Cambridge University Press 978-1-107-14314-2 — Introduction to Numerical Geodynamic Modelling Taras Gerya Frontmatter <u>More Information</u>

INTRODUCTION TO NUMERICAL GEODYNAMIC MODELLING

This hands-on introduction to numerical geodynamic modelling provides a solid grounding in the necessary mathematical theory and techniques, including continuum mechanics and partial differential equations, before introducing key numerical modelling methods and applications. Fully updated, this second edition includes four completely new chapters covering the most recent advances in modelling inertial processes, seismic cycles and fluidsolid interactions, and the development of adaptive mesh refinement algorithms. Many well-documented, state-of-the-art visco-elasto-plastic 2D models are presented, which allow robust modelling of key geodynamic processes. Requiring only minimal prerequisite mathematical training, and featuring over 60 practical exercises and 90 MATLAB examples, this user-friendly resource encourages experimentation with geodynamic models. It is an ideal introduction for advanced courses and can be used as a self-study aid for graduates seeking to master geodynamic modelling for their own research projects.

TARAS GERYA is Professor in the Department of Earth Sciences at the Swiss Federal Institute of Technology (ETH-Zürich). He is an expert in numerical geodynamic modelling, with his current research focusing on subduction and collision processes, ridge-transform oceanic spreading patterns, intrusion emplacement into the crust, generation of earthquakes, fluid and melt transport in the lithosphere, Precambrian geodynamics, formation of terrestrial planets and evolution of life. In 2008 he was awarded the Golden Owl Prize by ETH students for his teaching on continuum mechanics and numerical modelling.

> "A great introduction to computational geodynamics with vivid examples, hands-on exercises and step-by-step derivations of formulas. Even better than the first edition."

> > - Dr Sascha Brune, GFZ Potsdam

"This book is so much more than an introduction to geodynamic modelling. Taras Gerya opens the world of geodynamic experiments by taking the reader through a carefully designed set of hands-on programming exercises that will convince you that modelling is not terribly complicated, but a process to logically follow through. Go ahead and get started!" – Dr Susanne Buiter, *Geological Survey of Norway*

"This comprehensive textbook challenges all solid Earth scientists to give geodynamic modelling a try in a hands-on, empowering style. The new edition covers even more ground, including cutting-edge topics. A great achievement, and the community will be the better for it." – Professor Thorsten Becker, *University of Texas at Austin*

INTRODUCTION TO NUMERICAL GEODYNAMIC MODELLING

SECOND EDITION

TARAS GERYA Swiss Federal Institute of Technology (ETH), Zürich

Cambridge University Press 978-1-107-14314-2 — Introduction to Numerical Geodynamic Modelling Taras Gerya Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107143142 DOI: 10.1017/9781316534243

© Taras Gerya 2010, 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2010 Second edition 2019

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Gerya, Taras, author.

Title: Introduction to numerical geodynamic modelling / Taras Gerya. Description: Second edition. | Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2018045345 | ISBN 9781107143142 (hardback)

Subjects: LCSH: Geophysics – Mathematical models. | Geodynamics – Mathematical models.

Classification: LCC QE501.4.M38 G47 2019 | DDC 550.1/5118-dc23 LC record available at https://lccn.loc.gov/2018045345

ISBN 978-1-107-14314-2 Hardback

Additional resources for this publication at www.cambridge.org/gerya2e.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface to the second edition		<i>page</i> xi	
Acknowledgements		xii	
	Intr	oduction	1
		What is this book?	1
		What this book is not	1
		Get started	1
		Short history of geodynamics and numerical geodynamic modelling	4
		Few words about programming, visualization and debugging	8
		Units	10
		How to use this book	10
		Programming exercises	11
1.	The co	ontinuity equation	12
	1.1	Continuum – what is it?	12
	1.2	Continuity equation	14
	1.3	Eulerian and Lagrangian points – what is the difference?	15
	1.4	Derivation of the Eulerian continuity equation	16
	1.5	Derivation of the Lagrangian continuity equation	19
	1.6	Comparing Eulerian and Lagrangian continuity equations:	
		advective transport term	21
	1.7	Incompressible continuity equation	24
		Analytical exercise	24
		Programming exercise	25
2.	Dens	ity and gravity	26
	2.1	Density of rocks and minerals: equations of state	26
	2.2	Gravity and gravitational potential	31
		Analytical exercise	36
		Programming exercises	36
3.	Num	erical solutions of partial differential equations	38
	3.1	Finite difference method	38

