The balance of the world economy is shifting away from the established economies of Europe, Japan, and the US, towards the emerging economies of Asia, especially India and China. With contributions from some of the world’s leading growth theorists, this book analyzes the long-term process of structural change and productivity growth across the world from a unique comparative perspective. Ongoing research from the World KLEMS Initiative is used to comparatively study new sources of growth – including the role of investment in intangible assets, human capital, technology catch-up, and trade in global value chains. This book provides comparisons of industries and economies that are the keys to analyzing the impacts of international trade and investment. This makes it an ideal read for academics and students interested in understanding current patterns of economic growth. It will also be of value to professionals with an interest in the drivers of economic growth and crisis.

DALE W. JORGENSON is the Samuel W. Morris University Professor at Harvard University, was awarded the prestigious John Bates Clark Medal by the American Economic Association in 1971, and served as the President of the Association in 2000. He is the author of more than 300 articles in economics and the author and editor of 37 books.

KOJI FUKAO is Professor at the Institute of Economic Research, Hitotsubashi University, and Program Leader at the Program Unit for Statistical and Empirical Analysis. He co-authored Foreign Direct Investment in Japan with Ralph Paprzycki (2008) and has published articles in several economic journals.

MARCEL P. TIMMER is Professor of Economic Growth and Development at the University of Groningen, and director of the Groningen Growth and Development Centre (GGDC). He has published more than 30 articles in international journals, and is the lead author of the book Economic Growth in Europe (2010).
Contents

List of figures

List of tables

List of contributors

1 The new world order
DALE W. JORGENSON

DALE W. JORGENSON, MUN S. HO, AND JON D. SAMUELS

3 The structural causes of Japan’s Lost Decades
KOYOJI FUKAO, KENTA IKEUCHI, HYEOGUG KWON, YOUNGGAK KIM, TATSUJI MAKINO, AND MIHO TAKIZAWA

4 Productivity growth in Europe before and since the 2008/2009 economic and financial crisis
BART VAN ARK AND MARY O’MAHONY

5 LA-KLEMS: economic growth and productivity in Latin America
ANDRÉ HOFMAN, MATILDE MAS, CLAUDIO ARAVENA, AND JUAN FERNÁNDEZ DE GUEVARA

6 On China’s strategic move for a new stage of development – a productivity perspective
HARRY X. WU

7 Productivity growth in India under different policy regimes
DEB KUSUM DAS, ABDUL A. ERUMBAN, SURESH AGGARWAL, AND SREEUPA SENGUPTA
MARCEL P. TIMMER AND ILYA B. VOSKOBONYIKOV

9 Intangibles, ICT and industry productivity growth: evidence from the EU 319
CAROL CORRADO, JONATHAN HASKEL, AND CECILIA JONA-LASINIO

10 Do intangibles contribute to productivity growth in East Asian countries? Evidence from Japan and Korea 347
HYUNBAE CHUN, TSUTOMU MIYAGAWA, HAK KIL PYO, AND KONOMI TONOOGI

11 BEA/BLS industry-level production account for the US: integrated sources of growth, intangible capital, and the US recovery 377
STEVEN ROSENTHAL, MATTHEW RUSSELL, JON D. SAMUELS, ERICH H. STRASSNER, AND LISA USHER

12 Measuring human capital: country experiences and international initiatives 429
GANG LIU AND BARBARA M. FRAUMENI

DALE W. JORGENSEN, KOJI NOMURA, AND JON D. SAMUELS

14 Searching for convergence and its causes – an industry perspective 508
ROBERT INKLAAR

15 The rise of global manufacturing value chains: a new perspective based on the World Input–Output Database 535
MARCEL P. TIMMER, BART LOS, AND GAAITZEN J. DE VRIES

