Cambridge University Press 978-1-107-13786-8 — The Soft–Hard Tissue Junction Neil D. Broom, Ashvin Thambyah Index <u>More Information</u>

Index

articular cartilage structure balloon and string model of, 79-83 Benninghoff's arcade model, 12-13 cohesive strength of matrix destructuring, influence of, 76 discontinuous fibril models, difficulties with, 21 fibril interconnectivity and lateral force transmission, 75-76 fibril-proteoglycan interactions insufficient to explain cohesion, 24 problems with composite theory, 21-24 early structural studies, 10-13 entwinement versus non-entwinement fibril models, 24-25 non-entwinement mode predominates, 31-35, 37-39 evidence from directional strength and extensivity studies, 18-20 evidence from rupture propagation studies, 18-20 fibril interconnectivity models and 2-D analogue, 25-31 fibril orientation and continuity, 15, 16-17, 21 fibrillar network transformation, 20-21 destructuring, concept of, 24, 147-48 enzymically induced, 20-21 OA matrix and destructuring, 39 traumatically induced, 21 fibril-to-fibril interconnectivity, potential linking agents, 39-41 fibrosity in matrix, its structural significance, 31, 36, 37 imaging limitations with SEM and TEM, 15 malacic matrix, structure of, 31-37 matrix swelling behaviour and fibril interconnectivity, 35-39 network connectivity, importance of, 21-24 pin-prick patterns, significance of, 11-12 pseudo-random structural model, 17-18, 25 structural implications of abnormal swelling, 35-37 transverse swelling as indicator of matrix abnormality, 35-36

articular cartilage, general considerations cartilage loss, consequences of, 3-4 compliance, importance of, 3-5 composition, 10 contact stress reduction, 3-5 experimental demonstration of, 5 macro- and micro-level considerations, 3-5 physical examples of, 5 ink staining to reveal surface disruption, 49-50 quantified using Outerbridge grading system, 51 its variable response to loading, significance of, 3 primary function of, 4-5 swelling potential, physicochemical origin of, 10 tissue studies based on bovine patella model its utility, 49 lesion development in, 51-52 relevance to human OA, 50-51 calcified cartilage advancing tidemark and increasing mineralisation, 79 relation to pre-OA state, 79 bony spicules formation in calcified cartilage, 52-55 influence of mechanical environment, 60-61 involvement in healing of bone fractures, 58-60 relation to angiogenesis, 59-60 intervertebral disc-endplate, component of, 192-93, 194-95, 197-98, 199-201 involvement in osteochondral junction failure, 85-86, 121-24, 128-30 microcrack formation in osteochondral tissues, 131-32, 136-39 mineralised fibrocartilage and enthesis development, 304 new bone formation in, role of repetitive micro-injury, 77 remodelling of, 43-45 role as mechanical transition layer challenged, 78-79 vascular penetration of, 43-45

Cambridge University Press 978-1-107-13786-8 — The Soft–Hard Tissue Junction Neil D. Broom, Ashvin Thambyah Index <u>More Information</u>

