Index of Subjects

a priori disposition accounts, 839
abacus
 functional gestures on an imagined, 153
 not needing to use an actual physical, 626
 skilled individuals trained to use, 704
 training a brain network for calculation, 628
 training in, 626
abacus expertise, brain regions involved, 241, 244
abacus experts, 239, 240
“abacus-based acalculia,” 629
abductive inference, 461
abilities. See also cognitive abilities; general abilities;
 natural abilities
 aging and, 223, 836, 837–838
 of architects, 374
 of artists, 160, 579
 of boys, 627
 calculating, 618
 of calculators, 704
 of chess players, 43, 193, 201, 203, 699
 of climbers, 749
 of clinical teachers, 785
 constraining decision making quality, 497
 correlations with performance, 223
 defining expertise on the basis of, 167
 in design, 373, 375
 differentiation of, across time, 607
 of doctors, 708
 domain-general, 836
 domain-specific, 836
 drawing, 580, 586
 in encoding information, 70
 fluid mental, 836
 in game situations, 696
 heritability component, 835
 human, 770, 774
 of human experts, 434
 innate, 54
 intellectual, 835
 leadership, 520
 linguistic, 26

mathematical, 619, 624, 627
memorizing numbers, 622
musical, 543, 556
 of musicians, 848
numerical, 485, 617
 in pattern recognition, 682
 in pattern-matching, 456
 in perceiving relevant information, 63
perceptual speed and psychomotor, 836
pianistic, 562, 843
of pilots, 725
predictive, 266
primary mental, 836
primary or innate, 837
rapid rise in, 847
reasoning, 94–95, 205
in reflection, 72
relation to expertise in developmental contexts, 835–836
in science, 395
spatial, 845, 847
system complexity affecting, 719
testing, 535
in using words, 641
verbal, 416–417, 488
visual perceptual, 619
ability predictors, 229
ability to help, overestimating, 404
abnormal inhibition, in both hemispheres, 567
“absolute” or “perfect” pitch, 551, 559
abstract concepts, 417
abstract deductive reasoning, 493
abstract idea, of the routine (structure), 444
abstract knowledge, 133,
abstract representations, 71, 605
abstraction
 coming into play, 133
 concept of levels of, 60
 forms of, 133
 procedures for events from source material, 294
Academia, Plato’s, 136
academic biographies, 299, 301
academic domains, 12
academic intelligence, 774
academic journals, intra-science communication through, 136
academic writers, 423
Académie des Sciences in Paris, 136
academies, 136
Accademia dei Lincei, in Rome, 136
accelerated learning to expertise, methods of, 464
accelerated onset (early bloomers), 321
acceleration, toward expertise, 76
acceptable performance, 14, 75
acceptance, as an expert, 23
accomplishments
individual, 27
in later adulthood, 849
accountancy, 129
accumulated knowledge
about a domain, 708
compensatory effects of, 838
extracting from experts, 76
accumulated practice
effect of, 760
problems quantifying amount of, 761–763
accuracy
aspects of, 590
of decisions, 486
of introspective descriptions, 194
of SMM measurements, 512
accurate fasciculus, 560
accurate judgments, of experts, 142
Acheulean tools, 45
achievement, continued improvements in, 14
achievements or events, taking as units of analysis, 314
achievers, in one generation, 318
acknowledged experts, judging relative expertise, 95
acquired knowledge
in a domain, 68
primary role of, 483
acquired mechanisms
mediating individual differences, 708
understanding the structure of, 763
acquired memory skills, supporting increases in working memory capacity, 764
acquired representations, by musicians, 756
acquired skills
based on rapid storage in and retrieval from LTM, 701
supporting planning, 702
acquisition. See also expertise acquisition; skill acquisition of chess expertise, 610
of musical expertise, 550–570
of numerical knowledge, 628
of tacit knowledge, 774, 781–783
acquisition indicators, in historiometric inquiries, 314–315
ACTA (Applied Cognitive Task Analysis), 457, 458
acting quality, gauged by the number of Academy Awards, 321
action observation network (AON). See AON (action observation network)
action/feedback loops, 456
Action-Focused method, 782
actions
abstracting within events, 294
anticipating by others, 677–679
collaborating with perception, 35
flexible patterns of, 114
identification and appraisal of, 293
regulation of, 114
without the use of words or speech, 772
active learners, positioning students as, 114
activities
amenable to repeated practice, 398
central to the domain of entrepreneurship, 397
defining the essence of a domain, 397
deliberate, goal-directed, 43
failing to provide cues for timely feedback, 400
persistent, mindful engagement in, 393
for persons with specific levels of expertise, 802
regularly executing, 397
as signals, 519
unintended, undesirable side effects of, 139
activity and/or intensity levels, start and end times for, 258
activity diaries, 264
activity patterns, 236
activity space, introducing dynamism into, 403
activity systems, 106
actors
deep encoding by professional, 63
expert, not superior to less skilled individuals for memorizing text, 699
trained to simulate a disease presentation, 332
actual competition, experts performing in, 678
actual performances
as multifaceted, 774
of the routine, 444
acupuncturists, experienced, 341
adaptability, to new circumstances, 120
adaptation methodologies, using rapid assessment techniques, 807
adaptive expertise, 436, 448
adaptive heuristic decision making, 482
adaptive learning environments, 806
adaptive mutations, retained, 796
adaptive performance, of expert teams, 510
adaptive performance measurement system, 511
adaptive support systems, beneficial to expert drivers, 367
added structures, vs. unstructured formats, 799, 801
added visuals, vs. symbolic only presentations, 799, 801
addition, mathematical operations required in, 621
adrenalin (arousal), 553
adult(s)
groups of differing in their knowledge about a given domain, 69
having a vast expert-like knowledge of themselves, 482
by their 7th decade of life, 837
adult aging, 836
Adult-Decision Making Competence assessment (A-DMC), 486, 488, 489
components of, 487
adult experts, systematic differences in the structure of brains, 754
adult numeracy, modern core collection of essential components of, 488
adult writing, as knowledge transforming, 423
adulthood performance, world-class expertise manifesting itself in, 322
advance information, superior pick up and utilization of, 678
advanced ages, expertise providing general benefits, 847–849
advanced learners
making mistakes in their use of collocations, 646
providing with minimally guided problem-solving practice, 806
advanced medical students, remembered more and gave more elaborate explanations, 802
advanced multivariate analysis, 304
advanced music students, think aloud verbalizations by, 206
advanced progressive matrix reasoning test, 488
advanced writers, increase in resting state functional connectivity, 418
adaption, from concrete to abstract thinking, 422
“Advancing the Rationality Debate” (Stanovich and West), 486
adversity
appraised, 301
not a predictor of scientific performance, 301
advertising, discourse of professionalism in, 130
advisory programs, to assist bankers, 97
aerial screw
driven into the air, 819
Leonardo’s design of, 818, 829–830
aerobic capacity, clear advantage for endurance-trained men, 842
aerobic exercise, engaging in intense, 754
aerobic fitness, 754
affect
distinguishing between emotions, 464
providing a metric for mental simulation, 464
affective computing, distinguishing individuals’ affective state, 519
affective intuitions, 496
affective psychopathology, negatively correlated with development of expertise, 224
affective reactions, to changing flight conditions, 464
affective responses, motivating the expert, 464
affective states, increasing for a team, 508
affective traits, 221, 224
affixes, added to a root form, 642
Affordable loss principle, 396
African master drummers, 542
age. See also aging
correlations with levels of performance, 843
as an entanglement with experience, 357
expected age of peak performance, 273
expertise in medicine and, 345
of first publication, 426
functions based on career age, 320
at onset of dystonic symptoms, 565
at onset of musical activity, 561, 840
as a poor surrogate for direct experience, 345
relationships with productivity in work settings, 838
theories of broad decline, 835
when chess players stabilized their performance levels, 843
Age and Achievement (Lehman), 312, 320
age–creativity relationship, historiometric work on, 320–321
aged experts, relying on component processes, 844
age-graded declines, in performance IQ, 837
agency, 112, 444
age-performance curves, 320, 321
age-performance studies, concerning world-class expertise, 320
age-related changes
in domain-general functions, 837
in leisure activities, 845
age-related constraints, 846–847
age-related decline
expert mechanisms as compensatory means for, 843–844
explaining in professional achievement, 745
in knowledge-rich domains, 839
in lab tasks compared to job tasks, 847
Index of Subjects

age-related differences, among individuals with high vs. low levels of domain-relevant knowledge, 845
age-related loss, of functionality in brain regions, 838
age-related slowing, 838, 843
aggregated longitudinal designs, 316
aggregation levels, analyzing data by including several, 280
aging. See also adult(s); age; negative age effects; older adults; older experts
deficits, 17
expertise and, 835–850
neuropsychology of, 844
processes of, 274, 610
aging brain, general processing speed, intellectual abilities and, 837–838
agreeableness, minimum level of most strongly related to performance, 515
AI. See aircraft attitude indicator (AI); artificial intelligence (AI)
air, Leonardo discovered to be compressible, 829
Air France 447, loss of control over the Atlantic, 464
air routes and flight schedules, detailed knowledge of, 721
air traffic control (ATC)
adaptation methodologies applied to, 807
challenging for novice pilots, 729
experiment with a simplified task, 218
high-fidelity task, 218
message recall performance, 845
pilots learning to communicate with, 723
air traffic controllers
developing areas of specialization, 358
learning to scan radar maps efficiently, 723
needing to know information related to safely separating aircraft, 719
talking about “the picture,” 736
air transport, expertise in, 356
air vehicles, managing and controlling autonomous, 187
aircraft accidents in combat, major causes of, 717
aircraft attitude indicator (AI), 366
aircraft handling, as a primary manual or psychomotor task, 729
airline scheduling, 97
airlines, promoting pilots to captain status, 357
airplanes, interfering with radio waves, 828
Aitken, Alexander, 617, 624
alcohol consumption, facilitating performance on problems requiring creative thinking, 816
alcoholism, “reduced” to an aspect, 133
Alexandar the Great, teacher of, 134
algebra component, of numeracy, 488
algebraic manipulation, 154
algebraic problem-solvers, 154
algorithms, 174
All in the Family television show, development of, 302
all-star games, 506
AlphaGo program, 93
alternate form, 215
alternative hypotheses, 88
alternative practice schedules, improving geometry performance of secondary school students, 807
ambiguity, 380, 457
American Express, 97
American neo-behaviorism, emergence of alternatives to, 63
American Psychological Association, Publication Manual, 419
amygdala, 238, 239
analogical reasoning, 99
analogous situations, 821
analogy-making, utility of, 374
analysis of cases, 295
as key to developing expertise in teaching, 447–448 of protocols, 201
required for sense-making, 466
analysis tasks, for expert systems, 96
analytic problems, solving, 816
analytic processing, 235
analytic skills, 447, 448
analytic thinking, 817
analytical and experiential knowledge, integration of, 347
analytical knowledge, 337
analytical processes, involved in situation assessment, 457
“analytical” reasoning, compared to exemplar-based models, 333
anatomical locations, experts more able to correctly identify, 204
anchoring and confirmation bias, 724
anesthesiologists, 180, 715
angel investors, 399
angle, embedded in a 3-D cube versus in a 2-D parallelogram, 582
angry patients, having an effect on accuracy of diagnosis, 347
animals expertise in non-human, 49–55
many as experts, 54
peak performance for evolutionarily relevant skills, 53
socially learning a skill, 51
using in vitally important occupations, 54
anomalizing, 456
antecedents, 87, 88
anterior cingulate cortex (ACC), 247
anthropometric characteristics, 276
anthropometric variables, effects of, 281
anticipation
decision making and, 682
of experts, 362
judgments, 663
laboratory studies of using domain-specific stimuli, 678
of opponents’ actions, 16
role of in the development of expertise, 688
skilled pick-up of information tightly coupled
to biomechanics constraints, 680
studies involving evaluations of visual scenes within
MRI scanner, 246
superior, 677–690
using standard film-based tests of to classify athletes
into high and low performing groups, 658
anticipatory aspects of performance, positive
transfer of, 688
anticipatory behavior, expert advantage in, 677–679
anticipatory bias, 362
anticipatory encoding, of patterns, 683
anticipatory eye movements, produced during
interceptive tasks, 685
anticipatory information, learning incidentally, 689
anticipatory nature, of elite batsmen, 685
anticipatory performance, variance explained by, 687
anticipatory processes, moderating by the observer, 684
anticipatory skill
development of, 690
development or transfer of, 688
improved by perceptual training, 689
influence of practice on, 687
investigating in motor experts, 247
learning, 688–689
anticipatory strategies, of expert performers, 684
anticipatory thinking, 774
apprentices
of craftsmen, 5
apprenticeship
continuing training through, 425
in creative writing programs and schools
of journalism, 424
required to create complex artifacts, 46
in sociological and anthropological work, 21
apprenticeship model of learning, 24
aptitude measures, 213, 346
aptitude-treatment interactions, 801
architect(s)
ability to maintain parallel processes of cognition, 374
different types of skilled processes required for young
and older, 845
experienced approaches, 377
having a seizure, 375
sketching to construct physically visible markers, 154
sought to impose order, 375
unable as a patient to make the transition from problem
structuring to problem-solving, 376
architecture, separating facts from procedures
and strategies, 86
argumenative essays, of freshmen compared
to juniors and seniors, 417
aristocracy, ancient idea of, 139
Aristotle, 5, 134
arithmetic calculation, visual salience and, 153
“arithmetical association,” of mathematical prodigies, 616
arithmetical principles, ability to apply selectively, 624
army infantry officers. See also military officers
SA and expertise in, 730–733
art
instruction manuals, 587
performance differences in as obvious, 576
removing from its bourgeois pedestal, 827
art students
not self-identifying as strong observational
drawers, 589
student apprentices as, 6
articles, approaches to, 279
articulation, of tacit knowledge, 785
artifacts, 118, 119, 121
artificial environment, evaluating an individual’s
performance, 221
artificial intelligence (AI)
debates about the nature of, 26
dominated by expert systems, 88
earliest phase of, 86
expertise in the code, 59–60
foundational ideas, 84–86
history of, 86–87
intelligent assistants, 100
producing information about the attitude
of an aircraft, 367
programs, 60, 61, 85
relation to psychology of expertise, 65
research, 87–89
artist(s)
accomplished, 592
accumulating domain-specific knowledge, 579
advantage in sensitivity to placing squares
appropriately, 588
archival studies of great, 592
better at a number of visual tasks, 160
better at focusing attention on task-relevant
information, 587
compared to non-artists, 579, 592
displaying expertise, 23
drawing with their eyes, 578
engaging perceptual and attentional mechanisms, 591
enjoying advantages in some aspects of perception, 590
experienced, perceptual processing of, 582
experiencing shape constancy, 582, 583
finding parallel deep changes in the perception of, 591
harnessing knowledge of the structure
of appearances, 584
identical perceptual processes as non-artists, 579
outperforming non-artists on perception tasks, 579
perceptual advantages arising from robust
representations of object structure in memory, 585
perceptual advantages viewed as a subset of drawing
skills, 580
producing more motor output per unit of visually
encoded material, 591
rendering the three-dimensional world
on a two-dimensional surface, 584
samples as heterogeneous, 589
seeing the world differently, 576, 579–580
sensitive to essential features of an object, 585
situated at the intersection of a set of complex issues, 592
solving problems in making depictions, 591
stressing the importance of perceptual factors
in depitive skill, 578
superior to non-artists in some aspects of visual
perception, 579
systematic eye–hand strategy while
segmenting complex lines, 591
tracings of a face more accurate than those
of non-artists, 585
visually analyzing the world from an early age, 578
artistic expertise
differences at very low levels of visual processing, 591
facilitating creativity, 592
progress in understanding, 590
roots of, 577
study of, touching on a broad spectrum of issues, 592
understanding motoric aspects of, 591
artistic interpretation, developing, 539
artistic knowledge, articulating, 585
artistic realism, as self-evident, 590
artistic skill, 587
artistic work, produced by Max Beckmann and Philip
Guston, 302
artist-scientist, emergence of, 135
art-making, contemporary modes of not involving
observational drawing, 589
arts and science, peak performance in, 750
artworks, involving visual degradation, 576
ascending auditory pathway, at the brainstem level, 552
Asimov, Isaac, 316
The Ask, 398
as the appropriate practice task, 401
creating spontaneous natural feedback, 399
as inherently intersubjective, 402
planned sequence of actions, 404
for purposeful practice in entrepreneurship, 389,
399, 400
tracking for small business owners, 403
Ask cards, turning into a game, 404
asking, 401, 404
asks
in the development of expertise, 400
Index of Subjects

