acting on

this surface can be decomposed into normal and shear components, respectively denoted

as the normal stress, σn(n̂), and the shear stress, τ (n̂). As illustrated in Figure 1.2, these

two stress components serve as the coordinate axes for constructing a Mohr circle. To

understand how a Mohr diagram is produced, consider the stress tensor for a simplified

two-dimensional scenario

σ =

[

σ1 0

0 σ2

]

, (1.5)

where σ1 is the maximum principal stress and σ2 is the minimum principal stress. With

no loss of generality, a natural coordinate system is used here such that the x1 and x2 axes

correspond to the principal stress axes, so that off-diagonal elements in the stress tensor

(shear stresses) vanish. In general, the stress tensor can be expressed in a rotated coordinate

system by applying a rotation transformation,

[

σ ′
11 σ ′

12

σ ′
21 σ ′

22

]

=

[

cos(θ ) sin(θ )

− sin(θ ) cos(θ )

] [

σ1 0

0 σ2

] [

cos(θ ) − sin(θ )

sin(θ ) cos(θ )

]

, (1.6)

where θ is the angle of rotation. Expanding the right side, the normal and shear stress

values on the surface normal to the x′
1-axis, which makes an angle θ from the x1 axis, are

given by

�Fig. 1.2 3-D Mohr diagram, showing principal stresses,σ1 ≥ σ2 ≥ σ3. Symbols represent the state of stress on 100

randomly oriented fractures. PointP defines the state of stress for a plane whose normal is co-planar with the

maximum and minimum principal stress axes and that makes an angle θ with respect to the maximum principal

stress axis.
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7 1.1 Stress and Strain

σn = σ ′
11 = σ1 cos2 θ + σ2 sin2 θ =

σ1 + σ2

2
+

σ1 − σ2

2

(

cos2 θ − sin2 θ
)

,

τ = σ ′
12 = (σ2 − σ1) sin θ cos θ =

σ1 − σ2

2
2 sin θ cos θ .

(1.7)

In the expression for σn, we have made use of the trigonometric identity sin2 θ +

cos2 θ = 1. By further invoking the trigonometric identities cos 2θ = cos2 θ − sin2 θ

and sin 2θ = 2 sin θ cos θ , we can write

σn =
σ1 + σ2

2
+

σ1 − σ2

2
cos 2θ ,

τ =
σ1 − σ2

2
sin 2θ ,

(1.8)

which are parametric equations, with respect to the variable 2θ , for a circle with centre

at σ1+σ2
2

and radius σ1−σ2
2

. In two dimensions, the Mohr circle thus represents the stress

state as a locus of points in (σn, τ )-space. Each point on the circle corresponds with a plane

whose normal makes an angle θ with respect to the maximum principal stress axis. A 2-D

Mohr diagram is commonly represented as a semicircle by plotting with respect to |τ |

rather than τ .

In three dimensions, a similar approach can be applied. First, consider the subset of

normal vectors n that are co-planar with the maximum (σ1) and minimum (σ3) principal

stress axes. Based on the above arguments for the 2-D case, all of the possible stress states

with respect to σ1 and τ define a circle with centre σ1+σ3
2

and radius σ1−σ3
2

. Similarly,

planes defined by normal vectors that are co-planar with other pairs of principal stress axes

define Mohr circles with smaller radii and different centres. This set of three semicircles

creates a 3-D Mohr diagram (Figure 1.2). For a given stress state defined by principal

stresses σ1, σ2 and σ3, it can be shown that, for all possible normal vectors, including those

that are not co-planar with pairs of principal stress axes, the large Mohr circle in a 3-D Mohr

diagram forms an outer boundary in (σn, τ )-space, whereas the smaller two Mohr circles

represent inner boundaries. Referring to Figure 1.2, planes with random orientations fall

within the region between the three Mohr circles.

