absorbing material, 67
absorption, 9, 11
cross section, 11, 18
accidents, 134–42
actinides, 14
Aerojet-General, 65
AGR, 19, 69
airliner impact, 131
alpha radiation, 15
anisotropy, 36
annular flow instability, 98–99
Avagadro's number, 11
balance of plant, 5, 56
barns, 11
becquerel, 15
Bernoulli effect, 97
beta radiation, 15
blanket, 23, 39, 70, 71
blowdown, 143, 144
BN-600, 21, 71, 73
BN-800, 74
boiling, 86, 107–18
Crisis, 111
vertical surfaces, 116–18
boric acid, 67
boron, 67
burnable poison, 58, 67
burnout, 89, 127
burnup, 8
BWR, 19, 60–62, 69, 86–90, 109, 127
Fukushima, 140
RBMK, 137
cadmium, 67
calandria, 68
CANDU reactor, 7, 19, 58, 67–69, 128
capture resonance, 18
carbide, 74
cavitation, 105–107, 146
CCFL, 144
centrifuge, 7
chain reaction, 8, 18, 19, 21, 68, 70, 143
Chernobyl, 1, 69, 130, 131, 137–40
CHF, 111, 127
China Syndrome, The, 130
chugging, 120–24
clapping, 7, 8, 16, 62, 80
Clausius–Clapeyron equation, 107
Clinch River, 74
concentration wave, 94, 119
condensation instability, 120–24
oscillations, 121
contact resistance, 79, 80
containment, 16–17, 59, 132, 136
primary, 70, 132, 143
secondary, 61, 62, 130, 133, 136, 138, 140, 143
continuous phase, 93
control blade, 63
control rod, 43–46, 62–64, 67
channel, 63, 67
insertion, 45, 83, 131, 137, 138
conversion, 7
coolant CO2, 69
fluoride salt, 75
heat transfer, 82–83
helium, 70, 75, 76
lead, 76
liquid metal, 70
lithium, 71
molten salt, 75
primary loop, 59, 60, 71, 99, 143
pump, 143
secondary loop, 59, 60, 70, 142
sodium, 71, 74, 76
supercritical water, 76
cooling systems, 132, 137
passive, 132
cooling water, 17, 135
core design
 LMFBR, 85–86
 LWR, 84–85
pebble bed, 75
prismatic block, 75
core disassembly, 145, 148
core meltdown, 128, 130, 136, 140, 143, 145, 147
critical heat flux, 86, 87, 89, 111, 114, 127, 128
critical size, 21
criticality, 21–22, 34, 67
cross section, 11, 30
curie, 15
current density, 26
cylindrical reactor, 38–39, 85
decay heat, 8, 15, 78, 132, 143, 147
delayed neutrons, 13, 53, 66, 67
precursor, 13
density wave, 119
diffusion coefficient, 30, 33
diffusion equation
 one-speed, 32, 33
 diffusion theory, 30–32
 one-speed, 32–34
 two-speed, 34–36
disperse flow, 93
friction, 99–101
horizontal, 99–100
limits, 95–96
disperse phase, 93
dispersion, 96
driver, 23, 71
earthquakes, 131, 140
ebullition cycle, 112
ECCS, 132, 140, 143, 144
BWR, 133
PWR, 132
elastic scattering, 9
electricity generation, 2
electron volt, 9
embrittlement, 17
enrichment, 7
tailings, 7
entrance length, 92
epithermal neutrons, 19
escape probability, 20
extrapolation length, 32
fast breeder reactor, 21
liquid metal, 21
fast fission factor, 20
fast neutrons, 9, 18
fast reactor, 21
fault tree, 130
FBR, 21, 70, 134
accident analyses, 147–48
FCI, 146
fertile
 isotope, 18
material, 7, 21, 23
Fick’s law, 29, 30
film boiling, 86, 115–16
fissile
 atoms, 5
 isotope, 18
material, 6, 21
fission, 5, 9
cross section, 11, 18
fragments, 8, 9
products, 8, 78
FLECHT program, 129
flooding, 113
flow
 pattern, 91
 regime, 91
flow regimes
 annular flow, 93
 churn flow, 93
 classification, 93–95
 disperse flow, 93
 map, 92–93
 slug flow, 93
FNR, 70
four-factor formula, 20
friction
 coefficient, 100
 interfacial, 104
 pipe flow, 99
fuel
 assembly, 62, 71
 bundle, 62, 67, 68
 heat transfer, 79–82
 pellets, 7, 62, 67, 79
 rod, 7, 46, 62, 79–82
 temperature, 79, 82, 128
 tubes, 67
 volume, 85
fuel–coolant
 interaction, 105, 146–48
Fukushima, 130, 140–41
fusion, 5