Index 564
Figures

1.1 Sources of world economic growth, 1995–2012 page 7
1.2 Sources of world economic growth 7
1.3 Sources of G7 economic growth 8
1.4 Sources of BRICs economic growth 9
1.5 World productivity growth projections, 2012–2022 11
1.6 World growth projections, 2012–2022 11
1.7 Growth projections for the world economy 12
1.8 Growth projections for the G7 economy 13
1.9 Growth projections for the BRIC economies 14
1.10 New economic order 2022 15
2.1 Price of investment relative to GDP deflator (log scale) 38
2.2 Shares of IT stock, IT capital services, and IT service output in total economy 39
2.3 Share of intellectual property investment in GDP (%) 40
2.4 Share of IT capital services in total capital, 2005 41
2.5 TFP growth 1995–2012 versus IT-intensity 42
2.6 Contribution of education, age and gender to labor quality, 1947–2012 43
2.7 Contribution of education, age and gender to labor quality, 1995–2012 44
2.8 Distribution of education attainment of work force 45
2.9 Compensation by education attainment (relative to those with HS diploma) 46
2.10 Compensation by age relative to 25–34-year-olds 51
2.11 Contributions of industry groups to value added growth, 1947–2012 52
2.12 Contributions of industry groups to value added growth, 1995–2012 53
2.13 Industry contributions to value added growth, 1947–2012 54
List of figures

2.14 Contribution of industry groups to productivity growth, 1947–2012
2.15 Contribution of industry groups to productivity growth, 1995–2012
2.16 Industry contributions to productivity, 1947–2012
2.17 Sources of US economic growth, 1947–2012
2.18 Sources of US economic growth, 1995–2012
2.19 Contribution of industry groups to productivity growth, 2012–2022
2.20 Range of labor productivity projections, 2012–2022
2.21 Range of US potential output projections, 2012–2022
3.1 Japan’s real GDP, potential GDP, and inflation rate (%), 1980Q1–2014Q4
3.2 Japan’s savings–investment balance: relative to nominal GDP (four-quarter moving average)
3.3 The relationship between per capita gross prefectural product and social capital stock per man-hour labor input, 2008
3.4 Household and corporate saving relative to nominal GDP (%)
3.5 Decomposition of Japan’s GDP growth (annual rate, %)
3.6a Japan’s capital coefficient and return on capital
3.6b US capital coefficient and return on capital
3.7 Decomposition of Japan’s man-hour growth (annual rate, %)
3.8 Average working hours of employees
3.9 Decomposition of growth in the labor quality index by employment status
3.12 ICT investment–GDP ratio in major developed economies: distribution services
3.13 ICT investment–GDP ratio in major developed economies: total manufacturing, excluding electrical machinery
List of figures