We now turn our attention to the concept of strain. As shown in Figure 1.3, strain is

defined with respect to an elementary volume in terms of displacement, denoted as u(x),

as follows:

ǫij =
1

2

(

ui,j + uj,i

)

, (1.9)

where the indicial comma notation for spatial derivatives has been employed on the right

side of this expression. Displacement is specified here in a Lagrangian reference frame,

which means that the coordinate system moves with a particle in the medium, consistent

with seismological measurement systems (Aki and Richards, 2002). The velocity of a point

in a medium is given by u̇(x). Referring to Figure 1.3, it is evident that if the spatial deriva-

tives of u are zero, the elementary volume is displaced with no change in shape or volume;

consequently, the strain variable provides a measure of deformation in a medium. Because

it is defined as a ratio of two quantities with units of length, strain is dimensionless. Strain
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8 Constitutive Relations and Elastic Deformation

�Fig. 1.3 Strain is defined by deformation of an elementary volume. The initial size and shape of the elementary volume

(unshaded) are modified in response to an applied stress. The change in size and shape of the deformed volume

(shaded) is described using the displacement field,u(x).

is a second-order tensor that, by definition, has the symmetry property ǫij = ǫji. Similar

to the stress tensor, the diagonal elements are called normal-strain components and the

off-diagonal elements are called shear-strain components.

1.2 Linear Elasticity

The fundamental constitutive relationship between stress and strain in a linear elastic

medium is given by

σij = cijklǫkl, (1.10)

where cijkl denotes the elastic stiffness tensor (recall the tensor summation convention that

implies a double summation on the right side of this equation). This relationship is known

as a generalized form of Hooke’s Law. Since strain is unitless, the units of the stiffness

tensor are Pa.

Since both stress and strain are second-order tensors, a fourth-order tensor (cijkl) is

required to fully characterize all possible linear relationships between stress and strain

components. In three dimensions, the stress tensor thus has 81 (34) components, where

each individual scalar component is known as an elastic modulus. Due to various symme-

tries, for the general (triclinic) case the number of independent moduli can be reduced to

21. These symmetries arise from: 1) the inherent symmetry of the stress tensor (σij = σji);

2) the inherent symmetry of the strain tensor (ǫkl = ǫlk); and 3) the definition of strain-

energy density, which implies that cijkl = cklij (Aki and Richards, 2002). A more compact

notation for generalized Hooke’s Law, known as Voigt notation, exploits these symmetries

and reduces the stiffness tensor to a symmetric 6 × 6 stiffness matrix, C. Using Voigt

notation, the elastic constitutive relation can be expressed as
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9 1.2 Linear Elasticity

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ̃1

σ̃2

σ̃3

σ̃4

σ̃5

σ̃6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C̃11 C̃12 C̃13 C̃14 C̃15 C̃16

C̃22 C̃23 C̃24 C̃25 C̃26

C̃33 C̃34 C̃35 C̃36

C̃44 C̃45 C̃46

C̃55 C̃56

C̃66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ǫ̃1

ǫ̃2

ǫ̃3

ǫ̃4

ǫ̃5

ǫ̃6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1.11)

in which pairs of indices are combined such that ()11 → ()1, ()22 → ()2, ()33 →

()3, ()23 → ()4, ()13 → ()5 and ()12 → ()6. For example, using this combination method

c1111 = C̃11 and c1122 = ˜(C)12, where the tilde overbar notation is used here to distin-

guish Voigt parameters from the standard tensor representation. In addition, the Voigt strain

parameters are assigned as follows: ǫ̃1 = ǫ11, ǫ̃2 = ǫ22, ǫ̃3 = ǫ33, ǫ̃4 = 2ǫ23, ǫ̃5 = 2ǫ13 and

ǫ̃6 = 2ǫ12. Because C̃ is a symmetric 6 × 6 matrix, this means that there is a maximum

of 21 independent elastic moduli, as shown above. As a caution, it should be emphasized

that the use of Voigt notation means that a more complex operator is required to transform

from one coordinate system to another, known as the Bond transformation (see Winterstein,

1990 for details).