v

vi	Contents			
	3.2 3.3	Solving linear equations Geometrical and global indexing of unknowns	43 47	
		Programming exercises	48	
4.	Stres	s and strain	50	
	4.1	Stress	50	
	4.2	Strain and strain rate	55	
		Analytical exercise	59	
		Programming exercise	59	
5.	The 1	nomentum equation	60	
	5.1	Momentum equation	60	
	5.2	Newtonian law of viscous friction	63	
	5.3	Navier–Stokes equation	64	
	5.4	Poisson equation	67	
	5.5	Stream function approach	69	
		Analytical exercise	71	
		Programming exercise	/1	
6.	Visco	ous rheology of rocks	73	
	6.1	Rock rheology	73	
	6.2	Effective viscosity	74	
	6.3	Non-Newtonian channel flow	79	
		Programming exercise	80	
7.	Num	erical solutions of the momentum and continuity equations	82	
	7.1	Grids	82	
	7.2	Discretization of the equations	85	
	7.3	Conservative finite differences	86	
	7.4	Boundary conditions	91	
	7.5	Indexing of unknowns	94	
		Programming exercises	100	
8.	The a	advection equation and marker-in-cell method	105	
	8.1	Advection equation	105	
	8.2	Eulerian advection methods	106	
	8.3	Marker-in-cell techniques	112	
	8.4	Marker advection schemes	114	
	8.5	Interpolation of physical parameters between markers and nodes	116	
	8.6	Continuity-based velocity interpolation	120	
	8.7	Sticky air' approach	121	
		Programming exercises	124	
9.	The l	neat conservation equation	128	
	9.1	Fourier's law of heat conduction	128	

Contents		vii	
	9.2	Heat conservation equation	129
	9.3	Heat generation and consumption	132
	9.4	Simplified temperature equations	133
	9.5	Heat diffusion time scales	135
		Analytical exercises	136
		Programming exercise	136
10.	Num	erical solution of the heat conservation equation	139
	10.1	Explicit and implicit formulation of the temperature equation	139
	10.2	Conservative finite differences	142
	10.3	Advection of temperature with Eulerian methods	146
	10.4	Advection of temperature with markers	148
	10.5	Thermal boundary conditions	151
		Programming exercises	154
11.	2D tl	nermomechanical code structure	156
	11.1	What do we expect from geodynamic codes?	156
	11.2	Thermomechanical code structure	157
	11.3	Adding self-gravity and free planetary surface	165
		Programming exercises	169
12.	Elast	icity and plasticity	171
	12.1	Why should we care about elasticity and plasticity?	171
	12.2	Elastic rheology	171
	12.3	Rotation of elastic stresses	174
	12.4	Maxwell visco-elastic rheology	180
	12.5	Plastic rheology	181
	12.6	Visco-elasto-plastic rheology	184
		Analytical exercise	185
		Programming exercises	185
13.	2D ii	nplementation of visco-elasto-plasticity	188
	13.1	Viscous-like reformulation of visco-elasto-plasticity	188
	13.2	Structure of visco-elasto-plastic thermomechanical code	189
	13.3	Visco-elasto-plastic iterations	198
	13.4	Visco-plastic rheology	204
		Programming exercises	206
14.	2D tl	nermomechanical modelling of inertial processes	209
	14.1	Why is it important to consider inertia?	209
	14.2	Reformulation of governing equations	209
	14.3	Structure of visco-elasto-plastic thermomechanical code with inertia	211
	14.4	Using the code with and without inertia	221
		Programming exercises	221