863

- inputs necessary to creating a new venture, 398
- types of, 399
- assessment instruments, 340
- assessments
 - types of in historiometric inquiries, 314
 - using people rank-ordered over multiple measuring occasions, 214
- assimilation and accommodation, of Piaget, 820
- “assistance dilemma,” 797
- assistance dogs, 50
- associated chess positions, recreating critical, 748
- associations
 - attaching to retrieval cues, 701
 - for substrings, 623
 - of a word, 640
- associative hierarchies
 - bringing to problem situations, 814
 - in Pollock pourings, 827
- associative phase, of skill acquisition, 115
- Assumption-based reasoning, in RAWFS, 457
- assumptions
 - based on the context of the moment, 94
- conveying with strategies, 95
- ATC (air traffic control). See air traffic control (ATC)
- athletes. See also elite athletes; expert athletes; skilled athletes; youth athletes
- development of highly skilled, 9
- differentiating groups of, 310
- displaying expertise, 23
- fitness reduced after weeks of bedrest, 754
- generating actions in a simulator, 72
- having a larger anterior part of the cerebellum, 248
- improving performance to be able to compete at the highest level, 274
- in-depth questionnaires to large numbers of, 261
- monitoring over time, 276
- older, progressing via improvements in cognitive capacities, 273
- performance rated subjectively in team sports, 273
- rating social interaction as enjoyable, 655
- scheduling periods of rest to physical work, 656
- showing video footage of evolving sequences of play, 661
- studying behaviors of when practicing specific skills, 656
- training of pushing beyond comfort zones, 754
- atonal music, imitation by savants, 541
- attained performance
 - individual differences in, 751
 - relation to accumulated practice, 761–763
- attention
 - age-related changes, 838
 - applying conscious focalized as limited, 717
- directing during thinking, 816
- directing toward surfaces by drivers, 360
- drawn to the high-precedence operation, 156
- engaging, 236
- focused on only task-relevant ideas, 815
- focusing inward by eliminating distractions, 421
- knowledge directing, 721
- role of in visually guided action, 587
- sharing, as an important underlying skill, 725
- Attention research category, for transportation, 357
- attentional control, assessments of, 493
- attentional narrowing, 719, 730
- attentional strategies, adopting overt, 152
- attributes, of experts specific to a time and place, 771
- attuned responsiveness, 36
- attunement to constraint, ecological concept of, 773
- audiences, performing in front of, 538
- auditors, assessments by expert, 4
- auditory attention, enhanced in older musicians, 842
- auditory domain, 551, 559
- auditory expertise, 237
- auditory feedback, 550, 554
- auditory gestures, 554
- auditory long-term memory, 552
- auditory probe, responding to during writing, 417
- auditory processing
 - aspects of, 554
 - in musically trained participants using ERP, 842
 - neural bases of refined, 557
- auditory skills, 552
- auditory type, of memory, 617
- auditory working memory, 622
- auditory–motor–emotion integration capacity, 554
- music-making requiring, 554
- aural representation, of an entire piece, 539
- authentic texts, jumping from graded readers to, 647
- authentication and evaluation area, of sociological and anthropological work, 21
- authority, projecting, 21
- authors, age of best work, 751
- autistic savants, musical skills of some, 541
- autobiographies, employed in case studies, 293
- autodidactic learning, 537
- automated application, of expert skills, 803
- automated control systems, 827
- automated performance, 75
- automated sensorimotor skills, 803
- automatic performance, 542
- automaticity
 - cognitive, 723
 - counteracting tendencies toward, 334
automaticity (cont.)
expert performers counteracting, 752
freeing up attention resources for SA, 729
level of “good enough,” 436
of motor skills in more expert musicians, 561
premature, 447
in relation to more cognitive tasks, 723
as a relevant characteristic of expertise, 722
role in spoken and written form recognition
and production, 642
of vocabulary knowledge, 639
automation
counter-acting tendency to, 74
model for working with, 100
negative effect of on SA in driving, 735
automobile driving, 357
automobile manufacturing process planning, 97
autonomous helicopter, interfaces for control
of a full-sized, 187
autonomous phase, of skill acquisition, 115, 116
autonomy of professionals, 22
availability bias, 334
“average maturers,” 276
average sequential thinking, 515
“average” teaching, documenting, 434
aviation
black hole illusion in, 360
experienced group making fast decisions, 364
failures to make accurate projections, 716
aviation pilots. See pilots
awareness, 444
awareness-raising, 368
Awele (an African “sowing” board game), variants
of CHREST applied to, 600
axons, branching of, 560
backfire, building a, 830
backward chaining, 90, 99
backward inverted J-shaped function, 847
Bacon, Roger, on mastering mathematics
by self-study, 6
Bacon, Sir Francis, 6, 87, 135
“Bacionian era,” 135
badminton players, brain changes in, 248
Baduk board game, study on the experts of, 244
Balinese musicians, learning by ear, 544
ballet dancers
activation in the AON when watching ballet, 246
comparing female and male, 246
deliberate practice for, 757
bank managers, tacit knowledge of, 778
bankers, compared to entrepreneurs, 392
bar graphs, expert reading of, 153
bariatric surgery, mortality rate, 346
Barrington, Lord, 535
Bartlett, Frederic, 677
basal ganglia, 243, 556
base model, 183
base rates, 220, 335
baseball
ardent fans compared to more casual, 69
high-knowledge individuals exhibiting superior learning
for materials, 68
requirements for hitting, 678
bases, working out configuration of for DNA, 824
“basic level,” identifying, 159
basketball players
completing a typical pattern recall task, 683
demonstrating immediate recall of game situations, 705
differentiating between basketball play patterns, 683
displaying patterns to expert, recreational
and novice, 684
evaluating the center position, 748
height and success in, 43
increased gray matter in parts of the cerebellum
and striatum, 248
inexperienced, learning to improve information
pick-up, 686
perception of body parts, 246
predicting the fate of free throws, 246
battalion level of command, correlation between tacit
knowledge and supervisor ratings, 778
batting performance, dependent on the skill level
of the pitcher, 221
battlefield commanders, 730
battles, results for generals, 314
Bayes’ Theorem, 91
Bayesian probability theory, subjective expected utility
theory and, 479
Bayesian program, not making calculation errors, 91
Bayt al-Hikma (“House of Wisdom”), in Baghdad, 136
beach debris, used as artifacts, 117
The Beatles, ten-year rule and, 540
beer-mat knowledge, 25
“Beethovians,” 418
beginners. See novice(s)
behaving system, man viewed as, 64
behavior(s)
(adapting to a changing environment, 820
capturing the essence of superior performance, 203
driven by rewards, 514
encouraging and promoting certain, 522
expert, directed toward a target, 151
judgments on, 142
sampling, 776
skilled, involving both action and perception, 155
behavioral and environmental hazard scenarios, 363
behavioral decision science, 485
behavioral genetics, 835
behavioral understandings, building, 160
behaviorism, 37
behaviorist theories, alternatives to, 61
behaviorists, accounting for rule-governed
behavior, 207
“being-in-the-world,” 34
beliefs
of expert musicians, 542
integrating with values, 486
The Bell Curve: Intelligence and Class Structure in
American Life (Herrnstein & Murray), 483
Berlin Academy of Music, 551
Berlin Numeracy Components Tests (BNT-C), 488,
489
Berlin Numeracy Tests, 478
the “best,” not clear in medicine, 344
best practices, promulgation of, 448
best solution, finding in shogi, 243
best work, likely to appear when the most total work
appears, 321
between-person, or inter-individual relative motion,
pick-up of, 661
bias(es). See also cognitive biases
never going away, 498
referring to a tendency not implying error, 477
in research on teaching, 431
of traditional methods for measuring expert teams, 518
bicycles
turning as a dynamic operation, 828
Wright brothers’ expertise with, 828
Bidder, George Parker, 620, 624
bilateral activation patterns, 248
bilateral frontal pole, 240
bilateral neural representation, of cognitive functions
in the female brain, 627
bilateral posterior middle temporal gyrus (pMTG), 241
bilateral supramarginal gyri (SMG), 241, 243
Bill and Melinda Gates Foundation, 438
bimanual coordination, 560
bimanual motor activity, 550
bimanual or quadrupedal coordination, 552
bimodal distribution, Edison’s production
following, 296
Binet, Alfred, 193, 617, 625
binge writing, 422, 424
Biocon, 395
biographical controls, 301
biographical data
deleting subjects owing to a lack of necessary, 313
employed in case studies, 293
biological differences, between the sexes, 627
biological insights, emerging, 74
biological markers, of chess talent, 610
biological motion information, 661
biological motion patterns, 689
biologically primary knowledge, 795
biological/psychological factors, responsible for decline, 847
biomechanical differences, between actions
with different intentions, 680
biomedical knowledge, 803
the Bird-in-the-hand principle, 395
birds, 828
birth attendants, skill acquisition of, 119
“black box,” mind as, 33
black hole illusion, in aviation, 360
blackboard model, of reasoning, 99
“blank slate” perspective, 42
blind people
olfactory discrimination of, 238
relying on touch, 238
blindfold chess, 193, 605–606. See also chess
chess masters playing, 72, 202, 702
blitz chess, 74
blocked academics, thoughts of, 422
blurry photos, identifying objects depicted in, 580
board experts, structural changes elusive for, 244
board games, great burden on the brains of experts, 241
board patterns, involving groups of pieces, 69
bodily actions or habits, making thinking possible, 35
bodily functions, impact on learning ability and cognitive
functioning, 847
bodily space, 35
body
under extended strain, 754
as the vehicle of being in the world, 35
body parts, representation of distinct in brain regions, 556
“bogus models,” creating, 183
“bona fide knower,” refusal to recognize, 22
“bootstrapping,” 396
borrowing and reorganizing principle, 796
bottom-up, data-driven process, attention directed across
all relevant information, 717
bottom-up and top-down processes, theoretical and
empirical reconciliations, 586–588
bottom-up explanations, of drawing skill, 581–583
bottom-up processing
consequence of, 238
described, 580
versus top-down, 580
bottom-up view, 584, 587
boundaries
defining a group, 21
in the natural visual environment, 157
boundary conditions, on the perceptual apparatus, 154
“boundary objects,” stipulating interdisciplinary work, 133
bounded rationality, task environment and, 64
boys
moving to senior competition, 273
outperforming girls in mathematical problem-solving, 627
brain
accommodating expertise, 235
activation increasing with degree of difficulty of an imagined motor task, 558
activation reflecting organization of numerical functions, 629
activities shifting calculation strategy, 629
activity during exposure to odors, 238
adaptations accompanying musical learning processes, 558
adapting to the cognitive demands of expertise, 248
anatomy compared between musicians and age-matched medical students, 562
changes associated with acquisition of musical expertise, 550–570
connections of differing in chess experts, 245
effects of musical training on, 557–559
functioning integral to skilled performance, 677
increase in computational burden, 248
maladaptive changes due to overtraining, 16
mechanisms underlying insight, 817
processes underlying insight in problem-solving, 813
processes of imaging, 576
processing diverse streams of visual information, 576
processing music thorough the use of imaging techniques, 542
reacting with structural and functional reorganization, 239
representing movements, 556
structural changes associated with expertise, 233–248
systems for mathematical expertise, 627–629
brain areas. See also brain regions
active during encoding in memorizers, 240
differentiation by radiologists compared to medical students, 237
involved in a particular kind of expertise, 248
involved in the different components of face processing, 235
brain damage, reducing digit span to two, 623
brain imaging, determination of gray and white matter volume, 559
brain morphometry study, in professional pianists, 562
brain networks
coping with demands of culturally acquired competencies, 628
for musical sub-skills, 552
brain plasticity. See also plasticity
in blind people, 239
not always beneficial, 563
occurring on different time scales, 553
as prerequisite and result of expert performance in musicians, 568–570
shifting from being beneficial to maladaptive, 567
studying, 550
brain regions. See also brain areas
activating by imagined action, 558
differential decline in, 838
enlarged after long-term training, 553
involved in performing music, 554–557
subject to modifications from musical practice, 553
supporting acquired expertise, 841
supporting writing, 415–416
brass instruments, without a gender bias, 565
brass players, larger vital and total lung capacities, 542
breadth, interrelated with depth, 639
breakthrough thinking, in an unreasonable world, 817, 818
breast cancer, diagnosing from reviewing mammograms, 203
“bridge” building, by the identification of a key concept, 379
Bridger (Swiss Mountain Dog), 51
briefing and debriefing alone, not enough to ensure high performing teams, 509
brittleness of knowledge-based systems, 100
overcoming, 90
broad attention, creative thinking and, 816
Broca’s area, in the frontal lobe, 415
Brodmann’s areas, respective, 555
Brunswik, Egon, 777
Brunswik Symmetry, 223, 225
Brunswikian tradition, 453
Brunswik’s Lens Model, 223
buffer zone, finding an existing, 830
“burner,” in the light bulb, 818
bus drivers, not having a larger posterior hippocampus, 245
bus ticket issuing system, designing an automated, 420
business consulting problem, requiring social innovation, 297
business opportunities, 392, 398
business setting, tacit knowledge and expertise in, 778
Buxton, Jedediah, 624
cab-drivers. See also taxi drivers
structural changes in hippocampal areas
of young adults, 841
Caesarean section, 444
calculating abilities, requiring a normal numerical
“starter kit,” 618
calculating prodigies, biographical details of, 617
calculation
cognitive abilities in non-numerical domains and, 618
distinction with memory, 620
of effect sizes, 279, 280
extraordinary feats in abacus competitions, 626
quickly executing complicated, 240
as a separable mental process, 626
by theatrical calculators compared to cashiers, 625
without access to a physical abacus, 704
calculators (human). See also expert calculators; mental
calculators
algorithms minimizing the load on working memory, 622
attracted experimental psychologists as case studies, 617
born or made, 629
developing intimacy with numbers from
an early age, 624
developing techniques for reducing current load, 621
education of, 625–626
general memory ability of, 703
holding many items in mind and also knowing
facts about numbers, 620
incidents awakening the interest of, 624
motivation and instruction of, 624–625
calendrical calculation, algorithm for, 625