4.1 Level of ICT capital stock per unit of output, in 2014 US$ (PPP-converted) 130
4.2a Investment intensity of intangible assets as a % of value added in the market sector, 1995–2010 (EU-15) 136
4.2b Investment intensity of intangible assets as a % of value added in the market sector, 1995–2010 (US) 137
5.1 Growth rate of value added, employment, hours worked, labor productivity, and GFCF, 1990–2010 (%) 171
5.2 Investment effort (GFCF/VA), 1990–2010 (%) 174
5.3 Investment effort in ICT (GFCF/VA), 1990–2010 (%) 176
5.4 Value added growth determinants, 1990–2010 (% and contribution to growth) 180
6.1 Total factor productivity index by industry group 214
6.2 Index of aggregate total factor productivity in China 217
7.1 Contribution of factor inputs and total factor productivity growth to GDP growth, 1980–2011 252
7.2 Decomposition of output growth into contribution from factor inputs and TFP growth, twenty-six industries, 1980–2011 260
7.3 Harberger diagrams of aggregate total factor productivity growth in the Indian economy 264
7.4 Productivity performance and policy regimes: 1990s versus 2000s 268
8.2 Alternative investment deflators 297
8.3 MFP Harberger diagrams for multi-factor productivity growth, 1995–2012 308
9.1 Intangible investments (chain linked volumes): compounded average rates of growth, 1995–2010 327
9.2 ICT, R&D and nonR&D investment intensity in the EU 328
9.3 Complementary assets, innovation, and productivity growth 334
9.4 ICT versus intangible nonR&D, and R&D capital stocks 337
9.5 Marginal effect of intangible capital assets on productivity growth 342
10.1a Intangible investment by industry and component in Japan, 2010 355
10.1b Intangible investment by industry and component in Korea, 2010 355
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2a</td>
<td>Ratio of intangible investment to GVA by industry in Japan, 2010</td>
<td>357</td>
</tr>
<tr>
<td>10.2b</td>
<td>Ratio of intangible investment to GVA by industry in Korea, 2010</td>
<td>357</td>
</tr>
<tr>
<td>10.3a</td>
<td>The composition of capital assets by industry in Japan, 2010</td>
<td>359</td>
</tr>
<tr>
<td>10.3b</td>
<td>The composition of capital assets by industry in Korea, 2010</td>
<td>360</td>
</tr>
<tr>
<td>10.4a</td>
<td>The correlation between ICT and R&D in Japan</td>
<td>366</td>
</tr>
<tr>
<td>10.4b</td>
<td>The correlation between ICT and R&D in Korea</td>
<td>367</td>
</tr>
<tr>
<td>10.5a</td>
<td>The correlation between ICT and non-R&D in Japan</td>
<td>368</td>
</tr>
<tr>
<td>10.5b</td>
<td>The correlation between ICT and non-R&D in Korea</td>
<td>368</td>
</tr>
<tr>
<td>10.6a</td>
<td>Cross-sectional correlations between ICT and R&D in Japan</td>
<td>369</td>
</tr>
<tr>
<td>10.6b</td>
<td>Cross-sectional correlations between ICT and R&D in Korea</td>
<td>369</td>
</tr>
<tr>
<td>10.7a</td>
<td>Cross-sectional correlations between ICT and non-R&D in Japan</td>
<td>370</td>
</tr>
<tr>
<td>10.7b</td>
<td>Cross-sectional correlations between ICT and non-R&D in Korea</td>
<td>370</td>
</tr>
<tr>
<td>11.1</td>
<td>Integrated industry MFP growth, 1998–2012</td>
<td>394</td>
</tr>
<tr>
<td>11.7</td>
<td>Contribution to aggregate labor contribution, 2009–2012 less 1998–2007</td>
<td>420</td>
</tr>
<tr>
<td>12.1</td>
<td>Inputs, outputs and outcomes of education sector</td>
<td>432</td>
</tr>
<tr>
<td>12.2</td>
<td>Classification of measuring methodologies</td>
<td>435</td>
</tr>
<tr>
<td>12.3</td>
<td>Contributions to full gross private domestic product and economic growth without human capital</td>
<td>443</td>
</tr>
<tr>
<td>12.4</td>
<td>Contributions to full gross private domestic product and economic growth with human capital</td>
<td>444</td>
</tr>
</tbody>
</table>
List of figures

12.5 Human capital per capita 2006 compared with average education attainment 2005 and World Bank intangible capital per capita 2005 457
13.1 PPPs for output and KLEMS during, 1955–2012 483
13.2 Industry-level PLIs for GDP, 2005 485
13.3 Japan–US TFP level indices 488
13.4 Sources of Japan–US gap in labor productivity level index 491
13.5 Sources of Japan–US gap in capital productivity level index 492
13.6 TFP gaps in manufacturing and non-manufacturing, 1955–2012 493
13.7 Industry origins of TFP gap, 2005 494
13.8 Exchange rates to parity of TFP and output prices, 2005 495
13.9 TFP level indices in selected industries, 1955–2012 497
15.1 Stylized representation of an internationally fragmented value chain 538
15.2 An accounting framework for global value chains 540
15.3 Schematic outline of a world input–output table (WIOT) 544
15.4 GVC incomes in advanced and emerging countries, all manufactures, 1995–2011 552
15.5 Regional shares in world GVC income, all manufactures, 1995–2011 (%) 554
Tables

2.1 Labor characteristics by industry, 2010 page 47

4.1 Output, hours, and labor productivity growth, and growth contributions by major input, 1999–2007 and 2008–2014 (log growth) 116

4.2 Output per hour by major sector, 1999–2007 and 2008–2013 (%) 121

4.3 Output, hours and labor productivity growth, and growth contributions by major sector and major input, 1999–2007 and 1999–latest year available (log growth) 122

4.4 Contributions from digitalization to average annual GDP growth for eight major EU economies, 2001–2011 (%) 128

4.5 High skilled employment as a proportion of total employment, aggregate economy (%) 132

4.6 High skilled employment as a proportion of total employment, by major sector (%) 133

Appendix Table 4.1a Output, hours, and labor productivity growth, and growth contributions by major input, 1999–2007 (log growth) 139

Appendix Table 4.1b Output, hours, and labor productivity growth, and growth contributions by major input, 2008–2014 (log growth) 141