viii

15.	Seisn	no-thermomechanical modelling	224
	15.1	What is seismo-thermomechanical modelling?	224
	15.2	Numerical modelling of earthquakes	224
	15.3	Rate-dependent friction	226
	15.4	Rate- and state-dependent friction	227
	15.5	Regularized rate- and state-dependent friction	228
	15.6	Invariant reformulation of regularized rate and state-dependent friction	229
	15.7	Adaptive time stepping	231
	15.8	Visco-elasto-plastic iterations with rate- and state-dependent friction	232
	15.9	Structure of seismo-thermomechanical code	234
	15.10	Transition from thermomechanical to seismo-thermomechanical calculations	236
	15 11	Dependence of seismo_thermomechanical calculations on the grid sten	236
	13.11	Programming exercise	230
16.	Hydr	o-thermomechanical modelling	240
	16.1	What is hydro-thermomechanical modelling?	240
	16.2	Fluid percolation processes and the Darcy law	241
	16.3	Derivation of mass and momentum conservation equations	243
	16.4	Energy conservation equation	251
	16.5	Influence of porosity and fluid pressure on material properties	253
	16.6	Simplified conservation equations	255
	16.7	Structure of hydro-thermomechanical code	258
	16.8	Discretization of the conservation equations	259
	16.9	Computing the mass transfer rate	264
	16.10	Toy thermodynamic model of mantle melting	266
	16.11	Toy thermodynamic model of rocks hydration/dehydration	271
		Programming exercises	275
17.	Adap	tive mesh refinement	277
	17.1	What is AMR?	277
	17.2	'Swiss cross' grid refinement	278
	17.3	Block-structured grid refinement	279
	17.4	Indexing of unknowns and connectivity within the block-structured grid	286
	17.5	Block-structured grid refinement and quad trees	288
	17.6	Interpolation between marker and nodes	288
	17.7	Convergence properties of AMR	289
		Programming exercises	290
18.	The 1	nultigrid method	292
	18.1	Multigrid – what is it?	292
	18.2	Solving the Poisson equation with multigrid	301

Contents

		Contents	ix
	18.3	Solving Stokes and continuity equations with multigrid	304
		Programming exercises	317
19.	Prog	ramming of 3D problems	319
	19.1	Why not simply always 3D?	319
	19.2	3D staggered grid and discretization of momentum, continuity,	
		temperature and Poisson equations	320
	19.3	Solving discretized 3D equations	329
		Programming exercises	339
20.	Num	erical benchmarks	340
	20.1	Code benchmarking: why should we spend time on it?	340
	20.2	Test 1: Rayleigh-Taylor instability benchmark	341
	20.3	Test 2: falling block benchmark	343
	20.4	Test 3: channel flow with a non-Newtonian rheology	345
	20.5	Test 4: non-steady-state temperature distribution in a Newtonian channel	347
	20.6	Test 5: Couette flow with shear heating	349
	20.7	Test 6: advection of sharp temperature fronts	353
	20.8	Test 7: channel flow with variable thermal conductivity	353
	20.9	Test 8: thermal convection with constant and variable viscosity	355
	20.10	Test 9: stress buildup in a visco-elastic Maxwell body	357
	20.11	Test 10: recovery of the original shape of an elastic slab	359
	20.12	Test 12 have been belt have been been been been been been been be	361
	20.13	lest 12: bouncing ball benchmark	365
	20.14	Possible luriner benchmarks	300 266
	20.13	Programming everyises	300
		r togramming exercises	307
21.	Desig	gn of 2D numerical geodynamic models	369
	21.1	Warning message!	369
	21.2	What is numerical modelling all about?	369
	21.3	Material properties	370
	21.4	Visco-elasto-plastic slab bending	3/1
	21.5	Lithearhoric subduction	3/6
	21.0	Continental collicien	202
	21.7	Slab brackoff	382 387
	21.0	Intrusion emplacement into the crust	30/
	21.9	Mantle convection with phase changes	306
	21.10	Deformation of a self-gravitating planetary hody	402
		Programming exercise	405
			100

Cambridge University Press 978-1-107-14314-2 — Introduction to Numerical Geodynamic Modelling Taras Gerya Frontmatter <u>More Information</u>

Х	Contents	
Outloc	ok	406
V	Where are we now?	406
V	Where to go next?	406
S	State of the art overview	410
E	Efficient direct solvers	411
Р	Parallelization of numerical codes	412
A	Adaptive mesh refinement algorithms	413
F	Future numerical geodynamic modelling research directions	414
3	BD visualization challenges	423
C	Conceptual warning	423
C	Conclusion	424
Appendix		425
References		438
Index		465

Preface to the second edition

The main reason for writing this second edition is the rapid recent progress in the field of numerical geodynamic modelling, which is one of the most dynamic and fast growing fields of the modern Earth sciences. Since the publication of the first edition in 2010 (almost a decade ago ...), several important research directions have become very prominent and advanced in computational geodynamics, such as investigation of coupled solid-fluid processes, coupling of geodynamic evolution to surface processes, modelling of seismic cycles at plate boundaries, development of adaptive grid refinement methods and free surface stabilization approaches, elaboration of more accurate continuity-based Lagrangian advection algorithms, development and broad application of new efficient 3D visco-elasto-plastic highly parallelized numerical modelling tools etc. In order to account for some of these exciting novelties, I both significantly revised some of the previously published chapters (especially numerical modelling of advection processes in Chapter 8 and numerical treatment of visco-elasto-plastic materials in Chapters 12 and 13) and added four new chapters focusing on recent numerical advances in

- modelling of inertial processes (Chapter 14),
- modelling of seismic cycles (Chapter 15),
- modelling of coupled fluid-solid processes (Chapter 16) and
- development of adaptive mesh refinement algorithms (Chapter 17).