Cambridge Handbook of Expertise and Expert Performance, 4, 65
“Campbell’s law,” 432
cancer
probability of, 204
recurrence after surgery, 346, 748
Candle problem, 822
canonical occupational knowledge
comprising societal requirements, 109
described, 109
insufficient alone, 110
key elements of, 110
canonical underlying knowledge, in relevant academic
disciplines, 107
capacity, in Galton’s theory of eminence, 629
capital
access to, 390
constraints on, 390
“Caprices,” for violin by Paganini, 544
captains in the army, serving as platoon leaders, 730
carbon burner, 829
carbon compounds, as possible burners, 818
card sorting, as a measurement of SMM, 512
cardiac surgery, with an attending present, 346
career age
distinguished from chronological age, 321
of an individual, 315
career onset, age at, 320
career paths, defining in science, 137
career trajectory, producing an overall, 316
Carlsen, Magnus, 609
cars, upright and inverted, 158
case(s)
compiling an extensive store of, 460
defining, 292–293
drawing inferences about expert performance, 304
gaining a more concrete and detailed understanding, 304
interpretation of, 294–295
of leader performance and also scientific
performance, 302
not prohibiting statistical analysis, 299
providing an initial diagnosis for, 339
real-world nature of, 292
reflecting an event or series of events, 292
as a starting point for studies of expertise, 292
studies of multiple, 299
viewed as observations of a single individual, 292
case analyses, 291, 298
case data
application of questioned, 292
exploring contemporary, 305
case events, 295
case method, 15, 292–293
case studies
accompanied by experimental, psychometric, and field
studies, 304
assessing expert performance among scientists
and engineers, 300
on average individuals, 305
based on observations or records of exceptional
high-level performers, 304
of creative advances, 823–828
descriptive in nature, 295
focused on elements or aspects of expert
performance, 298
garnering information about professionally
trained chefs, 305
historic, describing social innovations, 297
identifying key capacities underlying expert
performance capacities, 303
interpretation of, 294
key limitation of, 304
leading to conclusions which triangulate, 303
case studies (cont.)
of musicians documenting high achievements, 535
near versus remote associations reconsidered, 830
presented in support of the remote-associates view, 828
regarding theories of leadership, 298
on SA varying as a function of expertise, 726–735
of savants, 579
strength of the inferences permitted by, 304
in studies of expert performance, 303
in support of the remote-associates view, 830
systematic, 302
understanding expert performance by leaders, 298
usefulness of, 830
viewed with suspicion, 303
case-based reasoning system, 99
case-study scenarios, 777
cashiers, better than human calculators, 625
Catalogus Historarium Particularium, 6
categorization mapping, 722
category labels, 160
catheter insertions, 342
Cattell, James McKeen, 312
caudal orbitofrontal cortex, 238
causal analysis, 297
causal Ask, 399
causal chain, 183
causal explanations, 337
causal knowledge, 339
causal mechanisms, decision making skill, 478, 482
causal networks, students developing, 337
causality
complicated by “feedback,” 281
through prediction rejected by expert entrepreneurs, 400
causation. *See also* complex indeterminate causation (CIC) in real-world settings, 400
starting or halting points for complex, 462
cause–effect hypotheses, explaining deviations with, 447
cause–effect theories, generation of, 447
CDM (Critical Decision Method). See Critical Decision Method (CDM)

*cellphones, performance and, 366
cells of the body, adapting, 754
central concepts/frameworks, relation between expertise and, 17
central nervous system
adaptability of, 553
exhibiting plastic capacities, 560
sensitive periods during development of, 551
central sulcus, 555, 560
central vision, 686
centralized leadership, 509
centralized teams, leaders serving as a hub, 459
cerebellum, 240, 247, 557
certain conclusions, 479
certification, of workers/employees, 132
certification exercises, performing well during, 173
certification process, for teachers, 437
ceteris paribus (if everything else is equal), 217
Cézanne, Paul, simplifying objects’ forms, 578
challenging practice activities, recuperation time increasing with age, 847
challenging situations, experienced workers resolving, 175
change, formalizing, 479
change, assessing, 216
change idea, planning and implementing, 444
change over time, 216–220
Chanute, Octave, 827
characteristics, not all declining at the same rate, 274
charismatic leaders, 300
charismatic leadership style, 299
Charness, Neil, 698
Chase, Bill, 697, 698
Chase and Simon
assumptions by, 699
in a classic series of studies, 697
quantifying superior memory for chess positions, 708
checkers-playing program, 60, 87
cheetahs, 53
chemists, 153, 154
chemical spectral analysis, AI addressing, 62
chemical structures, determining from analytic data, 85
chemistry reference works, Edison used, 829
chefs, 305
chess, 234, 701–703. *See also* blindfold chess
accumulated amount of time playing, 703
advantage in pattern encoding, 681
brief description of, 597
check relationship, 241
choosing the best possible move, 598
as a closed environment, 610
as computationally complex, 481
correlation between serious study and chess rating, 760
decision making and, 758
deliberate practice in, 75
developmental issues, 606
differences in experience, knowledge, and skills, 68
effects of on academic domains and general cognitive abilities, 607
expertise in, 597–611, 697
factors differentiating players of different skill, 257
higher skill associated with deeper search, 701
key positions in enabling Masters to acquire a “system of playing methods,” 604
as a model task environment, 597
novices using reasoning by analogy, 606
only reliable difference as quality of the move, 438
pioneering studies of expertise in playing, 200–201
predictors for current skill level in, 608
problem-solving minimally affected by concurrent verbal activities, 605
requiring ability to think about space, movement, time, and to hold a goal in mind, 43
serious solitary study of highly correlated with attained performance, 703
skilled object and pattern recognition in, 241
studies of expertise in, 63
theories making clear-cut empirical predictions, 610
unique impact on expertise research, 610
chess boards
presented with randomly arranged chess pieces, 697
recalling multiple presented in rapid succession, 70
chess computer programs, attempting to approximate an optimal solution, 481
chess expertise
achievement of, 43
factors in the acquisition of, 610
mental manipulation and simulation of the perceived stimuli, 233
studies of illustrating cognitive mechanisms, 481
studying, 62
chess experts
brains accommodating highly specialized cognitive processes, 243
comparing to less skilled chess players, 481
considering more alternative move sequences, 202
considering qualitatively different moves, 481
delaying when evaluating multiple moves, 418
domain-specific knowledge stored in LTM, 234
faster at identifying chess pieces, 241
looking for the best continuations, 234
memory constrained to regular chess positions, 10
memory skills, 70
not requiring cooperation of the chessboard, 431
superiority largest with meaningful positions, 606 visual-perceptual processes underlying mastery, 73
chess games
experimenter reading sequences of moves from multiple, 203
merely playing not providing immediate feedback after each move, 703
not every move equally important, 748
playing a larger number of on the internet correlation with chess skill, 733
chess grandmasters
recognizing tens of thousands of board configurations, 796
seeing the board differently, 619
simultaneously playing hundreds of games, 480
chess masters
following multiple games, 72
integrating piecemeal information presented auditorily, 702
making better moves, 438
mentally generating chess positions associated with multiple chess games, 203
mentally updating multiple chess games, 702
playing blindfold, 72, 202, 702
problem-solving expertise not generalizing to other tasks, 89
recalled more pieces correctly for positions from chess games, 697
recalling a series of different chess positions, 73
recalling information from 5–10 chess positions, 698
recalling positions after a single tachistoscopic presentation, 623
recognizing 50,000 patterns of chess pieces from master-level games, 820
seminal study of skills of, 820
thinking aloud during a tournament match, 200
chess moves
all not equally important, 749
enormous number of possible, 598
quality of, 844
chess openings, studying, 758
chess performance affected separately by IQ and practice, 609
superior captured by presenting chess positions, 699
chess pieces, possessing characteristic functions, 243
chess planning skills, not transferring to solving the Tower of London, 607
chess players. See also abilities, of chess players; expert chess players; older chess players; skilled chess players
ability to play “blindfolded,” 193
amateurs less able to extend their search beyond the top left quadrant of the board, 604
asking to think aloud, 597
aspects of cognitive mechanisms and processes, 698
average score highly correlated with official chess ratings, 749
better, having a larger visual field, 599
choosing the best moves to play, 598
consistently winning tournament games, 67
descriptions of games centered on key positions, 604
chess players. (cont.)
detecting strategically important configurations of chess pieces, 579
doing little search yet finding strong moves, 598
generation in planning, 702
evidence for extensive planning and evaluation of consequences by expert, 72
examined the chess position and then generated some promising moves, 701
fixating more on the edges of squares than weaker players did, 599
forming new relational patterns for unusual piece placements, 603
generating moves selectively, 598
highly skilled, 201
holding chunks in STM, 697
identified tournament competition as an activity similar to purposeful practice, 843
increasing ability to select the best move, 699
longitudinal investigation of a Canadian, 602
male, 18% not right-handers, 610
memorized pieces better when functionally relevant, 605
most proficient not thinking further ahead than less skilled players, 597
not spending time practicing memory for briefly presented chess positions, 703
perceptual skill not helping them memorize visual shapes unrelated to chess, 607
playing speeded chess, 201
problem-solving behavior specializing in two different chess openings, 602
recalling locations of pieces, 202
recognizing patterns of chess pieces (chunks), 697
remembering multiple boards, 600
searching selectively among alternative moves, 598
skill levels determined by the outcomes of 20–40 matches in chess tournaments, 748
study of master level and less accomplished, 68
superior move selection skills, 837
tending to use less risky strategies when playing against stronger players in rapid-transit games, 606
thinking aloud while selecting the best moves, 74, 200
trying to select the best move, 749
twelve years of age as a tipping point for, 609
weaker not able to adapt search strategy to the requirements of the task environment, 602
chess positions
ability to select the best move for presented, 13
from actual games of chess masters, 200
best players’ ability to rapidly perceive the relevant structure of the presented, 201
with critical moves, 749
critical taken from real games, 749
deeper understanding of the structure of, 193
encoding and manipulating internal representations of, 203
generating an accurate memory representation of, 702
memory for briefly presented markedly differentiated skill levels, 597
mentally transforming and then planning long sequences of moves, 703
planning for difficult, 201
presenting briefly (5 s) and requesting immediate recall of each position, 697
presenting to players with the explicit task of finding the best next move, 701
randomization of, tapped into pattern recognition processes, 242
recall of randomly scrambled equally poor regardless of skill, 697
storage of briefly presented, restricted to STM, 698
superior ability of skilled chess players to image mentally, 202
chess problems, presenting with think-aloud protocols, 200
chess ratings in a large sample of rated players, 843
measuring, 200
chess representations, 605
chess skill correlated with the quality of chosen move, 603
positive correlations with fluid reasoning, 607
relating archival data about international chess skill ratings to group and individual practice amounts, 262
relationship with cognitive ability, 607
chess-playing computer programs, getting objective scoring of different moves from, 749
chess-playing computers, best move objectively determined by, 200
chess-specific object recognition, 841
chess-specific task areas, more activated in experts, 241
Chicago Manual of Style, 419
child prodigies
biographical accounts of, 536
in chess, 597
special attention to, 535
child seat, in the IDEO shopping cart, 824
childhood and adolescence, development during necessary for attaining highest level of achievement, 750
childhood story writing, common for writers, 426
children born with extensive bilateral cataracts, 151
distinguishing writing from drawing, 422
with extensive knowledge of chess and dinosaurs, 12
intensive musical training bringing about lifelong
change, 569
introduced to the musical domain in an informal
phase, 540
practicing by themselves, 539
recreating types of activities seen during match
play, 659
subjected to extensive abacus training, 626
talented, practicing more, 537
China, competitive piano instruction system, 544
Chinese chess board game, nucleus caudatus smaller
in experts, 244
Chinese teachers, emphasizing relationship
with students, 442
chi-square goodness-of-fit tests, 279
choice outcome modeling, 481
choice path independence/consistency, 486
choices
always entailing some risk and uncertainty, 493
guided by acceptable downsides, 396
choose-a-move task, using full chessboards, 599
chordal notes, distributing on the keyboard, 540
CHREST (Chunk Hierarchy and REtrieval STructures)
computer program, 600, 602
chronic pain, 567
chronological age of an expert, 314
chunking
rates of, 610
replicated in other domains, 69
chunking theory, 600
chunks
defined, 69
experts having more complex, 697
giving access to information, 600
recognizing and encoding important features, 579
reflected a deeper meaningful structure, 69
CIC. See complex indeterminate causation (CIC)
cingulate gyrus, 244, 556
cingulate motor area (CMA), 555, 556
circular objects, projecting to the retina as ellipses, 581
“circulation of elites,” 139
civilian aircraft pilots, 109
class inclusion illusion task battery, 489
class of movements, expertise in producing, 681
classes of situations, instantly recognizing known, 722
classical music
composition of, 318
instrumentalists having to master the most demanding
repertoire as teenagers, 540
majority of patients suffering from focal dystonia
performing, 566
classical music composers, 319. See also composers
expertise acquisition in, 315
sample of eminent, 319
classical musicians, solitary practice of, 538
the “classical” number area, in the brain, 628
classical repertoire, large portion of practice as solitary, 538
classification
issues of, 228
of prior solutions, 381
classroom
categorization of what’s important in, 443
expertise in, 440–443
lesson, effectiveness of, 433
management and organization, 441
settings, characterized by words, 642
teaching, narrowing focus to, 432
Classroom Video Analysis (CVA) assessment, 441
“Clerical/Conventional” trait complex, 226
climatic variation, contributing to human
brain expansion, 41
clinical cases, portraying similar patient presentations, 339
clinical decision making, assessed by script
concordance tests, 777
clinical diagnostic reasoning, 332–336
approaches to teaching, 336–339
clinical education, dissociating from the clinical
setting, 338
clinical medicine, creating systematic approaches
to learning, 332
clinical problems, 336, 338
clinical reasoning
approaches based on alternative diagnoses
for teaching, 339
curriculum strategies to enhance, 337–338
developing through education, 336–337
drawing on a set of canonical factors, 110
levels of representation acquired to support, 205
meta-analyses of, 753
clinical teachers, 785
CLIPS, 89
closed loops, in the Flexecution model, 462
“closed mind,” of a team, 514
closed sports, 666, 705
clustering, of genius and talent, 318
Cmap Tools, 467
Coach Assessment Instrument, 258
coaches
assessing, 258, 755, 763
collecting information about parents’ height
and maturation status, 752
creating conditions producing the best performance
during practice, 668
coaches (cont.)
encouraging self-directed practice, 668
individualized practice without, 758
necessity of having, debated in the chess literature, 606
objective archival data on, 305
providing instruction explicitly and frequently, 668
ratings of elite players, 687
recruiting individuals for successful teams, 747
time use of expert, 258
cognitive load
higher levels of for experts presented with prompts, 799
872

