Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 Thermo-Poromechanics: Applications and Developments 1

1.1 Nuclear Waste Management | 4 |
1.2 Geologic Sequestration of Greenhouse Gases | 9 |
1.3 Geothermal Energy Extraction | 12 |
1.4 Frictional Heating During Fault Movement | 16 |
1.5 Freezing Action in Soils | 18 |
1.6 Glacial Loading of Sparsely Fractured Rocks | 19 |
References | 20 |

2 Constitutive Relationships Governing Thermo-Poroeastic Processes 45

2.1 Isotropic Response of the Thermo-Poroeastic Body | 46 |
2.2 Equations Governing Multi-Dimensional Response of Poroelastic Medium | 51 |
References | 58 |

3 One-Dimensional Problems Involving Thermo-Poroeastic Processes 60

3.1 Axial Loading and Boundary Heating of One-Dimensional Element | 61 |
3.2 Thermoelastic Problem: Formulation | 63 |
3.3 Hydro-Mechanical Problem | 65 |
3.4 Hydro-Mechanical Problem: Effect of Solid-Phase and Fluid-Phase Compressibility | 68 |
3.5 Thermo-Hydro-Mechanical Problem: Formulation | 71 |

vii
Contents

3.6 Thermo-Hydro-Mechanical Problem: Effect of Solid-Phase and Fluid-Phase Compressibility 76
3.7 Thermo-Hydro-Mechanical Problem: Numerical Results 79
3.8 Thermo-Hydro-Mechanical Problem: Computational Estimates 82
References 90

4 Thermo-Poroelasticity of Geomaterial With a Fluid-Filled Rigid One-Dimensional Cavity 93
4.1 Problem of Fluid-Filled Rigid One-Dimensional Cavity: Formulation and Solution 93
4.2 Computational Results for Fluid-Filled Rigid One-Dimensional Cavity Problem 104
References 109

5 Radially Symmetric Thermo-Poroelasticity Problems for a Solid Cylinder 111
5.1 Thermal Loading of a Poroelastic Cylinder Under Constant Axial Strain 112
 5.1.1 Thermal Loading Problem With Non-Zero Initial Temperature 120
 5.1.2 Mechanical Loading Problem With Applied Radial Stress 122
 5.1.3 Mechanical Loading Problem With Prescribed Non-Zero Axial Strain 122
5.2 Numerical Results for a Poroelastic Cylinder Under Zero Axial Strain 122
5.3 Thermal Loading of a Poroelastic Cylinder Under Constant Axial Stress 129
 5.3.1 Thermal Loading Problem With Non-Zero Initial Temperature 134
 5.3.2 Mechanical Loading Problem With Applied Radial Stress 136
 5.3.3 Mechanical Loading Problem With Prescribed Non-Zero Average Axial Stress 136
References 136

6 Radially Symmetric Thermo-Poroelasticity Problems: Cylindrical Cavity in an Infinite Medium 138
6.1 Thermo-Poroelasticity of a Geomaterial With a Fluid-Filled Cylindrical Cavity 138
Contents

6.2 Computational Results for the Fluid-Filled Cylindrical Cavity Problem 149
References 157

7 Spherically Symmetric Thermo-Poroelasticity Problems for a Solid Sphere 159
7.1 Boundary Heating of a Poroelastic Sphere 160
 7.1.1 Thermal Loading Problem With Non-Zero Initial Temperature 167
 7.1.2 Mechanical Loading Problem With Applied Radial Stress 169
7.2 Computational Results for Boundary Heating of a Poroelastic Sphere 169
References 176

8 Spherically Symmetric Thermo-Poroelasticity Problems: Spherical Cavity in an Infinite Medium 178
8.1 Thermo-Poroelasticity of the Geomaterial With a Fluid-Filled Spherical Cavity 179
8.2 Computational Results for the Fluid-Filled Spherical Cavity Problem 189
References 196

9 Glaciation Problems Involving Thermo-Poroelastic Processes 198
9.1 Introduction 198
9.2 Governing Equations 202
 9.2.1 Constitutive Models 202
 9.2.2 Initial Boundary Value Problem 204
9.3 Finite Element Modeling 206
 9.3.1 Model Geometry 206
 9.3.2 Mesh Generation 208
 9.3.3 Glacial Loading 209
 9.3.4 Finite Element Solver 212
 9.3.5 Material Properties 213
9.4 Model Performance 213
 9.4.1 Mesh Refinement Evaluation for Homogeneous Rock 214
 9.4.2 Mesh Refinement Evaluation for the Hydraulic Problem 214
Contents

9.5 Numerical Example 216
9.5.1 Solution of HM Problem for “Custom” Mesh 216
9.5.2 Solution of THM Problem for “Custom” Mesh 226
9.6 Concluding Remarks 230
References 233

Appendix 240
Index 242