niuex	
elastic stiffness, concept of	steel-reinforced concrete, features in
elastic limit in conventional materials, 8	common with, 208–10
its structural basis, 8	fibril-level view of, 205–6, 212–14
relation to ductile and brittle behaviour, 8	flexion and compression, response to, 202–
strain-energy considerations, 8	influence of maturity level, 212–14
large-strain elasticity, 187–91	inner annular fibre anchorage, 193
elastin behaviour described as, 188–89	microstructural view of, 195–97
general entropic theory of, 188	choice of section plane critical, 195–97
Gough-Joule effect, 188	outer annular fibre anchorage, 193–95
strain-energy, its relation to, 187–88	ovine versus human, 214–16
low-versus large-strain elasticity in tissues, 8–10	sub-bundles also in numan endplate, 216
relation to collagen crimp, 9	step-change in stiffness, implications of, 20
relation to hierarchical structure of collagen fibril,	structural model of anchorage system, 197-
8-9	sub-bundles, an important structural feature
elastin properties and function	212
a biological elastomer, 188–89	torsion and compression, response to, 201–
elastomeric behaviour, theories of	annulus-endplate junction failure, 239–50
evidence suggests mix of mechanisms, 190–91	directional loading, significance of, 239–40
hydrophobic interactions, importance of, 189–91	torsion, flexion, axial tension, responses 248–50
librational entropy model, 189–90	fibril-level view of, 245
liquid droplet model, 189	in human tissue, 250
oiled coil model, 189	influence of demineralisation, 243-45
importance of hydration, 188–89	cement line failure, promoted by, 245
role in intervertebral disc, 178-87	macro-level view of, 240-43
role in tendons and ligaments, 294	potential stress-reducing mechanisms, 204- stress-induced failure achieved with difficu
intervertebral disc-endplate system	204
anatomical overview, 157–60	tidemark and cement line, involvement of,
annulus, 162	toughness and junction failure, 204–5
combined imaging and micromechanical	composition of primary regions, 162–63
studies, 166–68	annulus, 162
crimp in fibres, functional role of, 165–66	endplates, 163
J-type stress-strain response, 203–4	nucleus, 163
cross-ply structure of, 160–61	elastic fibres in disc, 178
inter- and intra-lamellar connectivity, models	3-D network of, 181-82
of, 168–75	co-localisation with collagen, 182-83
inter- and intra-lamellar relationships, 166-68	comprising elastin and microfibrils, 182-83
inter-lamellar bridges, 170	early studies of disc elastin, 178-80
debate concerning origin, 176–77	extensive network revealed using advanced
in human discs, 176	imaging, 180–82
probable functional role of, 175-76	functional role of, 179, 183
internal strains and structural disruption of,	relation to inter-lamellar connectivity, 183-
184–86	role in managing high internal strains, 185-
intrinsic compressive stiffness of, 158	special role within lamellae, 186–87
sectioning plane, importance of, 163–65,	endplate, detailed description of, 192–93
171–75	cartilaginous endplate, its calcification, 192
serial thick sections, advantages of, 170	cement line, 279–80
annulus-endplate junction	epiphyseal ring, 192, 215–16
annular bundles and sub-bundles, involvement	main components of, 192–93
of, 195–97	perforating channels, function of, 192
discordant structural continuity, concept	tidemark, 193
explained, 206	nucleus, detailed description of, 217-18
fibre-reinforced composite theory, its	amorphous or pseudo-amorphous? 217–18
relevance. 208–12	226–27
requires fibril stiffening via intra fibril	biochemical composition of 217
	biochemical composition of 217

Cambridge University Press 978-1-107-13786-8 — The Soft–Hard Tissue Junction Neil D. Broom, Ashvin Thambyah Index <u>More Information</u>

Index

herniation

connectivity with annulus, demonstrated experimentally, 220 early descriptions of, 217-18 elastic fibres in, 178-80, 180, 217, 219 endplate-to-endplate continuity of its fibres, 226-27 integration with endplate fibres convoluted and anchored, 228 fibril-level analysis of, 231-35 fibrous insertion nodes, morphology and density of, 224-26 influence of maturity level, 229-30 investigated using 'ring-severing' experiment, 221-24 mechanical evidence for, 220-24 microstructural evidence for, 224-27 ovine and human integration compared, 236 - 38structural model of, 227-28 models illustrating integration with annulus and endplate, 235-36 nucleus-to-annulus transition, a metabolicallyactive zone, 218 proteoglycan component, role of, 217 structure not readily demonstrated with histology, 227-28 swelling potential of, 161, 217 tethered mobility of its fibres, 228, 229 nucleus-annulus-endplate integration, macro-level description of, 161-62 ovine and human discs compared, 281-82 intervertebral disc-endplate, integrated failure of, combined compression and flexion, 271 annulus disruption and differential fibre-set recruitment, 280-81 apical ridge and strain profile in annular fibres, 277 cement line, not a natural plane of weakness, 279-80 failure modes and loading rate, 271-77 higher rates favour mixed-mode herniations, 277 loading rate and modulus mismatch, 279 low rate favours endplate fracture, 271-72 nucleus hydrostatic pressure and loading rate, 277 - 79physiological relevance of loading rate, 271 regional disruption of annulus, 280-81 endplate fracture in simple compression, 256-57 nucleus extrusion through endplate, 256-57 Schmorl's nodes, origin of, 256-57 general concepts relevant to failure, 251-52 crack propagation through inhomogeneous structure, 251 fracture mechanics, principles of, 251-52 strain energy release and crack propagation,

