

The World Economy

The balance of the world economy is shifting away from the established economies of Europe, Japan, and the US, towards the emerging economies of Asia, especially India and China. With contributions from some of the world's leading growth theorists, this book analyzes the long-term process of structural change and productivity growth across the world from a unique comparative perspective. Ongoing research from the World KLEMS Initiative is used to comparatively study new sources of growth – including the role of investment in intangible assets, human capital, technology catchup, and trade in global value chains. This book provides comparisons of industries and economies that are the keys to analyzing the impacts of international trade and investment. This makes it an ideal read for academics and students interested in understanding current patterns of economic growth. It will also be of value to professionals with an interest in the drivers of economic growth and crisis.

DALE W. JORGENSON is the Samuel W. Morris University Professor at Harvard University, was awarded the prestigious John Bates Clark Medal by the American Economic Association in 1971, and served as the President of the Association in 2000. He is the author of more than 300 articles in economics and the author and editor of 37 books.

KYOJI FUKAO is Professor at the Institute of Economic Research, Hitotsubashi University, and Program Leader at the Program Unit for Statistical and Empirical Analysis. He co-authored *Foreign Direct Investment in Japan* with Ralph Paprzycki (2008) and has published articles in several economic journals.

MARCEL P. TIMMER is Professor of Economic Growth and Development at the University of Groningen, and director of the Groningen Growth and Development Centre (GGDC). He has published more than 30 articles in international journals, and is the lead author of the book *Economic Growth in Europe* (2010).

The World Economy

Growth or Stagnation?

Edited by
DALE W. JORGENSON
KYOJI FUKAO
MARCEL P. TIMMER

More Information

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryagani, Delhi – 110002, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107143340

DOI: 10.1017/9781316534502

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Jorgenson, Dale W. (Dale Weldeau), 1933– editor. | Fukao, Kyōji, editor. | Timmer, Marcel, editor.

Title: The world economy: growth or stagnation? / edited by Dale W. Jorgenson, Kyoji Fukao, Marcel P. Timmer.

Other titles: World economy (Cambridge University Press)

Description: Cambridge, United Kingdom: Cambridge University Press, 2016.

Identifiers: LCCN 2015049531 | ISBN 9781107143340 (hardback)

Subjects: LCSH: Economic history – 21st century. | Economic development. | Economics.

Classification: LCC HC59.3 .W674 2016 | DDC 330.9–dc23 LC record available at http://lccn.loc.gov/2015049531

ISBN 978-1-107-14334-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures	page vii
List of tables	xii
List of contributors	xvi
1 The new world order DALE W. JORGENSON	1
2 US economic growth – retrospect and prospect: lessor a prototype industry-level production account for the US, 1947–2012 DALE W. JORGENSON, MUN S. HO, AND JON D. SAMUELS	ons from 34
3 The structural causes of Japan's Lost Decades KYOJI FUKAO, KENTA IKEUCHI, HYEOGUG KWON, YOUNGGAK KIM, TATSUJI MAKINO, AND MIHO TAKIZAWA	70
4 Productivity growth in Europe before and since the 2008/2009 economic and financial crisis BART VAN ARK AND MARY O'MAHONY	111
5 LA-KLEMS: economic growth and productivity in Latin America ANDRÉ HOFMAN, MATILDE MAS, CLAUDIO ARAVENA, AND JUAN FERNÁNDEZ DE GUEVAI	153 ra
6 On China's strategic move for a new stage of development – a productivity perspective HARRY X. WU	199
7 Productivity growth in India under different policy DEB KUSUM DAS, ABDUL A. ERUMBAN, SURES AGGARWAL, AND SREERUPA SENGUPTA	U

