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early descriptions of, 217–18
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mature tissue failure, 122–24

calcified cartilage, its influence on mechanics of

junction failure, 85–86
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why junction structure influences toughness,

128–30

shear forces, clinical relevance of, 84–85

shear strength of junction under quasi-static

loading, 116–18

385Index

www.cambridge.org/9781107137868
www.cambridge.org


Cambridge University Press
978-1-107-13786-8 — The Soft–Hard Tissue Junction
Neil D. Broom , Ashvin Thambyah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press

osteochondral junction failure under shear loading

(cont.)

whole condyle failure, 115–16

osteochondritis dissecans, updated definitions

of, 116

zones of failure and influence of loading rate,

115

osteochondral junction, general considerations

a stress conversion system, 86

articular cartilage, force-transmitting role of, 345

articular cartilage, its involvement in junction

mechanics, 76–77

cement line, 47

advance of, 60

fibril-level structure of, 47–49

early studies of, 42–43

growth and remodelling of, 43–44

and etiology of cartilage degeneration, 44–45

bony spicules, significance of, 52–55, See also

under ‘calcified cartilage’

relation to maintenance of joint incongruity, 44

imaging of, 46–47

integrating role of, 42

tidemark. See also under ‘osteochondral tissues

described’

osteochondral tissue damage induced in vivo
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advantages of, 132–33
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cartilage, biological significance of,
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rabbit failure model and repetitive impact, 79

relevant in vivo forces in human joint, 84
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junction, 84–85

repetitive physiological loading, relevance of,

131

osteochondral tissue failure under direct

compression

impact loading

articular cartilage, minimal role in shock

absorption, 94, 345

damage artefacts, risk of, 103–5

curvilinear surface and indenter contact, 105

indenter edge effects, 104–5

damage grading system, micro-level, 97–98

degeneration, influence of, 102–3

failure morphologies, 93, 94–96, 98–99

consistent with quasi-brittle behavour, 93

depth of rupture propagation, 94

hard tissue failure and maximum shear
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impact energy, influence of, 92–94, 99–100

indenter characteristics, influence of, 94–97

matrix fluid, its influence on dynamic
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maturity level, influence of, 100–102

practical considerations relating to impact

experiments, 92

repetitive micro-injury and repair, 77

stress level and chondrocyte death, 99–100

tangential layer, its role in rupture initiation,

93–94

whole condyle response versus abstracted

sample, 103–4

impact loading with prior creep

damage correlated with impact energy and

stress, 113–14

damage modes defined, 109–13

experimental procedure, description of, 106–8

macro-level damage, 109

mechanical effects of, 109

micro-level damage, 109–13

physiological relevance of, 105, 106

quasi-static loading

absence of tidemark failure at low rates, 87–89
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features modelled, 80

load-bearing function demonstrated, 82–83

bovine patella model. See also under ‘articular

cartilage, general considerations’

and human OA, histological comparison of,

50–51

channel indentation experiment

bulge morphology, significance of, 74–76

shear band development

influenced by degeneration, 68–69

oblique-counter oblique nature of, 66–68

imaging of osteochondral tissues

at fibril level, 47–49

DIC microscopy, advantages of, 46–47

mechanobiological adaptation of, 346–48

microstrain environment

experimental determination of, 61–63
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65–69

influence of

articular surface, 69–71

degeneration, 63–65

focal disruption, 71–74

matrix swelling pressure, 69–71

transverse interconnectivity, 71

lines of chondrocyte continuity

chevron discontinuity, altered by

degeneration, 63–65

chevron discontinuity, significance of,

61–63

mapping matrix deformation, 61

mineralised components, respective roles of,

77–79

calcified cartilage as mechanical transition

layer challenged, 78–79

material properties, relation to morphology,
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subchondral bone stiffening, influence of

repeated loading, 79
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duplication of, 45, 346–48
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may involve graded mineralisation, 342

mechanobiological adaptation, possible

evidence for, 346–48

morphology of, 45
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significance of, 76–77

tendon and ligament biomechanics
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elastin variability, mechanical implications of,
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influence on mechanical properties, 294–95
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functional significance of, 296–98