251-52

classification of types, 252-54 definition of, 252 differential loading of oblique-counter oblique fibres, 202-4 possible cause of lateral annulus disruption, 202-3 endplate junction failure common in humans, 270-71 induced using internal pressurisation experimental method described, 257 micro-CT imaging of disc disruption, 258 pressurisation in neutral posture, 259-60 pressurisation rate, influence of, 265-67 pressurisation with combined torsion and flexion, 260-64 pressurisation with flexion, 260 utility and limitations of, 258, 268-69, 270 tissue types extruded, 254-55, 255, 270-71 herniation and pain, 255-56 inflammatory effects, 255 modic changes, 255 resorption of extruded material, 255 lubrication of joints boundary lubrication, 6 coefficient of friction, 5 consolidation principle, relevance of, 7 hydrodynamic theory, 5-6 interstitial fluid, role of, 7 multiple mechanisms involved, 7 protection of cartilage, 5 weeping lubrication, 6-7 osteochondral junction failure under shear loading a semi-quantitative dynamic approach, 118-19 adolescent tissue failure, 121-22 experimental technique described, 118-19 immature tissue failure, 119-21 mature tissue failure, 122-24 calcified cartilage, its influence on mechanics of junction failure, 85-86 fracture mechanics analysis, 124-27 critical energy release rate for cartilage delamination, 125-27 energy of fracture for total cartilage delamination, 125 fracture strength versus fracture toughness, 124 - 25influence of maturity, clinical implications of, 127-28, 129-30

why junction structure influences toughness, 128–30

shear forces, clinical relevance of, 84–85 shear strength of junction under quasi-static loading, 116–18

Cambridge University Press 978-1-107-13786-8 — The Soft–Hard Tissue Junction Neil D. Broom, Ashvin Thambyah Index <u>More Information</u>

386	Index	
	osteochondral junction failure under shear loading	microcrack formation in human calcified
	whole condule failure 115 16	131 32
	osteochondritis dissecans undated definitions	osteochondral fracture uncommon in immatur
	of 116	buman joint 85.86
	zones of failure and influence of loading rate	rabbit failure model and repetitive impact 70
		relevant in vivo forces in human joint 84
	astaachandral junction, general considerations	horizontal anlitting along unceloified coloif
	a strass conversion system 86	iunction 84.85
	a suess conversion system, so	Junction, 64–65
	articular cartilage, force-transmitting fore of, 545	
	anicular cartilage, its involvement in junction	151
	mechanics, /0–//	osteocnondral tissue failure under direct
	cement line, 47	compression
	advance of, 60	impact loading
	$10 \text{ for } 10 \text$	articular cartilage, minimal role in shock
	early studies of, $42-43$	absorption, 94, 345
	growth and remodelling of, 43–44	damage arteracts, risk of, 103–5
	and etiology of cartilage degeneration, 44–45	curvilinear surface and indenter contact,
	bony spicules, significance of, 52–55, See also	indenter edge effects, 104–5
	under calcified cartilage	damage grading system, micro-level, 97–98
	relation to maintenance of joint incongruity, 44	degeneration, influence of, 102–3
	imaging of, 46–47	failure morphologies, 93, 94–96, 98–99
	integrating role of, 42	consistent with quasi-brittle behavour, 9.
	tidemark. See also under 'osteochondral tissues	depth of rupture propagation, 94
	described	hard tissue failure and maximum shear
	osteochondral tissue damage induced in vivo	stress, 95
	equine Thoroughbred model	impact energy, influence of, 92–94, 99–100
	advantages of, 132–33	indenter characteristics, influence of, 94–97
	bone bruising, 139–40	matrix fluid, its influence on dynamic
	tracture mechanism in hard tissue, 140–43	mechanical properties, 89–91
	bone comminution, morphology described,	maturity level, influence of, 100–102
		practical considerations relating to impact
	concrete failure in compression, similarity	experiments, 92
	with, 141–43	repetitive micro-injury and repair, //
	hard and soft tissue damage, relation between,	stress level and chondrocyte death, 99–100
	143-44	tangential layer, its role in rupture initiation
	hard tissue damage beneath near-intact	93–94
	articular surface, 134–36	whole condyle response versus abstracted
	joint site and loading intensity, relation to,	sample, 103–4
	133-34	impact loading with prior creep
	loading history, relation to, 155–56	damage correlated with impact energy and
		stress, 115–14
	composition of lesion contents, 144–46	damage modes defined, 109–13
	destructuring of adjacent articular cartilage,	experimental procedure, description of, 100
		macro-level damage, 109
	evidence for tissue destruction and repair,	mechanical effects of, 109
		micro-level damage, 109–13
	mechanical properties of lesion contents, 146	physiological relevance of, 105, 106
	mechanism of formation, 148–50	quasi-static loading
	structural detail of, 144–50	absence of tidemark failure at low rates, 87
	subchondral bone cysts, 150–51	influence of loading rate, 86–91
	conflicting theories concerning origin of, 151–54	matrix fluid and importance of outflow path 91–92
	present in the OA joint, 151–52	relevant forces in vivo, 84-86
	relation to stress, 154	osteochondral tissues described
	stress-related nathologies general description	balloon and string model of 79–80
	suess related pathologies, general description	current and sumg model of, 19 00