V

vi Contents

8	Is mining fuelling long-run growth in Russia? Industry productivity growth trends in 1995–2012 MARCEL P. TIMMER AND ILYA B. VOSKOBOYNIKOV	281
9	Intangibles, ICT and industry productivity growth: evidence from the EU CAROL CORRADO, JONATHAN HASKEL, AND CECILIA JONA-LASINIO	319
10	Do intangibles contribute to productivity growth in East Asian countries? Evidence from Japan and Korea HYUNBAE CHUN, TSUTOMU MIYAGAWA, HAK KIL PYO, AND KONOMI TONOGI	347
11	BEA/BLS industry-level production account for the US: integrated sources of growth, intangible capital, and the US recovery STEVEN ROSENTHAL, MATTHEW RUSSELL, JON D. SAMUELS, ERICH H. STRASSNER, AND LISA USHER	377
12	Measuring human capital: country experiences and international initiatives GANG LIU AND BARBARA M. FRAUMENI	429
13	A half century of Trans-Pacific competition: price level indices and productivity gaps for Japanese and US industries, 1955–2012 DALE W. JORGENSON, KOJI NOMURA, AND JON D. SAMUELS	469
14	Searching for convergence and its causes – an industry perspective ROBERT INKLAAR	508
15	The rise of global manufacturing value chains: a new perspective based on the World Input-Output Database MARCEL P. TIMMER, BART LOS, AND GAAITZEN J. DE VRIES	535
Indon		561

Figures

1.1	Sources of world economic growth, 1995–2012	page 7
1.2	Sources of world economic growth	7
1.3	Sources of G7 economic growth	8
1.4	Sources of BRICs economic growth	9
1.5	World productivity growth projections, 2012–2022	11
1.6	World growth projections, 2012–2022	11
1.7	Growth projections for the world economy	12
1.8	Growth projections for the G7 economy	13
1.9	Growth projections for the BRIC economies	14
1.10	New economic order 2022	15
2.1	Price of investment relative to GDP deflator (log scale)	38
2.2	Shares of IT stock, IT capital services, and IT service	
	output in total economy	39
2.3	Share of intellectual property investment in GDP (%)	40
2.4	Share of IT capital services in total capital, 2005	41
2.5	TFP growth 1995–2012 versus IT-intensity	42
2.6	Contribution of education, age and gender to labor	
	quality, 1947–2012	43
2.7	Contribution of education, age and gender to labor	
	quality, 1995–2012	44
2.8	Distribution of education attainment of work force	45
2.9	Compensation by education attainment (relative to those	2
	with HS diploma)	46
2.10	Compensation by age relative to 25–34-year-olds	51
2.11	Contributions of industry groups to value added growth,	,
	1947–2012	52
2.12	Contributions of industry groups to value added growth,	,
	1995–2012	53
2.13	Industry contributions to value added growth,	
	1947–2012	54

vii

More Information

viii	List	of figures
2.14	Contribution of industry groups to productivity growth 1947–2012	n, 55
2.15	Contribution of industry groups to productivity growth	-
	1995–2012	56
	Industry contributions to productivity, 1947–2012	57
	Sources of US economic growth, 1947–2012	58
	Sources of US economic growth, 1995–2012	59
2.19	Contribution of industry groups to productivity growth	١,
	2012–2022	61
	Range of labor productivity projections, 2012–2022	62
	Range of US potential output projections, 2012–2022	62
3.1	Japan's real GDP, potential GDP, and inflation rate (% 1980Q1–2014Q4), 72
3.2	Japan's savings-investment balance: relative to nominal	1
	GDP (four-quarter moving average)	74
3.3	The relationship between per capita gross prefectural	
	product and social capital stock per man-hour labor	
	input, 2008	78
3.4	Household and corporate saving relative to nominal GD	P
	(%)	81
3.5	Decomposition of Japan's GDP growth (annual rate, %	84
3.6a	Japan's capital coefficient and return on capital	86
3.6b	US capital coefficient and return on capital	87
3.7	Decomposition of Japan's man-hour growth (annual rat	e,
	%)	90
3.8	Average working hours of employees	91
3.9	Decomposition of growth in the labor quality index by	
	employment status	91
3.10	TFP level of the manufacturing and the non-	
	manufacturing sector (market economy), 1970-2011	
	(1970 = 1)	94
3.11	TFP growth in the market economy, by sector and	
	country, 1980–1995, 1995–2001, and 2001–2008	
	(annual rate, %)	97
3.12	ICT investment-GDP ratio in major developed	
	economies: distribution services	98
3.13	ICT investment-GDP ratio in major developed	
	economies: total manufacturing excluding electrical	