cognitive adaptation, in music, 541–542
cognitive advantages, evident for those who take
music lessons, 848
cognitive aging research, 837
cognitive analyses, 105, 170
cognitive apprenticeship, 113
cognitive architecture, 795–797, 802
cognitive automaticity, 723
cognitive biases. See also bias(es)
aring from the use of heuristics, 334
ers resulting from hard-wired, 336
experimentally induced, 334
herent in human reasoning, 336
role in reasoning, 335
teaching to reduce diagnostic errors, 335
cognitive changes, corresponding to brain changes, 837
cognitive competencies, systems of, 42
cognitive conceptualizations, of tacit-knowledge acquisition, 782
cognitive constructs, 171, 172
cognitive control (or executive control), components of, 837
cognitive correlates of expertise, resulting from extended deliberate practice, 105
cognitive cost, 382, 383
cognitive decline, 357, 848
cognitive demands, of writing, 414–416
cognitive differences, underlying the SA abilities of experts, 725
cognitive disinhibition, 815–816, 831
cognitive domain, 234
cognitive dynamics, in skilled decision making, 480
cognitive ecology of expertise, 51
cognitive elite, 484
cognitive engineering and decision making technical group, 187
cognitive expertise, 168
cognitive expertise connecting incoming stimuli with existing knowledge structures in the LTM, 239–245
parietal areas in, 248
structural brain changes in, 244–245
cognitive fidelity, 460
cognitive functions
overloaded by the demands of composing an extended text, 413
ome domains less affected by aging than others, 838
ithin a specific challenging incident, 176
cognitive impulsivity, assessment of, 489
cognitive inhibition, being less subject to, 815
cognitive load
higher levels of for experts presented with prompts, 799

cognitive abilities
breed differences in, 52
correlation with performance of beginners, 707
dog breeds not actually differing in, 54
high levels of not generally required for skilled or expert decision making, 476
intelligence and, 763
measures as general, broad, or specific, 222
reanalysis of factor-analytic studies on, 484
tests of, 489
underlying expertise in SA, 725–726
cognitive activities
following a formal process of reasoning, 165
involved in predicting hazards, 734

cognitive biases: See also bias(es)
cognitive architecture, 795–797, 802
cognitive automaticity, 723
cognitive biases. See also bias(es)
aring from the use of heuristics, 334
ers resulting from hard-wired, 336
experimentally induced, 334
herent in human reasoning, 336
role in reasoning, 335
teaching to reduce diagnostic errors, 335
cognitive changes, corresponding to brain changes, 837
cognitive competencies, systems of, 42
cognitive conceptualizations, of tacit-knowledge acquisition, 782
cognitive constructs, 171, 172
cognitive control (or executive control), components of, 837
cognitive correlates of expertise, resulting from extended deliberate practice, 105
cognitive cost, 382, 383
cognitive decline, 357, 848
cognitive demands, of writing, 414–416
cognitive differences, underlying the SA abilities of experts, 725
cognitive disinhibition, 815–816, 831
cognitive domain, 234
cognitive dynamics, in skilled decision making, 480
cognitive ecology of expertise, 51
cognitive elite, 484
cognitive engineering and decision making technical group, 187
cognitive expertise, 168
cognitive expertise connecting incoming stimuli with existing knowledge structures in the LTM, 239–245
parietal areas in, 248
structural brain changes in, 244–245
cognitive fidelity, 460
cognitive functions
overloaded by the demands of composing an extended text, 413
ome domains less affected by aging than others, 838
ithin a specific challenging incident, 176
cognitive impulsivity, assessment of, 489
cognitive inhibition, being less subject to, 815
cognitive load
higher levels of for experts presented with prompts, 799

cognitive abilities
breed differences in, 52
correlation with performance of beginners, 707
dog breeds not actually differing in, 54
high levels of not generally required for skilled or expert decision making, 476
intelligence and, 763
measures as general, broad, or specific, 222
reanalysis of factor-analytic studies on, 484
tests of, 489
underlying expertise in SA, 725–726
cognitive activities
following a formal process of reasoning, 165
involved in predicting hazards, 734
Index of Subjects

managing, 417–419
measures of, 793
reduction in initial levels of, 800
cognitive load theory, as a framework for the expertise reversal effect, 794–797
cognitive mechanisms, of expertise, 233–235
cognitive models
for individuals and teams, 169
of specific task performance variations, 60
cognitive operations, in chess having a time cost, 605
cognitive or intellectual ability, psychological measurements in, 222
cognitive performance
creating systems supporting, 467
effect of expertise on, 735
not capturing the exact path of synapses of actual thought, 93
cognitive perspective, inciting to focus on instruction, 121
cognitive phase, of skill acquisition, 115
cognitive plasticity, decreasing in later adulthood, 846
cognitive processes
acquiring biologically secondary information, 795
changes in mediating performance, 806
comprehensive analyses of the full range of underlying, 494
described, 178
differences explaining the superior selection of moves by world-class players, 201
generating thoughts corresponding to the required explanations and descriptions, 196
high-level, 662–663
inhibiting the performance of experts while enhancing the performance of novices, 808
mediating answers to existing questionnaires, 207
mediating superior digit-span performance, 199–200
retrospective reports on during a memory trial, 701
of tacit-knowledge acquisition, 782
training those involved in insight and learning from context, 783
used to transition from one cognitive state to another, 180
cognitive processing, progression from formal to informal, 166
cognitive psychology, 60–64
cognitive researchers, laboratory experiments measuring “microcognitive” functions, 461
cognitive science
critical role of knowledge base in cognition and learning, 796
defined, 61
mainstream, 171
“representing” constructs of novice and expert deliberations, 63
Cognitive Science journal, 61
cognitive science movement, 63
Cognitive Science Society, 61
cognitive shortcuts or heuristics, Type 1 reasoning based on, 333
“cognitive snap,” 818
cognitive states, 178, 179, 180
cognitive strategies, of writers, 418
cognitive structures, 33
cognitive structures and skills, acquired with training, 67
cognitive style and environment, promoting experiential learning, 776
cognitive support, enhanced, 180
cognitive support systems, 171
Cognitive Systems Engineering application areas for, 186–187
drawing on theoretical or conceptual paradigms, 166
historical background, 165–167
knowledge elicitation within, 167–170
models for, 166
understanding the nature of expertise in work practice, 167
cognitive task analysis (CTA)
creating programs for training expertise, 458
of intelligence work, 172
methods, 458
simulation exercises and, 460
cognitive tools, developed from a formal analysis, 166
cognitive training, 173
cognitive traits, 221, 222–224
cognitive turn, signaled active involvement of the mind, 37
cognitive units, expertise involving larger and more integrated, 68–69
cognitive work, performed with high levels of proficiency, 167
Cognitive Work Analysis, 167, 170
cognitive work systems, 188
cognitive/intellectual abilities, 218, 222
cognitive/intellectual correlations, 223
cognitive-motor tasks, 835
cognitive-theoretic language, 168
cognitivism, perspective of, 106
coherence, establishing, 416
coherence standards, 478
cohesion, of team members, 508
collaboration appraised for scientists, 301
between specialists, 22
collective efficacy and team performance, curvilinear relationship between, 510
Index of Subjects

collective leadership, theory of, 298
collective or shared capability, designing as, 372
collective task engagement in creativity tasks, 520
collectivist leadership events, identified, 299
college admissions tests, measuring
 wisdom-based skills, 779
college students, tacit knowledge-acquisition processes and, 782
Collins, Alan, 61
collations, 644
 judged acceptable by native speakers, 646
 occurrence in language, 643
 second language learners tending to use large numbers of, 646
 of a word, 640
co-located teams, 168, 458
colon tissue, microscopic images of, 204
color cueing, 689
color vision, normal or defective, 618
colored patch, highlighting locations for directing gaze, 689
combat readiness status, gathering information on, 732
commanders, preparing for enemy attacks, 723
commercial airline pilots, attention to cues signaling deteriorating weather, 725
commercial driving privileges, becoming attainable, 357
“a committee of examiners,” satisfying to become a master, 6
common arrangements, without explicit agreement or discussion, 772
common coding view, evidence supporting, 681
common ground, team members ensuring, 459
common identity, through occupational and professional socialization, 130
common practice activities, duration of, 761
common problems, no difference in accuracy for residents and experts, 205
common sense understandings, of expertise, 25
common variance, between predictors, 225
communal CMC, 517
community, among predictors and trait complexes, 225–228
communication as a critical component of teamwork, 511
 network and leader skills, 299, 732
 pivotal role of, 459
 protocols, 459
 styles, 299
 tasks, 785
team members not exhibiting need for explicit, 511
communicative purposes, of formulaic language, 645
communities of practice, 23, 781
community development, experts fostering, 770
community of knowers, 22
company, building for an imaginary product, 405
comparative advantage, 45
compensation in the neuropsychology of aging, 844
 between performance characteristics, 275
 compensation account, assuming that older experts actively acquire new mechanisms, 839
 “compensation phenomenon,” 666
 compensatory behaviors, of drivers, 357
 compensatory benefit, of neural scaffolding, 844
 compensatory mechanisms, establishing evidence for, 844
 compensatory strategies, 357
 competence, 142
 assessment, 486
 improvement, 397
competencies
developing evolutionarily novel, secondary, 42
display of multiple, 314
competitions, 764
competitive environment, retaining “currency” in, 666
competitors, for an imaginary game, 407
compiled knowledge, 106
compiled procedures, with minimal reliance on conscious memory, 116
complete dataset, required to do analyses, 280
completeness, proof of not possible for cognitive engineers, 168
completion strategy, 306
complex calculation, 623
complex cognitive behaviors, developing to a level of automaticity, 723
complex computation, 628
complex environment, finding a way in, 244
complex hand postures, 552
complex indeterminate causation (CIC). See also causation connection with, 400
internalizing, 394
inverting from a liability to an asset, 401
purposeful practice in domains characterized by, 400–403
complex information, presenting, 800
complex interaction, between cognitive processes during anticipation, 663
complex patterns in memory, as the essential factor for development of expertise, 541
complex perception, cases of, 152
complex pieces of music, playing of, 555
complex plans, experts generating during activities, 696
complex rhythmic sequencing tasks, 841
Index of Subjects

complex rhythms, PMA responsible for processing, 556
complex situations and structures, aligning mental models and physical displays, 153
complex systems, 443, 444
complex tasks, brain plasticity observed for, 553
complexity
 carrying a price, 357
 of the chess problem, 602
 cognitive limit to the amount of, 380
 in design thinking, 376
component processes, decomposition of a complex skill into, 843
components, 643
components or dimensions approach, 640
composers. See also classical music composers
 faster start for, 319
 “10-year rule,” 540
 think aloud verbalizations by, 206
composing processes, demands on working memory, 417
composition, 414, 418, 516
compositional emergence, of a team of experts, 506
compositionality, 623
compound remote associates (CRA) problems, 819, 831
comprehension
 benefits of imprecise, automatic aspects of, 483
 factors other than coverage contributing to full, 636
 lexical coverage needed for successful, 635
 comprehensive adult numeracy framework, 488
computational devices, 59, 61
computational frame-based knowledge representation, 61
computational knowledge representation language, 61
computational models
 accounting for task performance, 197
 focused on capturing methods and forms of exceptional performance, 62
 of problem-solving, 605
 psychology embraced as a method, 60
 regenerating human performance on well-defined tasks, 194
computational procedures, 96
computational question-answering system, 61
computer(s)
 brought renewed interest in human cognition, 194
 modeling the expertise of recognized experts, 99
 not socialized into the relevant community, 26
 processing “symbols and symbol structures,” 59
 providing more efficient training tools, 607
 searching selectively among alternative chess moves, 598
 standing as formal models of human cognition, 61
 computer chess programs, achieving high-level play, 598
computer game, of entrepreneurship for marketing exercise, 405
computer mediated communication (CMC), 517
computer models
 designed to represent artificial methods, 60
 developed by Herbert Simon and Allen Newell, 59
 encoding extracted knowledge in, 76
 in support of various cognitive construct, 64
computer networking training simulation, 800
computer programs
 experimenting with variations, 86
 forcing precision, 100
 modeling the human problem-solving processes, 60
 performing intellectually challenging tasks, 696
 simulating aspects of thought processes, 696
computer science
 close collaboration with cognitive psychology, 61
 expert systems and, 84–86
computer software, replicating cheaply, 96
computer tools, 465
computer-based environments, 419
computer-based tutors, 807
computerization, 171, 172
Computers and Thought (Feigenbaum and Feldman), 60
computing devices, design of portable and wearable, 467
conative traits, 222, 224
Congratulations, 443–450
concept and referents, of a word, 640
concept formation, 61, 63
concept and referents, of a word, 640
concept and referents, of a word, 640
concept and referents, of a word, 640
concept formation, 61, 63
Concept Map(s), 176–178
building, 176
capturing expert knowledge, 176
constructed by medical resident groups, 802
created in social network analysis, 176
development as formal models of human cognition, 194
of the field of Social Network Analysis, 176
generated by Herbert Simon and Allen Newell, 59
generating models of abstract knowledge supporting cognition, 176
goingerating models of abstract knowledge supporting cognition, 176
including protocols for elicitation, 170
as a measurement of SMM, 512
representing and communicating complex problems and solutions, 467
representing practitioner knowledge of concepts and their relations, 182
concepts. See also abstract concepts; self-concept; semantic concepts; solution concepts
realization of a link between, 814
underlying cognition, 170
Index of Subjects