From an experimental perspective, the underlying mathematical model implied by the

generalized form of Hooke’s Law implies that 21 independent measurements of stress–

strain response are required to fully characterize the elastic behaviour of a material – a

daunting prospect that is seldom realized in practice. Fortunately, most rocks have inherent

material symmetry properties that simplify the stress–strain relationship by reducing the

number of independent coefficients needed to construct the stiffness tensor. These material

symmetries arise from rock fabric elements that occur commonly in the subsurface, such as

horizontal stratification, existence of parallel fracture sets and fabrics created by preferred

alignment of minerals.

Consider the special case, albeit routinely invoked, of an isotropic medium. In such a

medium, there is no directional dependence associated with the stress–strain relationship.

Thus, for a given strain condition, a measurement of normal- or shear-stress components

in a vertical orientation would yield the same result as a measurement in a horizontal ori-

entation, or indeed at any angle of inclination. In simplistic terms, a subsurface rock mass

could be considered as a fractured, fluid-saturated granular mineral aggregate. Isotropic

elastic symmetry is often assumed to exist if these constituent elements, such as mineral

grains or microfractures, are both small-scale and randomly oriented. Here “small scale”

means small relative to the seismic wavelength, which is typically a few metres to a few

hundred metres.

In the case of an isotropic medium, only two independent elastic moduli are required to

fully characterize the stress–strain relationship. In this case, the elastic stiffness tensor may

be written as

cijkl = λδijδkl + μ
(

δikδjl + δilδjk

)

, (1.12)

where λ and μ are independent constants known as the Lamé parameters and δij is known

as the Kronecker delta, which has the properties

δij =

{

0 if i �= j,

1 if i = j.
(1.13)
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10 Constitutive Relations and Elastic Deformation

For an isotropic material, Hooke’s Law may be expressed in the form

σij = λǫkkδij + 2μǫij, (1.14)

where the term ǫkk (implied summation over index k) is called the dilatation, defined as

�V/V .

Although the Lamé parameters are useful for expressing the constitutive relationship, it

is often more convenient to express stiffness characteristics of a material using alternative

elastic moduli that are directly linked to experimental measurements. In addition to the

shear modulus, μ, other commonly used elastic moduli include bulk modulus, K, Young’s

modulus, E, and Poisson’s ratio, ν. For a sample of volume V , the bulk modulus is given

by

K ≡ −V
∂P

∂V
, (1.15)

where P is confining pressure and the stress tensor has hydrostatic form,

σ =

⎡

⎣

−P 0 0

0 −P 0

0 0 −P

⎤

⎦ . (1.16)

The negative sign used here reflects the convention that, whereas pressure is positive under

compressional conditions, stress is positive under tensile conditions.

Young’s modulus is measured under uniaxial stress conditions. For a sample of cross-

sectional area A, Young’s modulus can be expressed as

E ≡
F/A

�L/L0
=

σaxial

ǫaxial

, (1.17)

where F is the force applied to the ends of the sample (positive for tensile and negative

for compressional), L is the length of the sample measured along its axis in the direction

of the applied force, �L is the change in sample length and L0 is the sample length prior

to application of the force. In addition, σaxial denotes axial stress and ǫaxial denotes axial

strain. The shear modulus can be measured by applying a shear force to the sides of a

sample and is defined as

μ =
σij

2ǫij

, i �= j (no summation). (1.18)

Note that in many engineering texts the shear modulus is represented by G. The elastic

moduli K, E and μ for Earth materials are typically expressed in units of GPa.

Another parameter that is commonly used to describe the properties of an elastic solid is

Poisson’s ratio. Like Young’s modulus, this is measured under uniaxial stress conditions.

Poisson’s ratio is unitless and is given by

ν = −
ǫtrans

ǫaxial

, (1.19)

where ǫtrans is the transverse strain.
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