machinery

98

List o	f figures	ix
4.1	Level of ICT capital stock per unit of output, in 2014 US\$ (PPP-converted)	130
4.2a	Investment intensity of intangible assets as a % of value added in the market sector, 1995–2010 (EU-15)	136
4.2b	Investment intensity of intangible assets as a % of value added in the market sector, 1995–2010 (US)	137
5.1	Growth rate of value added, employment, hours worked, labor productivity, and GFCF, 1990–2010 (%)	171
5.2	Investment effort (GFCF/VA), 1990–2010 (%)	174
	Investment effort in ICT (GFCF/VA), 1990–2010 (%)	176
	Value added growth determinants, 1990–2010 (% and	
	contribution to growth)	180
	Total factor productivity index by industry group	214
	Index of aggregate total factor productivity in China	217
7.1	Contribution of factor inputs and total factor productivity	
	growth to GDP growth, 1980–2011	252
7.2	Decomposition of output growth into contribution from	
	factor inputs and TFP growth, twenty-six industries,	260
7.2	1980–2011	260
/.3	Harberger diagrams of aggregate total factor productivity	264
7.4	growth in the Indian economy Productivity performance and policy regimes: 1990s	264
/ . 4	versus 2000s	268
Q 1	Long-run growth of the Russian economy, 1961–2019	282
	Alternative investment deflators	297
	MFP Harberger diagrams for multi-factor productivity	271
0.3	growth, 1995–2012	308
9.1	Intangible investments (chain linked volumes):	000
, , -	compounded average rates of growth, 1995–2010	327
9.2	ICT, R&D and nonR&D investment intensity in the EU	328
	Complementary assets, innovation, and productivity	
	growth	334
9.4	ICT versus intangible nonR&D, and R&D capital stocks	337
9.5	Marginal effect of intangible capital assets on productivity	
	growth	342
10.1a	Intangible investment by industry and component in	
	Japan, 2010	355
10.1b	Intangible investment by industry and component in	
	Korea, 2010	355

List of figures

10.2a	Ratio of intangible investment to GVA by industry in	
	Japan, 2010	357
10.2b	Ratio of intangible investment to GVA by industry in	
	Korea, 2010	357
10.3a	The composition of capital assets by industry in Japan,	
	2010	359
10.3b	The composition of capital assets by industry in Korea,	
	2010	360
10.4a	The correlation between ICT and R&D in Japan	366
10.4b	The correlation between ICT and R&D in Korea	367
10.5a	The correlation between ICT and non-R&D in Japan	368
10.5b	The correlation between ICT and non-R&D in Korea	368
10.6a	Cross-sectional correlations between ICT and R&D in	
	Japan	369
10.6b	Cross-sectional correlations between ICT and R&D in	
	Korea	369
10.7a	Cross-sectional correlations between ICT and non-R&D	
	in Japan	370
10.7b	Cross-sectional correlations between ICT and non-R&D	
	in Korea	370
11.1	Integrated industry MFP growth, 1998–2012	394
11.2	Output growth differences, 2007–2009 less 1998–2007	405
11.3	Output growth differences, 2007–2012 less 1998–2007	406
11.4	Output growth differences, 2009–2012 less 1998–2007	407
11.5	Contribution to aggregate value added growth,	
	2009–2012 less 1998–2007	418
11.6	Contribution to aggregate capital contribution,	
	2009–2012 less 1998–2007	419
11.7	Contribution to aggregate labor contribution,	
	2009–2012 less 1998–2007	420
11.8	Contribution to aggregate integrated MFP growth, 2009–	
	2012 less 1998–2007	421
12.1	Inputs, outputs and outcomes of education sector	432
12.2	Classification of measuring methodologies	435
12.3	Contributions to full gross private domestic product and	
	economic growth without human capital	443
12.4	Contributions to full gross private domestic product and	
	economic growth with human capital	444