Cambridge University Press 978-1-107-13786-8 — The Soft–Hard Tissue Junction Neil D. Broom, Ashvin Thambyah Index <u>More Information</u>

Index

features modelled, 80 load-bearing function demonstrated, 82-83 bovine patella model. See also under 'articular cartilage, general considerations' and human OA, histological comparison of, 50 - 51channel indentation experiment bulge morphology, significance of, 74-76 shear band development influenced by degeneration, 68-69 oblique-counter oblique nature of, 66-68 imaging of osteochondral tissues at fibril level, 47-49 DIC microscopy, advantages of, 46-47 mechanobiological adaptation of, 346-48 microstrain environment experimental determination of, 61-63 explored using channel indentation experiment, 65-69 influence of articular surface, 69-71 degeneration, 63-65 focal disruption, 71-74 matrix swelling pressure, 69-71 transverse interconnectivity, 71 lines of chondrocyte continuity chevron discontinuity, altered by degeneration, 63-65 chevron discontinuity, significance of, 61-63 mapping matrix deformation, 61 mineralised components, respective roles of, 77-79 calcified cartilage as mechanical transition layer challenged, 78-79 material properties, relation to morphology, 77 - 78subchondral bone stiffening, influence of repeated loading, 79 tidemark absent in young tissue, 45 duplication of, 45, 346-48 influenced by proximity to lesion site, 51 - 52may involve graded mineralisation, 342 mechanobiological adaptation, possible evidence for, 346-48 morphology of, 45 relation to loading history, 45 undulations in, possible mechanical significance of, 76-77 tendon and ligament biomechanics biochemical constituents elastin variability, mechanical implications of, 294

influence on mechanical properties, 294-95

collagen crimp functional significance of, 296-98 its variability over ligament cross-section, 295 quantification of, 295-96 variability and readiness for 'action', 296-98, 300-301 collagen fibre recruitment, 298-300 differential loading inferred, 300 experimental determination of, 298-300 its dependence on joint stance, 298-301 failure mechanisms bone evulsion, 287 loading rate, influence of, 302 maturity level, influence of, 302 sites involved, 302 soft tissue strains and micro-rupture of fibres, 302 - 3hierarchical structure of tendons and ligaments, 289_{-94} additional levels identified with SEM 291 collagen fibril, its multilevel molecular structure, 291 fibril diameter, its influence on strain energy distribution, 293 provides for biomechanical optimisation, 291-94 relevant to distribution of strain energy, 291 resilience arising from interaction with proteoglycans, 293-94 ligaments, 287-89 anterior cruciate ligament design reflects complex function, 287-89 functional significance of double bundle structure, 296, 300-301, 323 its role in knee joint, 287-89 elastin content, specialised role in, 294 passive stabiliser of joints, primary role of. 287 stiffness variations, relation to patterns of injury, 287 natural design and factors of safety, 301-3 challenge for artifical replacements, 301-2 relevance to repair and reconstruction, 303 relevance to tissue engineering, 303 ultimate versus physiological loading, 301 - 3tendons, 296-98, 285-87 elastin component, suggested role in energy storage, 294 energy storage, importance of, 285 functional range of movement, 286-87 lubricin, its role in interfascicular sliding, 294 mechanical properties and joint function, 286-87 stresses in, 285 tangent modulus of, 286