876

conceptual design, fixation hindering, 382
conceptual framework ("ontology"), 92
conceptual knowledge, role in chess expertise, 604
conceptual models
 associated with each of the Cognitive Systems
 Engineering paradigms, 166
 explaining team processes, 508
centralizations, of learning processes, 115–116
conclusions
 certain, 479
 experts explaining after the fact, 94
 concrete words, 417
 concrete working knowledge, 133
 concurrent approaches, 257–260
 concurrent chanting, minimal effects of, 199
 concurrent validity, 263
 concurrent-validation assessment, 216
 concurrent-validity procedures, 216
condition-action statements, 773
condition-action method, 782
Condition-Focused method, 782
conditions, enabling, 71
 “conditions for optimal learning and improvement
 of performance,” evidence of, 755
conductors. See orchestra conductors
conference, first using the word “expertise” in its title, 65
confidence
 of expert teams, 509
 in one’s abilities, 225
 under/over, 487
confidential calibration, 488, 490
confidence factor, associated with a rule, 91
configural operationalization, 515, 516, 521
conflict
 between democratic control and rational administration
 through experts, 139
 in virtual teams, 518
 conflict management, 518
confusion, as a critical part of deeper learning, 435
congenital disability, for arithmetic, 629
congruence, maximizing, 228
congruent learning style and work setting, among
 Malaysian public sector employees, 776
connections
 among unrelated ideas in the unconscious, 814
 of concepts and understanding to the practice
 of routines, 445
connective thinking, improving team innovation through
 cooperative learning, 515
conscious memory, deploying in monitoring
 and evaluating actions, 116
conscious perception, of the environment not, 581
consciousness
 altering to facilitate entry in a flow state, 421
 attribution of to any entity besides adult human
 language users, 49
 as being-towards-the-thing through the intermediary
 of the body, 34
consequence events, 723
consequences, 72
consequents, 87, 88
consistency
 accounting of, 214
 of decisions, 486
 as a signal, 519
conspecifics, 51
constraint analysis, impact on expert performance, 302
constraints
 on acquiring high levels of performance, 77
 applying in the situation at hand, 302
 being attuned to, enabling consistent goal
 accomplishment, 773
 existing for maintenance of skills, 846
 experimental studies of, 302–303
 identification of, 298
 important for the maintenance of expert
 performance, 837
 imposed by artists on their work, 302
 “introduced” by the designer from domain
 knowledge, 378
 less restrictive resulting in more viable or original
 products, 303
 manipulating for solutions of higher quality, originality,
 and elegance, 303
 promoting attentuation to, 781
 constraints of use, of words, 640, 643
 constraints-based perspective, 343
 construct de-confliction, opportunities for, 520–522
 construct validity, as the central validity question, 215
 construction technique, for a knowledge-based system, 85
content knowledge
 American schools heavily emphasizing
 the development of, 780
 for teachers, 441
content presentation, improving, 36
content “problem space,” 414
“content specificity”
 finding of, 332
 in the medical domain, 344
content validity, 215
context
 effects of, 461, 662
 making invalid assumptions about, 94

© in this web service Cambridge University Press

www.cambridge.org
Index of Subjects

role of, 662
situation specific and non-situation specific, 665
correlational data analyses, historiometrics
depending on, 313
correlational method, lacking the power of causal
inference, 322
correlations, 279
between age and overall typing speed, 844
with measures of limited variability attenuating, 220
pattern of declining, 221
cortical reorganization, 542
cortical representation of fingers, 842
cortical somatosensory representation, of fingers
or lips, 567
cortical thickness, in experts, 245
corticospinal tract, connecting primary motor areas, 560
cost estimates, for marketing the imaginary product, 407
cost savings, major internal, 96
cost–benefit analysis, needed with any talent
identification model, 667
costly signals, especially important in humans, 44
counter-elites, emergence of, 139
counting, 617, 622
courses of action (COAs)
not specifying alternate, 733
recognizing, 386
typical, 457
court experts, as witnesses, testifying knowledge, 141
covariates, time-varying, 281
coworkers, support from, 522
Cox, Catharine, 312
CRA problems, 819, 831
crafters, at two levels of (self-reported) skill, 847
crafting knowledge, for a specific audience, 423
cramping muscles, 568
Crazy Quilt principle, 394
creative achievement, for Edison, 296
creative activities, deliberate practice and, 75
creative advances
building on expertise, 812
case studies of, 823–828
developing from attempts to apply expertise
to the situation, 832
evolving out of attempts to apply knowledge
to the new situation, 813
never based directly on remote transfer, 821
transfer of knowledge underlying large-scale, 831
creative composition, activations lateralized, 418
creative design, 378
creative expertise, domains entailing, 322
creative experts, treating problems as “harder”
problems, 386
“creative explosion,” 30,000 years ago, 576
creative ideas, arising from restructuring a problematic situation, 817
creative imagination, as unstructured, 813
creative individuals, 815
creative leap, bridging partial models, 379
creative output, empirical relation between quantity and quality of, 311
creative people, 815
creative problem-solving, 301
creative processes, close links with co-evolution, 378
creative production, 820
creative recombination, as insight, 813
creative re-interpretation, reaching, 381
creative response, to a situation, 816
creative story, writing using unrelated words, 416
creative thinking
defined, 813
deliberate practice and, 831
depending on the rejection of expertise, 817
expertise and structured imagination in, 812–832
expertise in, 820–828
people solving problems requiring, 813
remote associates in, 813–820
stimuli demanding, 814
types of transfer of expertise in, 820–821
utilizing remote associations, 814
creative writers, 418, 421
creative writing, brain activation, 416
creativity
artistic expertise and skill facilitating, 592
bringing together unrelated ideas, 819
combining associative elements, 814
diminished by extrinsic rewards for writers, 421
four-stage model, 814
Lehman’s tables and graphs concerning some form of, 320
modern emphasis on expertise in, 820
political environments nurturing, 318
promoting team creativity, 516
requiring thinking outside of the box, 832
restructuring as the basis for, 817–819
source of, 17
transfer of expertise and structured imagination in, 828
“credentiaлизм,” 132
credibility, in TMS, 512
credit card transactions, fraud detection software for, 97
cricket batsmen in, 685, 687
bowlers in, 679, 749
criteria, for case studies, 295
criterion performance, 216
as relatively narrow, 223
validity, 215
critical causes, difficult to isolate in cases, 292
critical cues, 680, 725
Critical Decision Method (CDM), 168, 175–176, 181, 187, 458
“critical incident” descriptions, 457
critical period, in the acquisition of chess skill, 609
critical reflection, capacity for, 37
critical thinking, 782
crop dusters, societal expectations for, 109
cross-cultural comparison, benefits of, 435
cross-lagged“-design, 262
cross-sectional designs, of historiometric studies, 315
cross-sectional study
comparing different population groups, 277
preceding a longitudinal study, 271
typical, 277
cross-sectional time series analysis, 316
cross-training, leading to shared team interaction, 513
cross-validation, performing, 265
eystallized intelligence (Gc), 227
changing how problem-solving is carried out, 607
defined, 775
described, 836
human capacity for accumulating, 273
testing for, 488
“crystallized” or “pragmatic” aspects, of intelligence, 838
CTA. See cognitive task analysis (CTA)
cue-hazard relation, research focusing on, 363
cues
activating appropriate goals and models, 717
critical required to lead to a match or a near match, 722
identifying perceptual, 681
as often dynamic, 455
salience of, 716
understanding which are important, 386
cultural activities
expertise and, 436
hard to change, 435
learned implicitly, 435
teaching as one, 434–435
cultural assumption, that teaching is not something generally subject to improvement, 445
cultural differences, among members of a team, 517
cultural diversity, of virtuality, 517
cultural environment, promoting the development or neglect of skills, 544
cultural factors, central to both the development and practice of expert teachers, 434
Index of Subjects
879
cultural knowledge, influencing military personnel during
crowd management in the Middle East, 465
cultural lenses, breaking free of, 435
“cultural modernity,” 45
cultural nature of teaching, raising problems
for educational change, 435
cultural routines
changing, 443, 444
of teaching, 435
cultural sense-making, 465
cultural-historic activity theory, 106
culture(s)
adapting to an ever-changing environment, 435
of humans as complicated and sophisticated, 40
“current condition,” 444
current knowledge state, assessing for students, 440
current routines, building awareness of, 444
curricula, as means of organizing learning, 118
curriculum
knowledge, 441
original meaning of, 117
strategies, 338
curvilinear function, describing the output
of creative products, 320
CVA (Classroom Video Analysis) measures,
as better predictors of student learning, 441
CYC, encoding common sense knowledge, 94
cycles, involving analysis, planned activity,
and assessment, 448
cycling, between goal-driven and data-driven
processing, 717
da Vinci, Leonardo. See Leonardo da Vinci
daily experiences
deliberate practice (or deliberate performance)
during, 447
mediation of, 113
daily training logs, 266
D’Alembert, Jean Le Rond, 6
dancing, series of studies on the AON, 246
Darwin, Charles, on zeal and hard work, 629
dase, Zacharias, 626
data
collection and analysis, 261
combining new to build understanding, 718
integrating all relevant into a “story,” 466
needling theories, 795
recognizing patterns and anomalies in, 467
data-directed problem-solving,
as forward chaining, 99
Data/Frame (D/F) Model of Sense-making, 461–462, 463
daydreaming, conducive to writing, 422
de Fermat, Pierre, 479
de Groot, Adrian D., 62
analysis of “think aloud” protocols, 701
chess masters picking a promising move, 820
experimental studies, 597
inviting chess masters and skilled club players
to “think aloud,” 11
study of expert performance in the study
of chess, 200
debriefing
improving team performance, 509
scheduling after performance episodes, 523
decade of intensive preparation, required
to achieve excellence, 425
decade of practice. See also “10-year rule”
progressing from knowledge telling
to knowledge transforming, 423
decentralized leadership, 509
decentralized teams, 459
decision, 247
decision(s)
analyses for high-stakes decision making, 480
approximating normative standards, 483
compared with judgments, 476
emerging from recognition, 453
explanations of, 195
exploring cognitive dimensions made
by experienced workers, 175
making effective, 398
making in complex situations, 453
making incrementally and iteratively, 455
most as ill-structured, 480
requiring particular kinds of expertise, 26
as response to naturally occurring situations, 758
superior defined by optimization analyses, 479
decision aids (visual aids), 366, 496
decision competency assessment, 486–488
Decision Ladder(s)
identifying cognitive states and cognitive
processes, 167
as the product of Work Task Analysis, 179
suite of, 178
decision makers. See also decision making
balancing risks and implications, 498
flow of information to, 174
least cognitively “able” among
the most skilled, 482
in sport, 660
decision outcomes, independent of intelligence, 488
Decision Outcomes Inventory (DOI), 486
decision paths, observed, 179
decision performance and ability structure, 486
<table>
<thead>
<tr>
<th>decision points</th>
<th>employing CTA to identify, 458</th>
</tr>
</thead>
<tbody>
<tr>
<td>decision problems, solving, 405</td>
<td></td>
</tr>
<tr>
<td>decision processes, identifying, 179</td>
<td></td>
</tr>
<tr>
<td>decision quality, predicting, 478</td>
<td></td>
</tr>
<tr>
<td>decision research, in chess, 481</td>
<td></td>
</tr>
<tr>
<td>decision rules, applying, 486, 487</td>
<td></td>
</tr>
<tr>
<td>decision science, 478</td>
<td></td>
</tr>
<tr>
<td>decision sciences and technologies, 498</td>
<td></td>
</tr>
<tr>
<td>Decision Skills Training (DST), 459</td>
<td></td>
</tr>
<tr>
<td>decision strategies, 166, 479</td>
<td></td>
</tr>
<tr>
<td>decision support</td>
<td>simple, powerful, 494–497</td>
</tr>
<tr>
<td>technologies, 480</td>
<td></td>
</tr>
<tr>
<td>Decision-Centered Design (DCD), 170, 466</td>
<td></td>
</tr>
<tr>
<td>decision making. See also decision makers; general decision making; judgment; skilled decision making; superior decision making across cultures, 465</td>
<td></td>
</tr>
<tr>
<td>advice-giving tasks and, 97–98</td>
<td></td>
</tr>
<tr>
<td>central issues of, 187</td>
<td></td>
</tr>
<tr>
<td>in chess and other domains, 748–749</td>
<td></td>
</tr>
<tr>
<td>from deliberate evaluation and representative understanding, 496</td>
<td></td>
</tr>
<tr>
<td>effective, depending on high levels of SA, 715</td>
<td></td>
</tr>
<tr>
<td>effective, involving consideration of options, 493</td>
<td></td>
</tr>
<tr>
<td>efficient processing of object features and, 585–586</td>
<td></td>
</tr>
<tr>
<td>expert, 464–465, 477</td>
<td></td>
</tr>
<tr>
<td>by experts and non-experts, 476</td>
<td></td>
</tr>
<tr>
<td>forums for, 22</td>
<td></td>
</tr>
<tr>
<td>heuristics, 394, 479</td>
<td></td>
</tr>
<tr>
<td>improved quality of, 96</td>
<td></td>
</tr>
<tr>
<td>individual differences in, 486</td>
<td></td>
</tr>
<tr>
<td>as a knowledge-centric and comprehension-oriented activity, 493</td>
<td></td>
</tr>
<tr>
<td>mapping generic sub-tasks involved in, 179</td>
<td></td>
</tr>
<tr>
<td>naturalistic studies of, 166</td>
<td></td>
</tr>
<tr>
<td>not limited to the intuitive, 460</td>
<td></td>
</tr>
<tr>
<td>reckoning with risk and uncertainty, 493</td>
<td></td>
</tr>
<tr>
<td>requiring reasoning and metacognitive skills, 478</td>
<td></td>
</tr>
<tr>
<td>as the result of a team effort, 458</td>
<td></td>
</tr>
<tr>
<td>systems available to support, 719</td>
<td></td>
</tr>
<tr>
<td>uncertain, missing and conflicting information as common, 730</td>
<td></td>
</tr>
<tr>
<td>unpacking the “front end” of, 456</td>
<td></td>
</tr>
<tr>
<td>decision making performance on naturalistic risky decision making tasks, 492 of skilled basketball players, 686</td>
<td></td>
</tr>
<tr>
<td>decision making skill, 476–499</td>
<td></td>
</tr>
<tr>
<td>as acquired, 497</td>
<td>as assessed by ADMC, 488</td>
</tr>
<tr>
<td>measuring, 493</td>
<td></td>
</tr>
<tr>
<td>numeracy as the strongest single predictor of, 492</td>
<td></td>
</tr>
<tr>
<td>psychometric studies of, 486–493</td>
<td></td>
</tr>
<tr>
<td>deck of cards, in an Ask sequence, 404</td>
<td></td>
</tr>
<tr>
<td>declarative knowledge developing, 114</td>
<td></td>
</tr>
<tr>
<td>of experts, 455</td>
<td></td>
</tr>
<tr>
<td>individuals first requiring, 115</td>
<td></td>
</tr>
<tr>
<td>declarative or procedural learning, as either positive or negative, 115</td>
<td></td>
</tr>
<tr>
<td>de-contextualization, of tests, 849</td>
<td></td>
</tr>
<tr>
<td>deductive logic, 479</td>
<td></td>
</tr>
<tr>
<td>deductive reasoning, 377</td>
<td></td>
</tr>
<tr>
<td>deep learning, 93</td>
<td></td>
</tr>
<tr>
<td>in a changing world, 817–819</td>
<td></td>
</tr>
<tr>
<td>requiring some element of struggle, 439</td>
<td></td>
</tr>
<tr>
<td>taking time, 440</td>
<td></td>
</tr>
<tr>
<td>deep level, of team composition, 515</td>
<td></td>
</tr>
<tr>
<td>DeepBlue chess program, 86</td>
<td></td>
</tr>
<tr>
<td>“deeper (more principled)” encoding, of domain-related information, 66</td>
<td></td>
</tr>
<tr>
<td>deeper representations, characterizing expertise in a domain, 68</td>
<td></td>
</tr>
<tr>
<td>deep-level composition variables, meta-analysis on, 515</td>
<td></td>
</tr>
<tr>
<td>“de-expertise,” plasticity-induced loss of skills as, 563</td>
<td></td>
</tr>
<tr>
<td>delayed onset (late bloomers), careers peaking later, 321</td>
<td></td>
</tr>
<tr>
<td>deliberate, goal-directed activities, 43</td>
<td></td>
</tr>
<tr>
<td>deliberate performance. See also performance concept of, 448</td>
<td></td>
</tr>
<tr>
<td>daily classroom experiences as a site for, 447</td>
<td></td>
</tr>
<tr>
<td>defined, 446</td>
<td></td>
</tr>
<tr>
<td>experts in diverse domains engaging in, 454</td>
<td></td>
</tr>
<tr>
<td>as the most feasible route to expertise, 446</td>
<td></td>
</tr>
<tr>
<td>notion of, 398</td>
<td></td>
</tr>
<tr>
<td>deliberate play, 264</td>
<td></td>
</tr>
<tr>
<td>deliberate practice. See also purposeful practice in abacus training, 626</td>
<td></td>
</tr>
<tr>
<td>accounts by older experts, 840</td>
<td></td>
</tr>
<tr>
<td>accumulated by older amateur pianists, 846</td>
<td></td>
</tr>
<tr>
<td>accumulating, 276</td>
<td></td>
</tr>
<tr>
<td>activities for different musical styles and sub-skills, 538</td>
<td></td>
</tr>
<tr>
<td>amount undertaken during many years, 551</td>
<td></td>
</tr>
<tr>
<td>aspects of not present in other types of training activities, 757</td>
<td></td>
</tr>
<tr>
<td>carrying out successfully, 755</td>
<td></td>
</tr>
<tr>
<td>characteristics of, 424</td>
<td></td>
</tr>
<tr>
<td>chess performance, strong predictor, 609</td>
<td></td>
</tr>
<tr>
<td>chess players, time spent in, 608</td>
<td></td>
</tr>
<tr>
<td>conditions for in teaching, 445–446</td>
<td></td>
</tr>
<tr>
<td>conducting alone or with a group or team, 655</td>
<td></td>
</tr>
<tr>
<td>Index of Subjects</td>
<td>881</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
</tr>
</tbody>
</table>