gadolinium, 67
gamma radiation, 15, 17, 78
gas-cooled reactor, 19
gaseous diffusion, 7
GCR, 19, 76
Generation II, 56
Generation IV, 56, 74–76
fast reactors, 76
thermal reactors, 75
geometric buckling, 22, 34
GFR, 76
graphite, 19
moderator, 69, 70, 75, 76
Index

Haberman–Morton number, 114
half-life, 13
HCDA, 145
heat conduction, 80
heat exchanger, 59
heat production, 79, 81
heat release, 78
delayed, 78
prompt, 78
heat transfer, 78–89
coefficient, 82
heavy water, 19, 58, 67
reactor, 19
Helmholtz’s equation, 34
homogeneity, 37, 45
homogeneous flow
friction, 100–101
HPCI, 132, 133
HPCS, 133
HTGR, 7, 19, 70, 76
hurricanes, 131
HWR, 19, 67–69
hydraulic diameter, 82, 102
inelastic scattering, 9
inhomogeneity, 37
interfacial roughness, 108
Kelvin–Helmholtz instability, 96–98, 119
kinematic wave, 94, 119
latent heat, 86
lattice cell, 37, 45–51, 63
control rod, 49
fuel rod, 47
square, 51
theory, 37
Ledinegg instability, 119–20
LFR, 76
light water, 19, 58, 67
reactor, 19
LMFBR, 21, 23, 70–74, 128, 147
loop-type, 71, 147
pool-type, 71, 76, 147
LOCA, 89, 128, 130, 132, 134, 142–46
LMFBR, 145–46
LOFT, 129, 143
loss of coolant, 130, 131, 134, 142–46
LPCI, 132, 133
LPSCS, 133
LWR, 19, 57–62, 76
accident analyses, 142–45
control, 66–67
macroscopic cross sections, 12
Manhattan project, 18
Martinelli correlations, 101
Martinelli parameter, 103
mass
flux, 91
fraction, 91
quality, 86, 91, 105
material averaging, 27–28
material buckling, 22, 33
mean free path, 12
meltdown, 128
microlayer, 110
mixed oxide, 8
fuel, 22, 23
reactor, 8
mixture
density, 91
viscosity, 100
moderator, 18–20
volume, 85
Monte Carlo methods, 54
MOX, 8, 22, 23
MSR, 75
multigroup
diffusion model, 36, 37
theory, 36–37
multiphase flow, 90–128
flow patterns, 91–99
flow regimes, 90
fully separated flow, 94
homogeneous flow, 93
in nuclear reactors, 124, 127–29
instability, 116–24
intermittency, 94, 95
notation, 90–91
regime, 91–99
multiplication factor, 10, 20–22, 34, 52, 67, 128
multiscale models, 54
natural convection, 109, 116
neutron
continuity equation, 29
density, 25
diffusion coefficient, 30
diffusion length, 31, 33, 35
energy, 10
flux, 25, 26, 83
flux distribution, 25, 41, 44–46, 48, 50, 52, 79, 83
mean free path, 31
transport theory, 27
velocity, 25
nonleakage probability, 20
NSSS, 56
nuclear
energy spectrum, 10–11
explosion, 1, 131
fission, 9–10
fuel, 7
fuel cycle, 5–9, 22–23
fusion, 13
waste, 1, 2
nucleate boiling, 109, 111–12
nucleation, 109
sites, 111
NuScale, 65
Nusselt number, 82
one-speed model, 32
P_1 equations, 36
P_N equations, 36
Phenix, 21, 71, 74
pipe friction, 99–105
plutonium, 8, 14, 70
point kinetics model, 53
pool boiling, 108–11
crisis, 113–15
power outages, 131
Prandtl number, 82
pressure drop, 99–105
pressure suppression systems, 121
pressurizer, 59, 134
prompt neutrons, 10, 66
PWR, 19, 58–59
quality, 91
quality factor, 16
rad, 16
radiation, 8, 15–16, 138, 140
attenuation, 17
radiative capture, 9
radioactive contamination, 59
decay, 13–15
decay constant, 14
release, 16–17, 130–32, 135, 136, 138, 142, 143, 147
sodium, 71
radioactivity, 13–18, 59, 62, 130
Rayleigh scattering, 33
Rayleigh–Taylor instability, 97, 98, 108, 115
RBMK reactor, 69
reactivity, 10, 87, 128
control, 58, 131
reactor boiling water, 60
burner, 21
critical, 21
dynamics, 51
epithermal, 75, 76
fast breeder, 21
fast neutron, 70
gas-cooled, 69
gas-cooled fast, 76
heavy water, 67
kinetics, 51
lead-cooled, 76
molten salt, 75
natural, 6
pebble bed, 75
period, 53
personal, 65
pressurized water, 58
shielding, 17
small modular, 65
sodium-cooled, 76
supercritical-water-cooled, 76
thermal, 19
vessel, 59
reduced order models, 54
reduced thermal models, 27
refill, 143, 144
reflector, 39–42
reflood, 143, 144
refueling, 67
RELAP code, 129
rem, 16
reprocessing, 2, 8
reproduction factor, 10
resonance peaks, 12
Reynolds number, 82, 96, 100
roentgen, 16
S_N equations, 36
safety concerns, 1, 130–31, 142
earthquakes, 131, 140
systems, 131–34
tsunamis, 131, 140, 141
safety systems, 131, 137, 140, 141
LMFBR, 148
passive, 141
spray, 133, 144
scattering, 9, 11
cross section, 11, 18
scram, 67, 137
scram control, 67
SCWR, 76
sedimentation, 96
separated flow, 93
friction, 101–105
limits, 96–98
SFR, 76
shielding, 17–18
shut control, 67
sievevert, 16
six-factor formula, 20
slurry flow, 100
SMR, 65
spherical reactor, 37–38
standardization, 2
steam generator, 59, 143
steam supply system, 5
stratified flow, 98
subcritical, 21, 34
supercritical, 21, 34
supernova, 13
Superphenix, 21, 74
suppression pool, 61, 122, 133
Index