List of figures		xi
12.5	Human capital per capita 2006 compared with average education attainment 2005 and World Bank intangible	
	capital per capita 2005	457
13.1	PPPs for output and KLEMS during, 1955–2012	483
13.2	Industry-level PLIs for GDP, 2005	485
13.3	Japan–US TFP level indices	488
	Sources of Japan–US gap in labor productivity level index Sources of Japan–US gap in capital productivity level	491
	index	492
13.6	TFP gaps in manufacturing and non-manufacturing,	
	1955–2012	493
13.7	Industry origins of TFP gap, 2005	494
13.8	Exchange rates to parity of TFP and output prices, 2005	495
13.9	TFP level indices in selected industries, 1955–2012	497
14.1	Market economy productivity dispersion, 1995–2011	520
15.1	Stylized representation of an internationally fragmented	
	value chain	538
15.2	An accounting framework for global value chains	540
15.3	Schematic outline of a world input-output table (WIOT)	544
15.4	GVC incomes in advanced and emerging countries, all	
	manufactures, 1995–2011	552
15.5	Regional shares in world GVC income, all manufactures,	
	1995–2011 (%)	554

Tables

2.1	Labor characteristics by industry, 2010	page 47
4.1	Output, hours, and labor productivity growth, and growt	h
	contributions by major input, 1999-2007 and 2008-201	4
	(log growth)	116
4.2	Output per hour by major sector, 1999–2007 and	
	2008–2013 (%)	121
4.3	Output, hours and labor productivity growth, and growt	h
	contributions by major sector and major input, 1999-200	7
	and 1999-latest year available (log growth)	122
4.4	Contributions from digitalization to average annual GDF)
	growth for eight major EU economies,	
	2001–2011 (%)	128
4.5	High skilled employment as a proportion of total	
	employment, aggregate economy (%)	132
4.6	High skilled employment as a proportion of total	
	employment, by major sector (%)	133
Appe	endix Table 4.1a Output, hours, and labor productivity	
	growth, and growth contributions by major input,	
	1999–2007 (log growth)	139
Appe	endix Table 4.1b Output, hours, and labor productivity	
	growth, and growth contributions by major input,	
	2008–2014 (log growth)	141
Appe	endix Table 4.2 Output, hours, and labor productivity	
	growth, and growth contributions by major sector and	
	major input, 1999-2007 and 1999-latest year available	
	(log growth)	143
5.1	Industries in LA-KLEMS	163
5.2	Gross fixed capital formation by type of asset	163
5.3	Classification by characteristics	165

xii

List	of tables	xiii
5.4	GDP per capita and labor productivity in Latin America, 1990–2010	168
5.5	GDP, hours worked, labor productivity, and GFCF:	4.50
	standard deviation of the annual growth rates, 1990–2010	172
	Distribution of GFCF by type of assets, 1990–2010 (%)	175
	Distribution of GFCF by industry, 1990–2010 (%)	177
	Hours worked per year and per worker, 1990–2010	178
5.9	Share of employment by levels of education,	470
<i>-</i> 10	1990–2010 (%)	179
5.10	Value added growth determinants by economic industry,	102
<i>-</i> 11	1990–2010 (% and contribution to growth)	182
5.11	Shift-share decomposition of the compound annual growth	100
Δ	rate, 1990–2010	190
	endix 5.1 Basic table	194
6.1	Decomposition of gross output growth in China by	213
6.2	industry group Growth in aggregate value added and sources of growth in	213
0.2	China	216
63	Decomposition of aggregate labor productivity growth in	210
0.5	China	219
6.4	Domar-weighted TFP growth and reallocation effects in the	217
0.1	Chinese economy	220
Appe	endix Table 6.1 CIP/China KLEMS industrial classification	
11PPC	and code	226
Appe	endix Table 6.2 Industry contributions to value added and	
II.	total factor productivity growth	228
7.1	Growth rates of GDP and labor productivity in the Indian	
	economy – pre- and post-1980s	238
7.2	Gross value added and employment shares in GDP,	
	1980–2011 (%)	241
7.3	Sectoral contribution to aggregate total factor productivity	258
7.4	Sectoral total factor productivity using value added	
	function and value added/output ratio	261
7.5	Pattern of aggregate economy TFP growth, 1981–2011	265
Appe	endix Table 7.1 Classification of industries	275
8.1	Value added decomposition for market economy growth,	
	1995–2012	299
8.2	Sectoral shares of value added and contribution to real	
	growth, 1995–2012 (%)	303