- creating a forum for within undergraduate medical experience, 338
- critical in the development of adaptive expertise, 445
- critical in the development of expertise, 831
- definitions for, 654, 756, 762
- described, 480, 536, 551, 831
- as a designed experience, 445
- detecting weaknesses and developing existing or new skills, 844
- developing entrepreneurial expertise, 397–400 in different domains of medicine, 331
- differing for particular individuals, 763
- effective for relatively more knowledgeable learners, 807
- effective way to change (improve) performance, 764
- effectiveness in attaining elite and expert levels of performance, 75
- engaging in, 76, 459
- expert performance requiring, 43
- for expertise maintenance and in later adulthood, 842–843
- feedback to drive, 341
- as goal-directed optimized practice, 538
- histories, 265
- on identifying cues presaging hazards, 368
- identifying features at the micro-level, 656
- increasing the complexity of a task, 343
- individualized practice as more effective, 760 institutionalized, “schooled” activities and, 106
- involving conscious concentration on the skill, and informative feedback, 445
- issues with the original definition of, 655
- as just one type of practice, 764
- juxtaposed to mere experience, 365
- as the key factor in the acquisition phase, 842
- lesson study as a lab for, 446–447
- likelihood of dropping out, 609
- long-distance race of, 837
- mechanisms initiating and maintaining, 107
- mechanisms mediating experts’ superior performance, 14
- as the most effective practice, 761
- not inherently enjoyable and not offering any immediate reward, 654, 655
- not permissible during real-life clinical procedures, 341
- performed within work contexts, 397
- versus practice, 345
- practice activities as, 755
- premise of the theoretical framework of, 344
- as a prerequisite for attaining excellence, 551
- as quite challenging, 480
- rarely possible for medical students, 336
- refinement of the concept of, 551
- required to create complex artifacts, 46
- requiring supervision from a trained teacher, 389
- role in the development of expertise, 64
- secondary competencies and, 43
- supervised and designed by a teacher, 398
- sustaining struggle and connections over time, 439
- tending to produce remarkable differences, 480
- as working hard at hard problems, 464
- deliberate practice model, 839, 847
- deliberate practice (the micro-level), 656–658
- deliberate practice theory
- applicable in a variety of fields of expertise, 276
- in the domain of sport, 655
- practice activities circumventing current limitations, 609
- testing key predictions of, 657
- deliberate reflection procedure, 339
- deliberation
- interplay with intuitive judgments, 74
- in the light of values, 498
- DeLillo, Don, 426
- delusions, distinction with illusions, 591
- Deming, W. Edwards, 446
- democratic control, of the activities of experts, 139
- democratization, of expertise, 22
- demonstrated performance, of an expert, 127
- demonstration projects, 297
- DENDRAL research project, 87, 88
- dendrites, growth of new, 553
- dentists, learning structured patterns, 153
- dependent samples tests, 279
- depiction, in a given medium, 584
- depictive accuracy, operationalizing, 590
- depictive skill, 590
- depth
- of knowledge, 639–640
- of planning, 201
- of search, 602, 605
- depth-first approach, of novice behavior in problem-solving, 384
- depth-first explorations, of solution concepts, 384
- derivative knowledge, 648
- descriptions, versus prescriptions, 265–266
- descriptive project, 478
- descriptive studies, 295
- design
- ability, 372–373, 375
- activity in right dorsolateral prefrontal cortex, 376
- as a co-evolution of both solution and problem, 378
- decisions, 379
- developing expertise in, 384–385
- documents developed by an expert, 291
- effort, quality of, 372
design (cont.)
emergence of as a profession, 373
individual, 316
inherent within human cognition, 372
intervention, 180
key aspects of expertise in, 376–382
protocol study, 377
representative, 679
role of, 401
sensitivity to expert knowledge, 187
setting and changing goals inherent elements of, 386
solutions, 382
strategies for within Cognitive Systems
Engineering, 170–171
strategy guiding the transition from analysis
to design, 170
students, changes in individual behavior, 385
study of expertise in, 373
task involving the layout of furniture within
a conference room, 376
toolkit, 170
understanding expertise in, 373–376
The Design of Experiments (Fisher), 485
designers. See also expert designers
adopting a conjectural approach, 377
changing goals and constraints, 378
dealing with ill-defined problems, 386
finding a partial structure, 378
jumping to ideas for solutions, 378
modes of activities of, 379
moving rapidly to early solutions, 377
novice, 373
“opportunistic” behavior of, 383
pursuing only a single design proposal, 382
using knowledge to precedents abstracted
into solution chunks or “schemata,” 381
watching at work, 374
designing
conducting by purely internal mental processes, 380
not a strictly hierarchical process, 381
as not “normal” problem-solving, 375
as a shared, social process, 374
desirable system state, identifying, 180
desired outcome, musicians imagining, 541
“detachment,” in professional work, 133
determinants, of initial task performance versus
final task performance, 221
development of expertise
during adolescence, 276
conclusions about how best to support, 121
stages of, 385
development portfolios, 807
developmental disorder, in the acquisition of numerical
concepts, 617
developmental history profiles, of cricket batsmen, 687
Developmental Model of Sports Participation, 688
developmental or educational process, leading toward
expertise, 65
developmental theories, proposing differentiation
of abilities across time, 607
Dev, Shakuntala, 619
deviations
from the “best” bottom-up depiction, 588
by expert teams classified as innovations, 510
device or process, malfunctioning, 96
devices and systems, diagnosing
and troubleshooting of, 96
Dewey, John, 437, 783
D/F (Data/Frame) model, 461–462, 463
diagnoses
accuracy of increased as a logarithmic function
of the number of mammograms, 204
acquiring multiple exemplars of, 338
expertise in, involving multiple kinds of knowledge, 338
first generating and then generating an explanation
and rationale, 205
generating alternative, 339
generating becoming more efficient, 205
impact in training of instructions, 783
process constructs of underlying, 779
processes associated with superior accuracy in, 70
diagnosis-related knowledge (“reflection”), impact on
reducing error, 336
diagnostic accuracy
higher among groups trained using the contrastive
approach, 783
inversely related to time, 335
lower in the serial-cue than the whole-case format, 338
measuring individual differences retrospectively, 203
diagnostic errors, 332, 333, 336
diagnostic performance, in internal medicine, 344
diagnostic tests, in medicine, 203
diagnostic thinking, differences as a function
of expertise, 205
diagnosticians
as error prone, 333
expert, organizing diagnostic hypotheses, 69
diagrams, usefulness of, 90
“dialectics of sketching,” 380
Diamondi, 700
diaries/training logs, 259
dichotomous variable, virtuality as, 516
Dickin Medal, 50
dictation scores, 636
domain knowledge
capturing in terms of what to know, 85
compensating for ability shortcomings, 223
as an explanation for the superiority
of expert performance, 541
domain managers, 27
domain of achievement, 313
domain of practice, improved performance
restricted to, 344
domain specificity, 396, 578, 623, 719
domain-general abilities, as a function
of level of accomplishment, 836
domain-general functions, in tasks measuring
older experts, 841
domain-general problem-solving, as limited, 11
domain-knowledge tasks, approach to understanding, 229
domain-related activities, effects on attained
performance, 17
domain-specific acquired patterns
and associated actions, 67
domain-specific actionable cognition, 772–774
domain-specific capacity, in numerical abilities, 617
domain-specific experts, 679
domain-specific information, imposing a working memory
load for novices, 797
domain-specific knowledge, 89
allowing experts to escape constraints
on working memory, 419
in declarative statements, 89
enabling quick orientation in a new situation, 235
of experts, 455
of objects, 584
overriding developmental differences, 606
representing, 88
stored in LTM, 234, 248
domain-specific knowledge and schemata, details
of artists remaining under-characterized, 592
domain-specific knowledge and skills, increasing relevance
demonstrated for older professionals, 836
domain-specific mechanisms, supporting expert
performance at any age, 847
domain-specific memory, 235
domain-specific reproducibly superior performance, 746
domain-specific rhetorical skills, years needed
to acquire, 423
domain-specific role models, availability of, 318
domain-specific rules, 89
domain-specific skills and knowledge, 318
domain-specific stimulus patterns, 681
dominant left hemisphere, 415
dopamine (rewarding experience), 553
dorsal stream area (SMG), activation of, 243
dorsolateral prefrontal cortex (DLPFC), 238, 240, 243, 555
dots, selecting the larger of two arrays correlating with
arithmetical expertise, 619
double helix of DNA, discovery of, 823, 824
double take of expertise, 248
double-digit numbers, algorithm for multiplying, 623
Dragon’s Den (TV show), 399
dramatists, lifetime output of eminent French
and English, 311
drawing
conceptual issues, 590–592
as the end point of the design process, 380
experience, 589
expertise, 576–593
explanations for ability in, 580
future directions in expertise in, 588–592
methodological issues, 588–590
perceptual processing and, 583
prodigies, 592
savants, 579
shifting attention between different
modes of processing, 586
tasks, 578
versus writing task for university professors, 421
drawing accuracy
assessing, 582, 590
multiple dependent measures of, 589
drawing errors, misperception hypothesis of, 581
drawing skill
discriminating visually presented real versus
nonsense words, 586
measuring, 582, 589
operationalized by objective errors in copying
a photograph of a house, 586
variability in attributed to differences in visual
perception, 576
drawing studies, studies treating subjective accuracy
ratings holistically, 590
“The Dream Team,” 506
dreaming at night, conducive to writing, 422
Dreyfus, Hubert, 26
drivers. See also experienced drivers; expert drivers;
less-experienced drivers; non-drivers; vehicle operators
autonomous systems redirected attention
to secondary tasks, 735
braking task, 362
experience in change detection, 359
experiencing an increasing sample
of driving situations, 363
giving more attention to detecting potential traffic
hazards, 722
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>358</td>
<td>licensed racecar, 358</td>
</tr>
<tr>
<td>357</td>
<td>more experienced, actively modified the situation, 360 proficiency level, 357</td>
</tr>
</tbody>
</table>
