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1 Linear and Nonlinear Circuits

This chapter has a two-fold objective. First, it introduces the nomenclature that will be

used throughout the book. Second, it presents the basic mathematical theory necessary

to describe nonlinear systems, which will help the reader to understand their rich set of

behaviors. This will clarify several important distinctions between linear and nonlinear

circuits and their mathematical representations.

We shall start with a brief review of linearity and linear systems, their main properties

and underlying assumptions. A reader familiarized with the linear system realm can

understand the limitations of the theoretical abstraction framed in the linearity math-

ematical concept, realizing its validity borders and so be prepared to cross them, i.e., to

enter the natural world of nonlinearity. We will then introduce nonlinear systems and

the responses that we should expect from them. After this, we will study one static, or

memoryless, nonlinearity and a dynamic one, i.e., one that exhibits memory. This will

then establish the foundations of nonlinear static and dynamic models and their basic

extraction procedures.

The chapter is presented as follows: Section 1.1 is devoted to nomenclature and

Section 1.2 reviews linear system theory. Sections 1.3 and 1.4 illustrate the types of

behaviors found in general nonlinear systems and, in particular, in nonlinear RF and

microwave circuits. Then, Sections 1.5 and 1.6 present the theory of nonlinear static

and dynamic systems that will be useful to understand the nonlinear circuit simula-

tion algorithms treated in Chapter 2 and the device modeling techniques of Chapters

3–6. Mathematics of nonlinear systems, and in particular dynamic ones, is not easy

or trivial. So, we urge you to not feel discouraged if you do not understand it after

your first read. What you will find in the next chapters will certainly help provide a

physical meaning and practical usefulness to most of these sometimes abstract

mathematical formulations. Finally, Section 1.7 closes this chapter with a brief

conclusion.

1.1 Basic Definitions

We will frequently use the notion of model and system, so it is convenient to first

identify these concepts.

1

www.cambridge.org/9781107140592
www.cambridge.org


Cambridge University Press
978-1-107-14059-2 — Nonlinear Circuit Simulation and Modeling
José Carlos Pedro , David E. Root , Jianjun Xu , Luís Cótimos Nunes  
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1.1 Model

A model is a mathematical description, or representation, of a set of particular features

of a physical entity that combines the observable (i.e., measurable) magnitudes and our

previous knowledge about that entity. Models enable the simulation of a physical entity

and so allow a better understanding of its observed behavior and provide predictions of

behaviors not yet observed. As models are simplifications of the physically observable,

they are, by definition, an approximation and restricted to represent a subset of all

possible behaviors of the physical device.

1.1.2 System

As depicted in Figure 1.1, a system is a model of a machine or mechanism that

transforms an input (excitation, or stimulus, usually assumed as a function of time),

x(t), into an output (or response, also varying in time), y(t). Mathematically, it is defined

as the following operator: y(t) = S[x(t)], in which x(t) and y(t) are, themselves, math-

ematical representations of the input and output measurable signals, respectively. Please

note that, contrary to ordinary mathematical functions, which operate on numbers (i.e.,

that for a given input number, x, they respond with an output number, y = f(x)),

mathematical operators map functions, such as x(t), onto other functions, y(t). So, they

are also known as mathematical function maps. And, similar to what is required for

functions, a particular input must be mapped onto a particular, unique, output.

When the operator is such that its response at a particular instant of time, y(t0), is only

dependent on that particular input instant, x(t0), i.e., the system transforms each input

value onto the corresponding output value, the operator is reduced to a function and the

system is said to be static or memoryless. When, on the other hand, the system output

cannot be uniquely determined from the instantaneous input only but depends on x(t0) and

its x(t) past and future values, x(t� τ), i.e., the system is now an operator of the whole x(t)

onto y(t), we say that the system is dynamic or that it exhibits memory. (In practice, real

systems cannot depend on future values because they must be causal.) For example,

resistive networks are static systems, whereas networks that include energy storage

elements (memory), such as capacitors, inductors or transmission lines, are dynamic.

Defined thisway, this notion of a system can be used as a representation, ormodel, of any

physical device, which can either be an individual component, a circuit or a set of circuit

blocks. An interesting feature of this definition is that a system is nestable, i.e., it is such that

a block (circuit) made of interconnected individual systems (circuit elements or compon-

ents) can still be treated as a system. So, we will use this concept of system whenever we

want to refer to the properties that we normally observe in components or circuits.

Figure 1.1 Illustration of the system concept.
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1.1.3 Time Invariance

Although the system response, y(t), varies in time, that does not necessarily mean that

the system varies in time. The change in time of the response can be only a direct

consequence of the input variation with time. This time-invariance of the operator is

expressed by stating that the system reacts exactly in the same way regardless at which

time it is subjected to the same input. That is, if the response to x(t) is y(t) = S[x(t)], and

another test is made after a certain amount of time, τ, then the response will be exactly

the same as before, except that now it will be naturally delayed by that same amount of

time y(t � τ) = S[x(t� τ)]. This defines a time-invariant system. If, on the other hand,

y(t� τ) 6¼ S[x(t� τ)], then the system is said to be time-variant.