tailings, 7

temperature distribution, 25, 80, 82–84
terrorist attacks, 131

thermal conductivity, 80, 81, 85

thermal cross section, 12

thermal diffusivity, 107

thermal fission factor, 20

thermal neutrons, 9

thermal shield, 17

thermal utilization factor, 20

thermo-hydraulics, 3

thorium, 7, 21, 22, 70

fuel cycle, 7

Three Mile Island, 1, 74, 130, 134–37

transport theory, 28–30

transuranic elements, 8

tsunamis, 131, 140, 141

two-speed model, 32, 36

uranium, 5

carbide, 70

fuel, 62

natural, 67

ore, 6

weapons grade, 9

vapor explosion, 105, 108, 138, 146

vaporization, 105

classes, 105

heterogeneous, 108–18

homogeneous, 105–108

vertical flow

friction, 101

VHTR, 75

void coefficient, 68, 128, 139, 145

void fraction, 87, 128

void reactivity, 134, 138, 145

volcanoes, 131

volume

flux, 91

fraction, 91

quality, 91

volumetric flux, 91

waste, 10, 14

disposal, 8

storage pools, 8, 15

weakly absorbing medium, 31

Westinghouse SMR, 65

wetwell, 133

xenon poison, 138

yellowcake, 7

zircaloy, 16, 67, 135

tubes, 62

zirconium, 16