| 360 | redirecting attention to other tasks, 734 training programs, 365 young benefiting from driver support systems, 367 driving accident rates and traffic violations decreasing with experience, 356 attaining acceptable performance, 752 people with better SA performing better, 725 SA and expertise in, 734–735 skills like, 222 ubiquitous in modern society, 734 drop-outs improving more slowly over time in chess, 609 from longitudinal study, 271 risk of bias in case of, 281 drugs, altering consciousness for writers, 422 “dual process” model, of reasoning, 333 dual processing theory, describing thinking strategies and memories retrieved, 333 dual-process theory building, in psychology, 336 Dunker, Karl, 193 dynamic decision making, model of SA in, 716 dynamic environments, 356, 682 “dynamic stereotypes,” 565 dynamic team state, 508 dynamic video images, 682, 683 dynamics of knowledge, 138 dyscalculia, 627 dysfunctional genetic predisposition, 552 dysphoria, characterizing writer’s block, 422 dystonia. See also focal dystonia; musician’s dystonia family history of, 565 patterns of, 563 triggers of, 567 early and late occlusion activation, differentiation between, 247 early career commencement, 320 early experiences, affecting later perception, 151 early humans, possession of expertise in skills, 45 early life experiences, controlling for animals, 52 early mature, 276 The Early Mental Traits of Three Hundred Geniuses (Cox), 312 early musical training, stabilizing the sensory-motor system, 569 early occurring (advance) information, experts better able to pick up, 661 early (pre-contact) occlusion conditions, experts’ performance levels above chance, 661 early predictors of talent, attempting to identify, 666 early sensitive periods, of musicians, 552 early trained musicians, brain changes in, 561 Ebbinghaus illusion, 583 ECG. See electrocardiograms (ECG) ecological concepts of expertise, 784 ecological demands, coping with, 42 ecological dominance and social competition theory (EDSC), 40, 41 ecological fallacy, 280 ecological perspective assessing expertise from, 776–777 rethinking fundamental issues, 771 ecological risk literacy, 489, 490 ecological selection, controlling, 41 ecological view, of expertise, 771–772 ecologically based approaches, focusing on everyday competencies and real-life expertise, 849 ecologies, coping with disparate, 41 economics journals, rhetorical style employed, 419 Edison, Thomas A., 296, 829, 830 editing as complex, 414 dissociating the author from, 418 education. See also training of calculators, 625–626 in design, 384 developing clinical reasoning, 336–337 genius and exceptional talent associated with, 317 lack of a consensus on the aims of, 431 measuring students’ performance on standardized tests, 747 preparing students for specific occupations, 114 research in a particular domain, 65 educational and occupational training programs, design of, 291 educational contexts knowledge of, 441 perceiving structure in, 443 educational discourses, questioning, 108 educational institutions, programs and instruction in, 113 educational principles, using in chess training, 606 educational psychology, instructional design and, 64–65 educational restructuring problem, 297 educational settings, developing occupational capacities, 109 educational systems, enabling deliberate practice, 46 “effect,” predicated upon events and decisions, 401 effect sizes, 280 effective leadership, 298 effective learners, 121 effective learning, insights into, 64 effective moves, retained, 796
effective practice
 as being less constrained, 396
 instruction and, 667–668
effective teams, 507, 509
effective workers, 166
effectual Ask, 400
effectual heuristics, 394
effectuation
 heuristics termed, 394
 internalizing “complex indeterminate causation,” 394
 practice in, 398
 rejection of prediction in the decision making
 heuristics of expert entrepreneurs, 400
 summary of research, 394–396
efficacy, virtual team performance and, 518
 efficiency
 imperative of, 122
 increased through pruning, 245
 effort
 investing in practice, 538–539
 not directly observable, 538
 effortful practice, 45, 396
 effortful processing, 116
eighth grade mathematics teachers, following
 a common script in the United States, 434
Einstellung (set) effect, 604
Einstellung chess position, example, 604
“either–or” perspective on expertise, 784
electrocardiograms (ECG)
 approaches to interpretation, 339
 increased accuracy with higher levels of
 expertise, 204
 training on reading, 783
electroencephalography (EEG), 236
electromyographic recordings, in patients suffering from
 hand dystonia, 567
electronic development portfolios, assisting learners in
 choosing new learning tasks, 807
electronic health records, problems with, 171
electronic systems, reducing ambiguity inherent in, 466
electronic troubleshooters, 186
electrophysiological methods, 558
elephant, images of in a limited-line tracing task, 585
elicitation methods, need for systematic, 168
elicited knowledge, organizing, 187
Eliot, T. S., 425
elite(s), 22, 139
elite athletes, 654, 655, 660
elite cricket batsmen, 685
elite endurance runners, 73
elite female players, testing for interval endurance
 capacity, 285
elite musicians, 751
elite performance
 experience and training required for, 76
 functioning as a costly signal, 44
elite performers
 avoiding the arrested development associated
 with automaticity, 334
 engaging in relevant training activities early, 13
elite soccer players, 658
elite tennis players, 72
elite triathletes, 655
elite view of expertise, leaving interactional
 experts unappreciated, 139
elite wrestlers, 655
elite youth soccer players, 277
Elo rating, of chess players increasing as a function of hours
 of practice, 344
Elo rating system, of chess tournament performance, 597
embodied cognition, theme of, 591
embodied knowledge, 115, 121
embodiment
 expertise and, 28
 language and, 26
embouchure dystonia, 567
emergency medicine, explicating expertise, 65
emergency planning director, technology and, 174
emergency response teams, 173–174
emergency situations, during flying, 760
emergent leadership, 509
emerging methods, for exploring cognitive work,
 182–185
eminence
 attained by artists or scientists as a function of teachers
 and mentors, 315
 based on the amount of space devoted to in standard
 reference works, 314
 for classical music composers, 319
 recorded by space allotted in reference works, 314
eminent achievers, tending to come from distinguished
 family pedigrees, 317
eminent individuals, often the offspring of a small number
 of families, 10
eminent men, with an unpromising history, 618
eminent people, tending to have eminent parents, 618
emotion(s)
 processed in structures of the limbic system, 554
 relation with reason, 332
 role of in reasoning, 347
 emotional and performance skills, brain areas
 supporting, 553
 emotional blocks, 420
emotional challenges, managing, 420–422
emotional connections, managing with students, 442
emotional cues, 464
emotional responses, identifying potentially intrusive, 464
emotional state, regulating the writer’s, 421
emotional ups and downs of writing, 422
emotion-related brain areas, 554
empirical designs, 403
empirical generalizations, 358
empirical indicators, separately recorded and analyzed, 198
empirical studies, using physiological sensing and wearable computing technology, 518
employability, securing and sustaining, 107
employment and entrepreneurship, choice between, 390
“EMYCIN” (“Essential MYCIN”), as the first expert system “shell,” 89
enabling conditions, for a disease, 337
encapsulated knowledge, reorganizing, 337
encapsulation theory, 106
encoding. See also selective encoding interactive form of, 684
strategies, 704
enculturation or apprenticeship model of learning, 23
Encyclopédie (Diderot & D’Alembert), assembling all available knowledge in, 6
endorphins (joy), 553
endurance athletes, 248
endurance sports, age of peak performance, 273
enemy, detecting information about, 733
enemy forces, practicing denial of information, 730
engaged time, amount of for students, 433
engagement
in the lived experience of work, 119
in play versus practice versus competition, 668
relations between amount of and attained improvements of performance, 759–761
training, 365
engineered systems, diagnosis of, 96
engineering branch, of AI, 86
engineering design, as a social process, 374
engineering fidelity, 341
engineers
computer-based training program for novice, 458
experienced making a preliminary evaluation of tentative decisions, 384
fixed in the traditional sense, 383
limited sensitivity to cognitive issues, 170
studies of expert electronics, 384
English language
54,000 word families, 634
largest vocabulary of any known language, 634
mastery of the complete lexicon of beyond native speakers, 634
maximizing the learner’s exposure to, 647
often vague, 100
English Vocabulary in Use application, 648
English-speaking country, spending time in, 647
enjoyment
as the least important feature of “deliberate practice,” 656
sport-related differences with respect to, 655
ensemble characteristics, 153
entanglement, of expertise studies with history, 66
entrepreneur(s). See also expert entrepreneurs accumulating knowledge through experience, 391
cognitive frameworks used by experienced, 392
clear and uncertain situations as the domain of, 400
developing heuristics to deal with uncertainty, 394
developing the script-scenario instrument, 392
global impact of, 391
improving performance, 393
learning vicariously or transferring skills learned via practice in other domains, 398
novice starting with tentative Asks, 400
origin of the term, 390
path to becoming as not special but general, 397
as risk avoidant, 390
specific practicable cognitive activities of, 397
targeting angel investors or venture capitalists, 399
varies on numerous important dimensions, 404
entrepreneurial domain, 396
entrepreneurial expertise
deliberate practice in the development of, 389–405
heuristics minimizing or eliminating reliance on prediction, 394
reviews of, 206
studies of, 392–394
entrepreneurial learning, performance impacts of, 393
entrepreneurial personality profile, decoding, 390
entrepreneurial process, 398, 399
entrepreneurial scripts, 397
entrepreneurial teams at MIT, 519
entrepreneurship
as an academic domain, 391
as co-creative, 401
as a driver of jobs and economic development, 391
proficient performance in, 394
purposeful practice in, 392, 396–397
researchers in the “field” of pre-occupied with a perceived lack of legitimacy, 391
uncertain yet human domain of perceived control, 395
Entrepreneurship, Inc. company, 406
entrepreneurship research, 390–391
entwinement of (aspiring) experts with their world, 35
of expert knowledge and experts, 34
of persons with their world, 34, 38
environment
 cycle of engaging, 771
 key features of affecting SA, 719
 recognizing the numerosity parameter, 617
 for writers, 421
environmental contribution, to musician’s dystonia, 566
environmental cues, 775, 777
environmental factors
 implications on aircraft dynamics and behaviors, 728
 resulting in communication breakdowns during “handover,” 347
environmental fidelity, 341
environmental information and past experience, stimulating people’s use of, 782
environmental organizing and linking principle justifying preceding principles, 797
 reducing working memory load, 805
 retrieval using, 802
environmental services, 133
environmental signals, switching genes on or off, 797
environmental variability, 41
 environments, conducive to tacit-knowledge acquisition, 783
epigenetic system, 796, 797
episodic LTM regions, 240
episodic memory, 240
“epistemic action,” 775
epistemic communities, professions as, 132
epistemic cultures, 132
epistemic injustice, limits of attribution and, 22–23
epistemic “objects,” 133
“epistemification,” 134
epistemological emphasis, of research on expertise, 35
epistemology, of professional work, 132–134
equations, solving simple, 620
equivalent current dipole strength, 557
Eriksen flanker task, 156
ERP patterns, during tactile perception tasks, 842
error management procedures, 291
error reduction, 334
error-free analysis, 493
errors
 arising from biases, 334
 as a consequence of heuristics or knowledge deficits, 334
 in the diagnostic process, 333
 by experts in contrast to novices, 291
 types of, 332
escape fire
 setting now taught to all smokejumpers, 819
 Wag Dodge’s, 819, 830
esoteric skills, expertise and, 27
esotericity, 27
essays
 of college students as freshmen compared to juniors, 417
 of college students contrasted with professional academic writers, 417
essential knowledge elements, abstracted, 170
essential skills, promoting resilient and adaptive decision making, 483
estimated engagement, 759
estimation, 446
ethics, 780
ethnographic survey studies, of professional writers, 424
“Etudes,” for guitar and for piano, 544
Euclid, 134
European vernacular musicians, 544
evaluation, 277
 anxiety, characterizing writer’s block, 422
 of how experts structure their days, 258
 resulting in team adaptation, 511
events
 assessing the importance and severity of, 724
 nature of, 295
 permitting application of advanced analytic procedures, 304
 reflecting an action, or set of actions, 292
 specifying legitimate and illegitimate, 293
 systematic identification of, 294
everyday activities, goal for, 753
everyday conversation purposes, requiring 2,000 word families, 637
everyday expert performance, accounting for, 770
everyday expertise, conceptualizations of, 771
everyday goal-directed activities, engaging in, 115
everyday learning activities, 108
everyday perception, distinction with artists’ expertise, 577
everyday problem-solving, numeracy research and, 477
everyday skills, relatively easy to acquire, 75
everyday work activities, 121–122
everyday world, encoding facts about, 94
evidence, assessing the strength of, 91
evidence-based medicine, 347
evolution
 of the expert advantage, 680–681
 of expertise, 40–46
evolutionarily novel domains, 40
evolutionarily novel ways, for developing expertise, 46
evolutionary biology, 795
evolutionary considerations, for expertise and other
cognitive phenomenon, 53–54