its variability over ligament cross-section,

295

quantification of, 295–96
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300–301

collagen fibre recruitment, 298–300
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experimental determination of, 298–300

its dependence on joint stance, 298–301

failure mechanisms

bone evulsion, 287

loading rate, influence of, 302

maturity level, influence of, 302

sites involved, 302

soft tissue strains and micro-rupture of fibres,

302–3

hierarchical structure of tendons and ligaments,

289–94
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collagen fibril, its multilevel molecular

structure, 291

fibril diameter, its influence on strain energy

distribution, 293

provides for biomechanical optimisation,

291–94

relevant to distribution of strain energy, 291

resilience arising from interaction with

proteoglycans, 293–94

ligaments, 287–89

anterior cruciate ligament

design reflects complex function, 287–89

functional significance of double bundle

structure, 296, 300–301, 323

its role in knee joint, 287–89

elastin content, specialised role in, 294

passive stabiliser of joints, primary role

of, 287

stiffness variations, relation to patterns of

injury, 287

natural design and factors of safety, 301–3

challenge for artifical replacements, 301–2

relevance to repair and reconstruction, 303

relevance to tissue engineering, 303

ultimate versus physiological loading,
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tendons, 296–98, 285–87

elastin component, suggested role in energy

storage, 294

energy storage, importance of, 285

functional range of movement, 286–87

lubricin, its role in interfascicular sliding, 294

mechanical properties and joint function,
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tangent modulus of, 286
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tendon/ligament enthesis

anterior cruciate ligament enthesis as model

system, 323

double-bundle insertion sites and

morphologies, 324

interdigitation-depth differences,

implications of, 332–33

their demarcation, 325

fibre-bone rooting, differences between

bundles, 334–36

fibre-to-fibril level view of, 334–36
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insertion morphology suggests function,

323–24, 325–32
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macro-to-micro structure of, 325–34
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functional significance of, 324
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influence on mechanical properties, 304–6

developmental stages of, 304

formation of fibrocartilage, 304

hyaline cartilage anlage, initial role of, 304

mineralisation of fibrocartilage, 304

direct enthesis, 306–14
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curvilinear force trajectory maintained, 309

deep interdigitation of hard tissues, 311–12

fibrocartilage, uncalcified and calcified,

309–11

its multi-zone morphology, mechanical

significance of, 306–9

osteon ‘islands’, a possible strengthening role,

313–14

soft tissue inserts at large angles, 307

step-change in stiffness avoided, 306–7

‘stretching-brake theory’, 309–10

tidemark and cement line, present in, 306–7,
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enthesis strength and toughness, 343–45
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343–44
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composition correlation, 344–45

most common modes of failure, 343
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344–45

role of enthesis in energy absorption also
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340–41, 341–42

collagen types in, 342–43
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transmission, 340

enthesis design and stress homeostasis, 341

fibre orientation, importance of, 342

fibril architecture and graded mineralisation,

importance of, 341–43, 345
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management of modulus mis-match, 338, 340,

341

mineralisation and percolation threshold,

importance of, 342

non-biological examples of functional grading,

338–40

case-hardening of steels, 339–40

piezoelectric ceramic transducers, 339
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thermal barrier materials, 339

stress concentrations reduced by, 338, 340

tidemark, a possible redefinition of, 342

indirect enthesis, 314–19

bone growth and shape change accommodated

by, 315–16
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insertion migration during bone growth,

315–16

medial collateral ligament, its indirect insertion

in tibia, 314–15

mineralised fibrocartilage, involvement of, 321

morphological evidence for adaptation, 316–17

periosteal layer between soft tissue and bone,

314–15

Sharpey’s fibers, role of, 314–15

soft tissue inserts at acute angles, 314–15,

316–17

mechanobiological adaptation of enthesis

mechanical and biological factors, individual

and combined effects, 346

mechanical factors acting over time,

importance of, 346–48

micro- to macro-scale events, importance of,

345–46

morphology shaped by biological and

mechanical influences, 305–6, 324

strain field, importance of, 346

overall comparison of direct and indirect

entheses, 316, 319–22
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