As in the first edition, a single relatively simple numerical modelling method (combination of staggered finite differences with marker-in-cell techniques, SFD+MIC) and MATLAB programming are used uniformly throughout this textbook. I hope you will enjoy this new edition!

Acknowledgements

In relation to the first and second editions of this book I would like to acknowledge many people and I will try to do this in chronological order. I am grateful to my wife Irina for inspiration and support. I am grateful to my first supervisor Alexander Nozhkin for giving me a chance to start my scientific career in 1984. I am grateful to my PhD supervisor and good friend Leonid Perchuk (1933-2009) for suggesting that I start with numerical modelling in 1995 (a long time ago, indeed, but I feel like it was yesterday). I am grateful to Alexander Simakin for explaining to me in a few words what numerical modelling is about, when I had just started to learn it and was really puzzled what to do with all these partial differential equations written in textbooks (he told me that I simply have to compose and solve together as many linear equations as I have unknowns and this is really the main idea behind numerical modelling). I am grateful to Roberto Weinberg and Harro Schmeling for their excellent paper on polydiapirs, published in 1992, which introduced me to the marker-in-cell techniques when I had just started. I am grateful to Alexey Polyakov for suggesting that I use upwind differences for solving the temperature equation when I was programming my first themomechanical code. I am grateful to Walter Maresch and Bernhard Stöckhert for cooperating with me on modelling of subduction processes, which is a challenging topic and stimulated a lot of my code developments. I am grateful to David Yuen – my co-author in many important numerical modelling papers – for our long-term joint work and friendship (after we met in 2001 at the AGU Fall meeting in San Francisco) and for many great suggestions concerning this book. I am grateful to Paul Tackley for telling me about the fully staggered grid in 2002 (I was using a half-staggered grid before that time) and for introducing me to multigrid in 2005 as well as for many years of our joint studies and good suggestions concerning this book. I am grateful to Jean-Pierre Burg for inviting me to ETH-Zürich and cooperating with me on challenging modelling projects (which again triggered many code developments) and for being a very careful and constructive first reader of the initial version of this book. I am grateful to Yuriy Podladchikov for many stimulating discussions, continuous healthy criticism and challenging suggestions (for example, adding elasticity and plasticity to my codes that 'spoiled' six months of my life in 2004). I am grateful to Boris Kaus for arguing and discussing numerics with me, which we both like, and for great detailed comments and suggestions on the initial version of this book. I am grateful to James Connolly for fruitful work on coupling of

Cambridge University Press 978-1-107-14314-2 — Introduction to Numerical Geodynamic Modelling Taras Gerya Frontmatter <u>More Information</u>

Acknowledgements

xiii

thermodynamics and phase petrology with thermomechanical experiments (what I call petrological-thermomechanical numerical modelling). I am very grateful to David May for creative checking of both the first and the second editions of this textbook and for giving many good hints about the content. I am grateful to my colleague and friend Evgenii Burov (1963–2015) for our great cooperation in the field of high-resolution 3D numerical geodynamic modelling, which unfortunately stopped very sadly in 2015. I am very grateful to Viktoriya Yarushina for her invaluable help with the chapter on solid-fluid coupling and to Anton Popov for the generous sharing of his new 3D elastic stress rotation algorithms. I am grateful to Tobias Keller for his detailed and insightful comments on the hydrothermomechanical modelling chapter. I am grateful to Alexey Perchuk for our long-term friendship, exciting discussions and fruitful cooperation in the field of petrology and geodynamic modelling. I am grateful to my son Bogdan for computer and graphic assistance, to my parents Lyudmila and Viktor (1927-2015), my brother Artem and my entire family for moral support. I am grateful to all my students and co-authors for their bright ideas and great work done together. Finally, I am grateful for the generous support of my numerical modelling projects by Alexander von Humboldt foundation research fellowships and by many ETH, SNF and EU research grants.