The vast majority of physical systems, and thus of electronic circuits, are time-

invariant. Therefore, we will assume that all systems referred to in this and succeeding

chapters are time-invariant unless otherwise explicitly stated.

After finalizing the study of this chapter, the reader may try Exercise 1.5 which

constitutes a good example of how we can make use of this time-variance property for

enabling us to treat, as a much simpler linear time-variant system, a modulator that is

inherently nonlinear and time-invariant.

1.2 Linearity and the Separation of Effects

Now we will define a linear system as one that obeys superposition and recall how we

use this property to determine the response of a linear system to a general excitation.

1.2.1 Superposition

A system is said to be linear if it obeys the principle of superposition, i.e., if it shares the

properties of additivity and homogeneity.

The additivity property means that if y1(t) is the system response to x1(t), y1(t) =

S[x1(t)], y2(t) is the system’s response to x2(t), y2(t) = S[x2(t)], and yT(t) is the response to

x1(t) + x2(t), then

yT tð Þ ¼ S x1 tð Þ þ x2 tð Þ½ � ¼ S x1 tð Þ½ � þ S x2 tð Þ½ � ¼ y1 tð Þ þ y2 tð Þ (1.1)

The additivity property is the mathematical statement that affirms that a linear system

reacts to an additive composition of stimuli as an additive composition of responses, as

if the system could distinguish each of the stimuli and treat them separately. In practical

terms, this would mean that, if, in the lab, the result of an experiment with a cause x1(t)

would produce an effect y1(t), and another, independent, experiment, on another cause

x2(t), would produce y2(t), then, a third experiment, now made on a third stimulus

x1(t) + x2(t), would produce a response that is the numerical summation of the two

previously obtained effects y1(t) + y2(t).

On the other hand, the homogeneity property means that if α is a constant, then the

response to αx(t) will be αy(t), i.e.,
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S αx tð Þ½ � ¼ αS x tð Þ½ � ¼ αy tð Þ (1.2)

The homogeneity property is the mathematical description of proportionality that says

that an α times larger cause produces an α times larger effect. However, it does not

necessarily state that the effects are proportional to their corresponding causes. For

example, although the current and the voltage in a constant (linear) capacitance obey the

homogeneity principle, they are not proportional to each other. In fact, since the current

in a capacitor is given by (1.3), the current to a twice as large vc(t) will be twice as large

as ic(t). However, that does not mean that ic(t) is proportional to vc(t), as can be readily

noticed when vc(t) is a ramp in time and ic(t) is a constant.

ic tð Þ ¼ C
dvc tð Þ

dt
(1.3)

In summary, linear systems obey the principle of superposition,

S α1x1 tð Þ þ α2x2 tð Þ½ � ¼ S α1x1 tð Þ½ � þ S α2x2 tð Þ½ � ¼ α1S x1 tð Þ½ � þ α2S x2 tð Þ½ �
¼ α1y1 tð Þ þ α2y2 tð Þ

(1.4)

1.2.2 Response of a Linear System to a General Excitation

Superposition has very useful consequences that we now briefly review. They all

revolve around that idea of the separation of effects, whereby we can expand any

previously untested stimulus into a summation of previously tested excitations, making

general predictions about the system responses.

1.2.2.1 Linear Response in the Time Domain

In the time domain, this means that, if we represent any input, x(t), as composed of

the succession of its time samples, taken at regular intervals, Ts, of a constant

sampling frequency fs = 1/Ts, so that they asymptotically produce the same effect

of x(t), x(nTs)Ts,

x tð Þ �
X

N

n¼�N

x nTsð ÞTsδ t � nT sð Þ (1.5)

in which δ t � nTsð Þ is the Dirac delta, or impulse, function centered at nTs, where n is

the number of samples, (see Figure 1.2(a)), and we know the response of the system to

one of these impulse functions of unity amplitude, h tð Þ ¼ S δ tð Þ½ � (see Figure 1.2(b)),

then we can readily predict the response to any arbitrary input x(t) as

y tð Þ � S x tð Þ½ � � S
X

N

n¼�N

x nT sð ÞT sδ t � nT sð Þ

" #

¼
X

N

n¼�N

S x nT sð ÞT sδ t � nTsð Þ½ �

ð1:6Þ
¼

X

N

n¼�N

x nTsð ÞTsS δ t � nTsð Þ½ � ¼
X

N

n¼�N

x nTsð Þh t � nT sð ÞT s
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by simply making use of the additivity and homogeneity properties (as shown in