xiv

Cambridge University Press 978-1-107-14334-0 — The World Economy Edited by Dale W. Jorgenson , Kyoji Fukao , Marcel P. Timmer Frontmatter

More Information

	·	
8.3	Average annual growth rates of inputs and MFP during,	20.5
	1995–2012	305
	endix Table 8.1 List of sectors and industries	312
	Sources of industry labor productivity growth	329
9.2	Correlations between ICT, R&D, nonR&D intangibles:	220
0.2	long differences (1995–2007)	338
9.3	Augmented production function (dependent variable:	240
101	$\Delta \ln(Q/H)_{i,c,t}$	340
	Traditional growth accounting in Japan and Korea (%)	348 358
	Comparison of intangible investment/gross output ratio (%)	363
	Growth accounting with intangibles (%)	363
10.4	International comparison of labor productivity growth,	365
10.5	1995–2007 (%)	367
	Correlations between ICT and intangibles	367
	endix Table 10.1 Industry classification of the paper	390
	Sources of industry output growth, 1998–2012 Sources of capital contribution, 1998–2012	396
	Sources of labor contribution, 1998–2012	402
	Growth in aggregate value added and the sources of growth	402
	Sector sources of value added growth	411
	Sector sources of aggregate integrated MFP growth	412
	Sector sources of aggregate integrated MFP growth	414
	Contributions to aggregate value added growth	415
	endix Table 11.1 Multi-factor productivity growth:	713
пррс	comparison between official measures and integrated	
	production account measures, 1998–2012	424
12 1	An overview of selected national studies applying	121
12,1	income-based approach	439
12 2	Full gross private domestic product, average nominal	137
12.2	shares and rates of growth, 1949–1984, 1998–2009	445
12.3	Full factor outlay, average nominal shares and rates of	
12.0	growth, 1949–1984, 1998–2009	447
12.4	Country measures and the associated correlations based on	
- -	different approaches	455
13.1	PPPs and price level indices for output and KLEMS	482
	Volume level indices of output, inputs and productivity	486
	Growth in aggregate value added and its sources	489
	Productivity dispersion by main sectors, 1995 and 2011	521

List of tables

Lıst	of tables	XV
14.2	Potential determinants of productivity growth and	
	determinants	525
14.3	Explaining productivity growth and convergence –	
	regression results	527
15.1	Value added shares in final output of automotives from	
	Germany (%)	541
15.2	Regional value added distribution of final output of	
	manufactures by country-of-completion	548
15.3	Country GVC income in production of manufactures	
	(% of world)	553
15.4	Sectoral shares in total GVC income, all manufactures	
	(% of total)	556
15.5	GVC income by production factor and region (shares in	
	world GVC income)	559