Cambridge University Press 978-1-107-13786-8 — The Soft–Hard Tissue Junction Neil D. Broom, Ashvin Thambyah Index <u>More Information</u>

388

Index

tendon/ligament enthesis anterior cruciate ligament enthesis as model system, 323 double-bundle insertion sites and morphologies, 324 interdigitation-depth differences, implications of, 332-33 their demarcation, 325 fibre-bone rooting, differences between bundles, 334-36 fibre-to-fibril level view of, 334-36 imaging with thick, hydrated sections, advantages of, 325-28 insertion morphology suggests function, 323-24, 325-32 macro-level structure of, 325 macro-to-micro structure of, 325-34 uncalcified and calcified fibrocartilage, functional significance of, 324 composition and tissue components, 304-5 influence on mechanical properties, 304-6 developmental stages of, 304 formation of fibrocartilage, 304 hyaline cartilage anlage, initial role of, 304 mineralisation of fibrocartilage, 304 direct enthesis, 306-14 complex stresses in loaded state, 310-11 curvilinear force trajectory maintained, 309 deep interdigitation of hard tissues, 311-12 fibrocartilage, uncalcified and calcified, 309-11 its multi-zone morphology, mechanical significance of, 306-9 osteon 'islands', a possible strengthening role, 313-14 soft tissue inserts at large angles, 307 step-change in stiffness avoided, 306-7 'stretching-brake theory', 309-10 tidemark and cement line, present in, 306-7, 312 enthesis strength and toughness, 343-45 force redistributing mechanisms suggested, 343-44 mechanical properties optimised, 344 modulus, strength, energy absorption and composition correlation, 344-45 most common modes of failure, 343 possible mechanisms of energy absorption, 344-45 role of enthesis in energy absorption also questioned, 345

enthesis, a functionally graded system, 338 achieved with its hierarchical structure, 340-41, 341-42 collagen types in, 342-43 design strategies for effective load transmission, 340 enthesis design and stress homeostasis, 341 fibre orientation, importance of, 342 fibril architecture and graded mineralisation, importance of, 341-43, 345 involves small tissue volume, 342, 345 management of modulus mis-match, 338, 340, 341 mineralisation and percolation threshold, importance of, 342 non-biological examples of functional grading, 338 - 40case-hardening of steels, 339-40 piezoelectric ceramic transducers, 339 pottery glazes, 340 thermal barrier materials, 339 stress concentrations reduced by, 338, 340 tidemark, a possible redefinition of, 342 indirect enthesis, 314-19 bone growth and shape change accommodated by, 315-16 four distinct tissue zones, 317-18 how morphology relates to function, 318-19 insertion migration during bone growth, 315-16 medial collateral ligament, its indirect insertion in tibia, 314-15 mineralised fibrocartilage, involvement of, 321 morphological evidence for adaptation, 316-17 periosteal layer between soft tissue and bone, 314-15 Sharpey's fibers, role of, 314-15 soft tissue inserts at acute angles, 314-15, 316-17 mechanobiological adaptation of enthesis mechanical and biological factors, individual and combined effects, 346 mechanical factors acting over time, importance of, 346-48 micro- to macro-scale events, importance of, 345-46 morphology shaped by biological and mechanical influences, 305-6, 324 strain field, importance of, 346 overall comparison of direct and indirect entheses, 316, 319-22