Figure 1.2(c)). Expression (1.6) is exact in the limit when the sampling interval, Ts,

tends to zero and N tends to infinity, becoming the well-known convolution

integral:

y tð Þ � S x tð Þ½ � ¼

ð

∞

�∞

x τð Þh t � τð Þdτ ¼

ð

∞

�∞

h τð Þx t � τð Þdτ (1.7)

(a)

(b)

(c)

Figure 1.2. Response, y tð Þ, of a linear dynamic and time-invariant system to an arbitrary input, x tð Þ,
when this stimulus is expanded in a summation of Dirac delta functions. (a) Input expansion with

the base of delayed Dirac delta functions x nð Þ ¼ x nT sð Þδ t � nT sð Þ. (b) Impulse response of the

system, h tð Þ ¼ S δ tð Þ½ �. (c) Response of the system to x tð Þ, y tð Þ ¼ S x tð Þ½ �.
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1.2.2.2 Linear Response in the Frequency Domain

So, in time domain, we only needed to know the system response to one input basis

function – the impulse response, h tð Þ ¼ S δ tð Þ½ �, to be able to predict the response to any

other arbitrary input. Similarly, in the frequency domain we only need to know the

response to one input basis function, the cosine, although tested at all frequencies, to

predict the response to any arbitrary periodic input.

Actually, since the cosine can be given as the additive combination of two complex

exponentials

A cos ωtð Þ ¼ A
ejωt þ e�jωt

2
(1.8)

from a mathematical viewpoint, we only need to know the response to that basic

complex exponential. This response can be obtained from (1.7) as

ð

∞

�∞

h τð Þejω t�τð Þdτ ¼ ejωt
ð

∞

�∞

h τð Þe�jωτ dτ ¼ H ωð Þejωt (1.9)

in which H ωð Þ is the Fourier transform of h τð Þ. This is an interesting result that tells us

that the response to an arbitrary x(t) can be easily computed by summing up the Fourier

components of that input scaled by the system’s response to each particular frequency.

Indeed, if R ωð Þ is the frequency-domain Fourier representation of a time-domain signal

r(t), so that

R ωð Þ ¼

ð

∞

�∞

r tð Þe�jωtdt (1.10a)

and

r tð Þ ¼
1

2
pi

ð

∞

�∞

R ωð Þejωtdω (1.10b)

then, the substitution of (1.10) into (1.7) would lead to

Y ωð Þ ¼ H ωð ÞX ωð Þ (1.11)

where Y ωð Þ can be related to y(t) – as X ωð Þ is related to x(t) – by the Fourier transform

of (1.10). This expression tells us the following two important things.

First, the time-domain convolution of (1.7) between the input, x(t), and the impulse

response, h τð Þ, becomes the product of the frequency-domain representation of these

two entities, X ωð Þ and H ωð Þ, respectively.

Second, the response of a linear time-invariant system to a continuous-wave (CW)

signal (an unmodulated carrier of frequency ω, specifically cos ωtð Þ) is another CW

signal of the same frequency with, possibly, different amplitude and phase. Conse-

quently, the response to a signal of complex spectrum will only have frequency-domain
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components at the frequencies already present at the input. A time-invariant linear

system is incapable of generating new frequency components or of performing any

qualitative transformation of the input spectrum.

Finally, equation (1.11) tells us that, in the same way we only needed to know the

system’s impulse response to be able to predict the response to any arbitrary stimulus in

the time domain, we just need to know H(ω) to predict the response to any arbitrary

periodic input described in the frequency domain. As an illustration, Figure 1.3 depicts

the measured transfer function S21(ω), in amplitude and phase, of a microwave filter.
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Figure 1.3 Example of the frequency-domain transfer function of a linear RF circuit, H(ω):

measured forward gain, S21(ω), in amplitude – (a) and phase – (b), of a microwave filter.
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1.3 Nonlinearity: The Lack of Superposition

As all of us have been extensively taught and trained in working with linear systems,

and with the additivity and homogeneity properties being so intuitive, we may easily fall

into the trap of believing that these should be properties naturally inherent to all physical

systems. But this is not the case. In fact, most of macroscopic physical systems behave

very differently from linear systems, i.e., they are not linear. Actually, we use the term

nonlinear systems to identify them.

Since we have been making the effort to define all important concepts used so far, we

should start by defining a nonlinear system. But that is not a straightforward task

as there is no general definition for these systems. There is only the unsatisfying

definition of defining something by what it is not: a nonlinear system is one that is

not linear, i.e., a nonlinear system is one that does not obey the principle of superpos-

ition. This is an intriguing, but also revealing, situation, which tells us that if linear

systems are the ones that obey a precise mathematical principle, nonlinear systems are

all the other ones. Hence, from an engineering standpoint the relevant question to be

answered is: Are nonlinear systems often seen, or used, in practice? To demonstrate

their importance, let us try a couple of very common, RF electronic examples. But,

before these, the reader may want to try the two simpler examples discussed in

Exercises 1.1–1.4.