Contributors

- Suresh Aggarwal, Professor, Department of Business Economics, University of Delhi, South Campus, India
- Claudio Aravena, Researcher, Economic Commission for Latin American and the Caribbean (ECLAC) in Santiago, Chile; Professor, USACH University, Santiago, Chile
- **Hyunbae Chun**, Professor, Department of Economics, Sogang University
- Carol Corrado, Senior Advisor and Research Director, Economics Program, The Conference Board; Senior Policy Scholar, Georgetown University Center for Business and Public Policy
- Deb Kusum Das, Associate Professor, Ramjas College, University of Delhi
- Juan Fernández de Guevara, Lecturer of Economic Analysis, Universitat de València; Associate Researcher, Ivie
- Gaaitzen J. de Vries, Assistant Professor, Groningen Growth and Development Centre, Faculty of Economics and Business, University of Groningen
- **Abdul A. Erumban**, Senior Economist, The Conference Board; Assistant Professor, Faculty of Economics and Business, University of Groningen
- Barbara M. Fraumeni, Special-term Professor, Central University for Finance and Economics; Professor of Public Policy Emerita, University of Southern Maine; National Bureau of Economic Research
- **Kyoji Fukao**, Professor, Institute of Economic Research, Hitotsubashi University; Faculty Fellow, Research Institute of Economy, Trade and Industry
- Jonathan Haskel, Professor of Economics, Imperial College Business School; Research Fellow, Centre for Economic Policy Research; Research Fellow, Institute for the Study of Labor, Bonn
- Mun S. Ho, Visiting Scholar, Resources for the Future

xvi

List of contributors

xvii

- André Hofman, Director, Professor, UAB and USACH in Santiago, Chile
- Kenta Ikeuchi, Research Fellow, First Theory-Oriented Research Group, National Institute of Science and Technology Policy
- Robert Inklaar, Associate Professor of Economics, University of Groningen
- Cecilia Jona-Lasinio, Senior Researcher, Econometric Studies and Economic Forecasting Division, Italian Statistical Institute; Associate Professor, LUISS Guido Carli University
- **Dale W. Jorgenson**, Samuel W. Morris University Professor, Harvard University
- YoungGak Kim, Associate Professor, School of Economics, Senshu University
- **HyeogUg Kwon**, Professor, Nihon University College of Economics; Faculty Fellow, Research Institute of Economy, Trade and Industry **Gang Liu**, Senior Adviser, Statistics Norway
- Bart Los, Associate Professor, Groningen Growth and Development Centre, Faculty of Economics and Business, University of Groningen
- Tatsuji Makino, Researcher, Institute of Economic Research, Hitotsubashi University
- Matilde Mas, Professor of Economic Analysis, Universitat de València; International Projects Director, Ivie
- **Tsutomu Miyagawa**, Professor, Faculty of Economics, Gakushuin University; Faculty Fellow, Research Institute of Economy, Trade and Industry
- **Koji Nomura**, Associate Professor, KEO, Keio University; PDB Project Manager, Asian Productivity Organization
- Mary O'Mahony, Professor of Applied Economics, King's College, London; Visiting Fellow, National Institute of Economic and Social Research
- Hak Kil Pyo, Professor of Economics Emeritus, Seoul National University Steven Rosenthal, Supervisory Economist, Office of Productivity and Technology, Bureau of Labor Statistics, US Department of Labor
- Matthew Russell, Senior Economist, Federal Aviation Administration, US Department of Transportation
- Jon D. Samuels, Research Economist, Industry Economic Accounts, Bureau of Economic Analysis, US Department of Commerce
- Sreerupa Sengupta, PhD Student, Centre for Economic Studies and Planning, Jawaharlal Nehru University, India

xviii

List of contributors

- **Erich H. Strassner**, Division Chief, Industry Applications Division at Bureau of Economic Analysis, US Department of Commerce
- Miho Takizawa, Associate Professor, Faculty of Economics, Toyo University
- Marcel P. Timmer, Professor and Director, Groningen Growth and Development Centre, University of Groningen
- Konomi Tonogi, Assistant Professor, Faculty of Economics, Kanagawa University
- Lisa Usher, Retired Chief, Division of Industry Productivity Studies, Office of Productivity and Technology, Bureau of Labor Statistics, US Department of Labor
- Bart van Ark, Professor in Economic Development, Technological Change and Growth, University of Groningen; Chief Economist, The Conference Board
- Ilya B. Voskoboynikov, Senior Research Fellow, Laboratory for Research in Inflation and Growth, National Research University Higher School of Economics
- Harry X. Wu, Professor of Economics, Institute of Economic Research, Hitotsubashi University