Appendix Table 4.2 Output, hours, and labor productivity growth, and growth contributions by major sector and major input, 1999–2007 and 1999–latest year available (log growth) 143

5.1 Industries in LA-KLEMS 163

5.2 Gross fixed capital formation by type of asset 163

5.3 Classification by characteristics 165
List of tables

5.4 GDP per capita and labor productivity in Latin America, 1990–2010 168
5.5 GDP, hours worked, labor productivity, and GFCF: standard deviation of the annual growth rates, 1990–2010 172
5.6 Distribution of GFCF by type of assets, 1990–2010 (%) 175
5.7 Distribution of GFCF by industry, 1990–2010 (%) 177
5.8 Hours worked per year and per worker, 1990–2010 178
5.9 Share of employment by levels of education, 1990–2010 (%) 179
5.10 Value added growth determinants by economic industry, 1990–2010 (% and contribution to growth) 182
5.11 Shift-share decomposition of the compound annual growth rate, 1990–2010 190
Appendix 5.1 Basic table 194

6.1 Decomposition of gross output growth in China by industry group 213
6.2 Growth in aggregate value added and sources of growth in China 216
6.3 Decomposition of aggregate labor productivity growth in China 219
6.4 Domar-weighted TFP growth and reallocation effects in the Chinese economy 220
Appendix Table 6.1 CIP/China KLEMS industrial classification and code 226
Appendix Table 6.2 Industry contributions to value added and total factor productivity growth 228
7.1 Growth rates of GDP and labor productivity in the Indian economy – pre- and post-1980s 238
7.2 Gross value added and employment shares in GDP, 1980–2011 (%) 241
7.3 Sectoral contribution to aggregate total factor productivity 258
7.4 Sectoral total factor productivity using value added function and value added/output ratio 261
7.5 Pattern of aggregate economy TFP growth, 1981–2011 265
Appendix Table 7.1 Classification of industries 275
8.1 Value added decomposition for market economy growth, 1995–2012 299
8.2 Sectoral shares of value added and contribution to real growth, 1995–2012 (%) 303
List of tables

8.3 Average annual growth rates of inputs and MFP during, 1995–2012 305
Appendix Table 8.1 List of sectors and industries 312
9.1 Sources of industry labor productivity growth 329
9.3 Augmented production function (dependent variable: Δln(Q/H)_{i,c,t} 340
10.1 Traditional growth accounting in Japan and Korea (%) 348
10.2 Comparison of intangible investment/gross output ratio (%) 358
10.3 Growth accounting with intangibles (%) 363
10.4 International comparison of labor productivity growth, 1995–2007 (%) 365
10.5 Correlations between ICT and intangibles 367
Appendix Table 10.1 Industry classification of the paper 373
11.1 Sources of industry output growth, 1998–2012 390
11.2 Sources of capital contribution, 1998–2012 396
11.3 Sources of labor contribution, 1998–2012 402
11.4 Growth in aggregate value added and the sources of growth 409
11.5 Sector sources of value added growth 411
11.6 Sector sources of aggregate integrated MFP growth 412
11.7 Sector sources of aggregate integrated MFP growth 414
11.8 Contributions to aggregate value added growth 415
Appendix Table 11.1 Multi-factor productivity growth: comparison between official measures and integrated production account measures, 1998–2012 424
12.1 An overview of selected national studies applying income-based approach 439
12.4 Country measures and the associated correlations based on different approaches 455
13.1 PPPs and price level indices for output and KLEMS 482
13.2 Volume level indices of output, inputs and productivity 486
13.3 Growth in aggregate value added and its sources 489
14.1 Productivity dispersion by main sectors, 1995 and 2011 521
List of tables

14.2 Potential determinants of productivity growth and determinants 525
14.3 Explaining productivity growth and convergence – regression results 527
15.1 Value added shares in final output of automotives from Germany (%) 541
15.2 Regional value added distribution of final output of manufactures by country-of-completion 548
15.3 Country GVC income in production of manufactures (% of world) 553
15.4 Sectoral shares in total GVC income, all manufactures (% of total) 556
15.5 GVC income by production factor and region (shares in world GVC income) 559
Contributors

Suresh Aggarwal, Professor, Department of Business Economics, University of Delhi, South Campus, India