Example 1.1 Active Devices and Amplifiers In this example we will show that any

active device must be nonlinear.

As a first step, we will show that all active devices depend on two different

excitations. One is the input signal and the other is the dc power supply. This means,

as illustrated in Figure 1.4, that amplifiers are transducers that convert the power

supplied by a dc power source into output signal power, i.e. they convert dc into

RF power.

Now, as the second step in our attempt to prove that any active device must

be nonlinear, let us assume, instead, that it could be linear. Then, it would have to

obey the additivity property, which means that the response to each of the inputs, the

signal and the power supply, should be determined separately. That is, the response

to the auxiliary supply and to the signal should be obtained as if the other stimulus

would not exist. And we would come back to an amplifier that could amplify the signal

power without requiring any auxiliary power, thus violating the energy conservation

principle.

Although this argument seems quite convincing, it raises a puzzling question,

because, if it is impossible to produce amplifiers without requiring nonlinearity, we

should be magicians as we all have already seen and designed linear amplifiers. So, how

can we overcome this paradox?
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According to the power flow shown in Figure 1.4, where Pin, Pout, Pdc and Pdiss are,

respectively, the signal input and output powers, the supplied dc power and the

dissipated power (herein assumed as all forms of energy that are not correlated with

the information signal, such as heat, harmonic generation, intermodulation distortion,

etc.), the amplifier gain, G, can be defined by

G �
Pout

Pin

(1.12)

And this G must be constant and independent of Pin for preserving linearity.

Imposing the energy conservation principle to this transducer results in

Pout þ Pdiss ¼ Pin þ Pdc (1.13)

from which the following constraint can be found for the gain:

G Pinð Þ ¼ 1þ
Pdc � Pdiss

Pin

(1.14)

Since Pdiss cannot decrease below zero (100% dc-to-RF conversion efficiency) and Pdc

must be limited (as is proper from real power sources), G Pinð Þ cannot be kept constant

but must decrease beyond a certain maximum Pin.

In RF amplifiers, this gain decrease with input signal power is called gain

compression. In practice, amplifiers not only exhibit a gain variation when their input

amplitude changes, but also an input-dependent phase shift. This is particularly import-

ant in RF amplifiers intended to process amplitude modulated signals as this input

modulation is capable of inducing nonlinear output amplitude and phase modulations.

These are the well-known AM/AM and AM/PM nonlinear distortions, often plotted as

shown in Figure 1.5(a) and (b), respectively.

Supplied

power

DC

AC

Dissipated

power

Signal

load

Signal

source

Pout

Pdc

Pdiss

Pin

Figure 1.4 Illustration of the power flow in a transducer or amplifier.
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This analysis shows that linearity can only be obeyed at sufficiently small signal

levels, and that it is only a matter of excitation amplitude to make an apparently linear

amplifier expose its hidden nonlinearity.

Actually, this study provided us a much deeper insight of linearity and linear systems.

Linearity is what we obtain when looking only at the system’s input to output signal

mapping (leaving aside the dc-to-RF energy conversion process) and when the signal is

a very small perturbation of the dc quiescent point. So, linear systems are the conceptual

mathematical model for the behaviors obtained from analytic operators (i.e., that are

continuous and infinitely differentiable mappings), when these are excited with signals

whose amplitudes are infinitesimally small as compared with the magnitude of the

quiescent points. And it is under this small-signal operation regime that the linear

approximation is valid. We will come back to this important concept later.

Example 1.2 A Sinusoidal Oscillator A sinusoidal oscillator is another system that depends

on nonlinearity to operate. Although in basic linear system analysis we learned how to

predict the stable and unstable regimes of amplifiers, and so to predict oscillations, we

were not told the complete story. To understand why, we can just use the above results

on the analysis of the amplifier and recognize that, by definition, an oscillator is a

system that provides an output even without an input. That is, contrary to an amplifier

that is a nonautonomous, or forced, system, an oscillator is an autonomous one. So, if it

would not rely on any external source of power, it would violate the energy conser-

vation principle. Like an amplifier, it is, instead, a transducer that converts energy from

a dc power supply into signal power at some frequency ω. Hence, like the amplifier, it

must rely on some form of nonlinearity. But, unlike the amplifier, in which we have

shown that, seen from the input signal to the output signal, it could behave in an
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Figure 1.5 Illustration of measured (a) amplitude – AM/AM – and (b) phase-shift – AM/PM – gain

variations as a function of input signal amplitude. Please note how these plots are not any

idealized lines, but a cloud of dots that reveal hysteretic trajectories.
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