Claudio Aravena, Researcher, Economic Commission for Latin American and the Caribbean (ECLAC) in Santiago, Chile; Professor, USACH University, Santiago, Chile

Hyunbae Chun, Professor, Department of Economics, Sogang University

Carol Corrado, Senior Advisor and Research Director, Economics Program, The Conference Board; Senior Policy Scholar, Georgetown University Center for Business and Public Policy

Deb Kusum Das, Associate Professor, Ramjas College, University of Delhi

Juan Fernández de Guevara, Lecturer of Economic Analysis, Universitat de València; Associate Researcher, Ivie

Gaaitzen J. de Vries, Assistant Professor, Groningen Growth and Development Centre, Faculty of Economics and Business, University of Groningen

Abdul A. Erumban, Senior Economist, The Conference Board; Assistant Professor, Faculty of Economics and Business, University of Groningen

Barbara M. Fraumeni, Special-term Professor, Central University for Finance and Economics; Professor of Public Policy Emerita, University of Southern Maine; National Bureau of Economic Research

Kyoji Fukao, Professor, Institute of Economic Research, Hitotsubashi University; Faculty Fellow, Research Institute of Economy, Trade and Industry

Jonathan Haskel, Professor of Economics, Imperial College Business School; Research Fellow, Centre for Economic Policy Research; Research Fellow, Institute for the Study of Labor, Bonn

Mun S. Ho, Visiting Scholar, Resources for the Future
List of contributors

André Hofman, Director, Professor, UAB and USACH in Santiago, Chile
Kenta Ikeuchi, Research Fellow, First Theory-Oriented Research Group, National Institute of Science and Technology Policy
Robert Inklaar, Associate Professor of Economics, University of Groningen
Cecilia Jona-Lasinio, Senior Researcher, Econometric Studies and Economic Forecasting Division, Italian Statistical Institute; Associate Professor, LUISS Guido Carli University
Dale W. Jorgenson, Samuel W. Morris University Professor, Harvard University
YoungGak Kim, Associate Professor, School of Economics, Senshu University
HyeogUg Kwon, Professor, Nihon University College of Economics; Faculty Fellow, Research Institute of Economy, Trade and Industry
Gang Liu, Senior Adviser, Statistics Norway
Bart Los, Associate Professor, Groningen Growth and Development Centre, Faculty of Economics and Business, University of Groningen
Tatsuji Makino, Researcher, Institute of Economic Research, Hitotsubashi University
Matilde Mas, Professor of Economic Analysis, Universitat de València; International Projects Director, Ivie
Tsutomu Miyagawa, Professor, Faculty of Economics, Gakushuin University; Faculty Fellow, Research Institute of Economy, Trade and Industry
Koji Nomura, Associate Professor, KEO, Keio University; PDB Project Manager, Asian Productivity Organization
Mary O’Mahony, Professor of Applied Economics, King’s College, London; Visiting Fellow, National Institute of Economic and Social Research
Hak Kil Pyo, Professor of Economics Emeritus, Seoul National University
Matthew Russell, Senior Economist, Federal Aviation Administration, US Department of Transportation
Jon D. Samuels, Research Economist, Industry Economic Accounts, Bureau of Economic Analysis, US Department of Commerce
Sreerupa Sengupta, PhD Student, Centre for Economic Studies and Planning, Jawaharlal Nehru University, India
Erich H. Strassner, Division Chief, Industry Applications Division at Bureau of Economic Analysis, US Department of Commerce
Miho Takizawa, Associate Professor, Faculty of Economics, Toyo University
Marcel P. Timmer, Professor and Director, Groningen Growth and Development Centre, University of Groningen
Konomi Tonogi, Assistant Professor, Faculty of Economics, Kanagawa University
Lisa Usher, Retired Chief, Division of Industry Productivity Studies, Office of Productivity and Technology, Bureau of Labor Statistics, US Department of Labor
Bart van Ark, Professor in Economic Development, Technological Change and Growth, University of Groningen; Chief Economist, The Conference Board
Ilya B. Voskoboynikov, Senior Research Fellow, Laboratory for Research in Inflation and Growth, National Research University Higher School of Economics
Harry X. Wu, Professor of Economics, Institute of Economic Research, Hitotsubashi University