evolutionary educational psychology, Geary’s, 795
evolutionary theory, using, 795
examples, modifying the search strategy, 383
excellence, depending on deliberate practice, 142
exceptional achievement
developmental antecedents of, 317
examining across the entire life, 313
exceptional creators, less likely during times
of political anarchy, 318
exceptional development, understanding
the nuances of, 257
exceptional individuals, as gifted, 67
exceptional mathematical abilities, early reviews of, 616
exceptional performance
expertise as, 49–50
finding information on, 192
relying on well-honed procedures, 114
exceptions, to rules, 24
executive control, detrimental when dealing with problems
requiring creative thinking, 816
executive functioning
lack of in creativity, 816–817
positive role in solving problems with insight, 832
executive functions, benefits of physical fitness for, 847
exemplar model, of reasoning, 334
exemplars, 333
exercises, for professionals on the job, 446
expanded working memory, 701, 708
expectations
managing in teams, 509
playing an important role in SA, 718
expected values
explicitly calculating, 482
selecting options with, 479
experience(s)
accumulated, having limited effects on attained
level of performance, 752–754
accumulation of increasingly complex chunks
and pattern-action associations, 76
alone, as insufficient for development of expertise and
expert performance, 365
augmenting the workplace experiences, 119
broad dimensions to support and augmentation of, 117
complex relationship with expertise, 347
from concrete work playing into a profession’s
body of knowledge, 133
connecting otherwise different objects, 364
effects with age controlled, 357
enriching to be more pedagogically effective, 119
of an expert coloring articulation of knowledge, 94
extensive episodes of promoting adaptability, 111
improving situation awareness and hazard
perception, 363
increased having a small effect on the accuracy of clinical
judgment, 779
increasing fixations, 364
leading to the development of better strategies
and better mental models, 362
as the main variable used to indicate expertise
in teaching, 436
in making art, 578
meta-processing varying with, 365–366
new knowledge and skills gained via, 393
not guaranteeing the development of expertise, 436
not sufficient for the development of expertise
and expert performance, 75
openness to, 391
perceptual, 151, 157–160
permitting honing and linking of concepts
and procedures, 116
as a proxy for expertise, 436
relationship with hazard perception, 362
representative compacting or accelerating
effortful, 76
role in human expertise development, 54
structuring to assist in occupational activities, 117
in transportation, 357
as a vital part of the transformation to expert, 385
in workplaces and across working life as key sources
of occupational expertise, 108
in workplaces providing essential learning opportunities
through action, 114
experience levels, for problems with SA, 727
experience sampling methodology (ESM), 403–404
experience-based learning, methods facilitating, 783
experience-based recurrence reduction, 346
experience–performance relationship, as weak, 393
experience-specific patient experience, direct
measures of, 346
experienced designers. See expert designers
experienced drivers. See also drivers; expert drivers
adjusting scanning patterns to the road type, 734
changing behavior to adapt, 359
classifying movies of driving, 364
committing fewer driving infractions, 366
controlling a powerboat simulator, 359
deprived of the ability to use their knowledge, 364
drove faster in clear conditions, 359
looking further ahead of the vehicle than
lesser drivers, 686
maintained better lane control in a driving simulator, 367
operating in very familiar environments, 723
experienced drivers (cont.)
outperforming non-drivers when allocating attention as
they would be required to do while driving, 359
processing cues and converting cognitive portions
of driving to a level of automaticity, 723
reacted faster to hazards than novice drivers, 734
reduced speed because of fog, 359
responding on the cue–hazard contingencies
on the road, 363
superior at (some types of) hazard perception, 363–364
experienced individuals, encountering complex or rare
situations, 74
experienced pilots. See also pilots
altering pitch in black hole conditions, 360
challenged to process information in working memory, 724
focusing on planning and preparation specific
to the flight, 726
with high SA, 728, 729
knowing about a passing aircraft, 721
with moderate SA, 728, 730
more likely to change their behavior to adapt, 359
using the new ASAR technology, 367
experiential evidence, supporting associations, 91
experiential nature, of tacit knowing, 772
“experiential–educative–acculturation influences,” 775
experimental approaches, 260
experimental methods
applied to artificial projects, 373
defined, 135
experimental school, visions and plans for leading
evaluated, 298
experimental studies
of constraints, 302–303
with individuals differing in their ages
and levels of expertise conducted
in a variety of domains, 840
of innovation, 301–302
intended to induce changes in the rate at which
expertise is acquired, 291
of leader styles, 300
of social innovation, 297–298
experimentation, 446
expert(s). See also human experts; older experts
acquired skills through sustained practice, 23
acquiring a large “vocabulary” or memory store of board
patterns involving groups of pieces, 69
acquiring knowledge by enrolling in courses, 6
acquiring LTWM memory skills to encode relevant
associations, 71
acquiring specific mechanisms to adapt maximally
to the constraints of their domains, 841
acting within relevant constraints, 303
activating suitable knowledge, 804
adopting a particular image, 4
advanced methods developed for eliciting
and representing the knowledge of, 64
advancing more accurate hypotheses, 333
advantage over novices for random configurations, 69
analyzing the taste components of wine, 238
anticipating the evolution of the presented patterns, 683
anticipation of, 362, 661
arriving at a diagnostic decision without explicitly
relying on biomedical knowledge, 802
articulating how they believed a careful, rational person
should reason, 92
articulating the knowledge underneath their thinking, 92
as an ascription from a social perspective, 127
attaining their solutions in qualitatively
different ways, 63
attending to higher level, strategic or aesthetic issues, 540
attracting attention from multiple observers, 304
attributes acquired by during lengthy training, 11
best qualified to evaluate their own performance, 4
better at taking the perspective of others, anticipating
the consequences of actions, and at improvising
and adapting, 167
better quality practice in their domain as well as across
task domains, 260
biomedical knowledge having implicitly encapsulated
into procedures, 802
caudate nucleus in synchrony with the infero-temporal
and parietal areas, 245
during chess tasks showed a speciﬁc
pattern of bilateral
activation of homologous regions, 841
in court, 141
creating groups based on major physics principles, 69
creating situations well suited on their own perceptual
processes, 154
criteria for, 67, 127
defining standards, 143
dependent on other people’s knowledge, 135
described, 770
developing a kind of “Long-term Working Memory,” 623
developing better allocations of attention and sensitivity
to critical cues, 725
developing skills to maintain rapid access
to information, 16
dictionary deﬁnitions, 3
differing from novices in practice skill, 539
direct access to the brains of, 233
distinguishing in mathematics, 616
doing things differently than novices at the level
of cognitive processes, 837
driving more quickly through moderate waters, 360
elaborated encoding of the current situation, 72
eliciting knowledge from, 15, 91
emotional reactions to cues, 464
employing more fixations of shorter duration or fewer
fixations of longer duration, 660
encapsulated, domain-specific solution stored
in long-term memory, 802
encoding encountered information in LTWM, 71
encoding representative information and storing it
in long-term memory, 70
engaging in not only deliberate practice, but deliberate
performance as well, 454
engaging the head of the nucleus caudate, 243
as “essential in domains where there are no right
answers,” 143
excelling mainly in their domain, 66
as an exclusive group, 138–139
exhibiting exceptional performance in only one area, 100
exhibiting more flexible behaviors than novices, 359–360
exhibiting predominantly breadth-first approaches, 384
expecting signs to be on the right, 364
extracting information from any time window of advance
information, 679
extracting knowledge of to build computer-based
models, 12
facets of the memory and knowledge of, 105
failing gracefully, 73
failing to make a contribution commensurate with their
abilities, 434
giving reports inconsistent with those
of other experts, 192
greater investment in the time committed
to deliberate play by 12 years of age, 688
having serious psychopathology, 224
high level of knowledge, 807
highest performance on the accuracy of diagnosis, 803
highly experienced failing to demonstrate superior
memory, 699
in high-stakes, time-pressured decisions relying on
experience and pattern-match, 457
historical predecessors of modern, 127
identifying, 746
identifying a set of, 436
identifying at an early age for sport, 666
identifying in a particular domain, 36
immediately examining solutions of high quality, 234
incorporating knowledge in computer models, 12
initial verbalized move later changed by a better
alternative move, 74
integrated both the visual and the technical
elements of weaving, 385
interviewing, 192
invested more time in structured invasion practice, 687
knowledgeable and skilled unable to simply transfer
expertise to novices, 33
learning to perceive patterns that non-experts do not
discern and to discriminate among stimuli, 454
leaving behind a record of their work, 291
leaving behind work plans, 304
less likely to rely on formal cognitive processes than
novices, 166
likely to visit fewer cognitive states and to employ fewer
cognitive processes, 180
maintaining large amounts of information in working
memory, 72
managing time wisely, 456
mechanisms affecting SA, 720–724
mechanisms to circumvent processing limitations
constraining normal performance, 836
monitoring how they are thinking, 456
more accurate in recognition of the patterns
previously seen, 682
more attuned to proximal sources of information in the
action of their opponents, 680
more likely to change behaviors, 360
more likely to recognize the boundaries of what they
know and don’t know, 100
more varied than novices when the situation
changes, 359
move selection under speeded conditions not as good,
on the average, 74
needing to interact with people and the world within their
areas of expertise and outside of it, 94
not always exhibiting reliably superior performance, 14
not vulnerable to base rate neglect, 335
not well motivated to process information
they already know, 805
objective criteria for finding, 4
in a particular domain, 34
perceiving objects less well when inverted, 236
perceptual, 151
performance advantage for in test situations replicates
the actual situation during competition, 206
performance of, seeming impossible, 233
performed worse on recall and explanations if judged
by the simple count of propositions, 803
performing diagnoses, 70
pre-mission planning by, 724
prestige obtained by, 45
as proactive, 456
processing visual images holistically, 159
proposed models of the cognitive processes of, 696
reasoning about observable features of the ECG, 204
reasoning at levels more fundamental and defensible, 73
expert(s) (cont.)
reasoning process, 337
recalled more information with short
presentation times, 803
recognizing familiar patterns, 69
referring to someone who has learned
from experience, 696
referring to trained professionals with experience
or credentials, 480
reflecting on thought processes and methods, 72
relaying heavily on future projections, 716
relying on the encoding of meaningful relations between
laboratory data and “more extensive use of causal
explanations,” 205
“reproducible superior performance of, 616
reproducing complex stimuli from game situations after
only a brief exposure, 696
reproducing more pieces in the presented chess position
than a novice, 68
reproducing the reliably superior performance of in a
controlled setting, 13
required knowledge already in long-term memory, 805
running mental simulations, 455
SA not severely constrained by working memory, 725
seeing things that not-expert workers do not, 167
selecting highly relevant features, processes,
and ensembles, 153
selectively sensitive to task critical information, 464
sensitive to changing conditions, 455
showing greater or lesser fluctuations
in performance, 229
simulating motion, 247
social roles of, 138–141
as source of knowledge for expert systems, 85
spending a greater proportion of time in initial problem
evaluation, 63
spending considerable effort at the task of situation
assessment, 735
storing and accessing information in larger
cognitive chunks, 381
strategies different from those of less skilled peers, 234
strategies for dealing with the biases, 336
struggled to differentiate between pairs displayed
chronologically, 684
studying recognized, 436
superior hazard detection performance of, 734
superior performance of, 11, 192
superior reasoning ability, 205
superior speed of reacting by, 16
superior working memory, 696–709
superiority found to be specific to aspects related
to the particular domain of expertise, 10
taking into account more ideas in planning a text, 420
tending to anticipate more than novices, 362
tending to have excellent long-term retention
for domain-related material, 541
terminating regular engagement in deliberate
practice, 753
testing large groups of with psychometric tests, 10
testing their own understanding and evaluating
the value of partial solutions, 73
testing on areas of display that are more
informative, 660
thinking aloud while selecting moves, 200
time-efficient use of knowledge, 141
training techniques and performance limits of, 17
trying to make lasting contributions in music, 540
as unique, 291
usability of knowledge, 71
using clinical concepts with encapsulated biomedical
knowledge, 803
using more efficient problem-solving strategies than
novices, 90
using the information contained within structured
patterns, 681
viewed for centuries as mysterious, 696
well attuned to affect in response to critical
elements of the task context, 464
expert achievement
in part based on past projects, 302
requiring extended experience, 751
expert advantage. See also expertise advantage
consistent on anticipatory tasks, 679
explanations of the evolution of, 680–681
for information pick-up, 686
over novices for random configurations, 69
replicating the actual situation during competition, 206
expert and elite performers, seeking out teachers, 76
expert anticipatory skill, 680
expert athletes. See also athletes
accumulating significant hours in practice, 668
better at using vision to pick up relevant information, 660
fixating on areas of display that are more
informative, 660
as more accurate than less expert counterparts, 662
perceptual-cognitive advantage using
peripheral vision, 686
expert authority, socially constructed nature of, 21
expert calculators. See also calculators (human)
exploiting long-term memory, 628
learning numerical facts and procedures, 625
manipulating numbers mentally, 240
expert chess players. See also chess players; strong chess
players; world-class chess players
accessing the best move, 702
discovering the more superior moves, 74
evaluating chess positions, 702
extracting chess relations in parallel, 599
identifying the best move while thinking aloud, 697
making fewer fixations per trial, 599
making shorter duration fixations, 599
not relying on transient short-term memory, 70
recognizing and generating chess moves, 11
relying on chess patterns stored in long-term memory structures, 599
showing slower decline than less expert chess players, 847
expert cognition, as the “goal state” for education, 64
expert designers, 373. See also designers alternating rapidly in shifts of attention, 379
appearing to be “ill-behaved” problem solvers, 386
challenging problem “rules,” 376
characteristic key strategies or approaches, 376–382
having repertoires of “gambits,” 382
not working from “intuition,” 386
recognizing patterns in problem situations, 381
tenacious in pursuit of solution concepts, 382
using a mixture of breadth-first and depth-first approaches, 384
working from first principles in innovative design, 383
expert diagnosticians, organizing diagnostic hypotheses, 69
expert drivers. See also drivers retaining secondary task engagement across time, 366
superior in both daytime and nighttime conditions, 362
expert entrepreneurs. See also entrepreneur(s) achieving better calibration of asking, 402
endogenizing causality, 401
focusing on the downside to reduce the worst-case scenario, 396
proactively “effecting” changes, 394
working with means they already control, 395
working with people who want to work with them, 396
expert firefighters. See firefighters
expert footballers. See footballers
“expert in context,” as the minimum unit of analysis, 401
expert knowledge about teaching, 34
ameliorating difficulties of eliciting and translating, 92
crucial for transportation, 358
deployment of impacted by visual features, 153
eliciting, 91–92
having value to apps, 100
of L2 vocabulary, 648
not stored in pre-frontal regions, 838
re-thinking, 34–35
retrieved quickly using long-term working memory, 541
stabilizing, 22
translated into computer-readable representations, 87
expert levels of performance attaining, 67
defining, 272
scientific study of, 756
expert mechanisms. See also mechanisms as compensatory means for age-related decline, 843–844
not easily learned or taught, 837
sets of differing between younger and older experts, 839
expert musicians. See also musicians accounting for differences among, 755
competence and control beliefs, 542
imaging the sounds of a piece, 756
listening to their current performance, 756
not showing superior memory for melodies, 699
structural brain changes in, 239
systems of representations, 756
expert performance. See also expert performance approach, performance
ability predictors for individual differences in, 223
accounting for individual differences in the development of, 752–759
affected by small variation in input variables, 43
associated with automation and performance based on pattern recognition and direct access of actions, 12
athletes improving performance characteristics, 276
attaining as a sequence of states, 756–765
body of evidence on, 207
body of knowledge of documented, 77
broadcast publicly, 44
case studies, 302
deﬁned, 4, 480
described by a distinctive age curve, 310
deterioration in, 804
developing, 35–37, 540
differing based on type of technology, 366–367
direct match to the progression toward, 756
disrupted by inappropriate training procedures, 794
drawing inferences about, 295–298
enacted and embodied, 35
features of, 44
focusing on, 68
generalizing across different domains of expertise, 10–14
grandeal increases in as a function of age, 750
historiometric research and, 320–322
implications for the study of structure and acquisition of, 709
inseparable from individual and collective activities, 34
interdependent with the performance of others, 221
mechanisms underlying, 70
multidimensional, dynamic, highly individualized and non-linear, 265
observations of providing records, 291
expert performance (cont.)
ongoing development of models of in other domains, 592
predictors of, 223
relying more on specific rather than general cognitive
mechanisms, 840
requiring deliberate practice, 43
requiring integration of knowledge and skills, 35
research determining how individuals achieve, 76
shared psychological constraints and adaptations, 76
as a signal, 44
as special and different, 708
in sports defined, 272
study becoming a science of learning, 77
study of, 17
superior anticipation and, 690
tracing across time, 315
underlying social innovations, 296
using cases to understand, 291–305
expert performance approach, 66, 745, 748
effort to identify measures of performance, 751
to expertise, 70, 699
identifying cognitive activities tightly connected
to the defining of expert performance, 699
identifying mechanisms mediating
expert performance, 68
identifying representative tasks and reproducing the
experts’ consistent superior performance, 72
identifying task activities capturing the essence
of superior performance, 198
precursor to, 198
with protocol analysis and designed
experiments, 200–203
searching for reproducibly superior objective
performance, 198
searching for ways to study the effects of particular
practice activities, 762
to superior working memory, 699–700
expert performance framework, 745
expert performers
acquiring associated working memory skills and LTWM
mechanisms, 707
attaining initial beginning levels of achievement, 18
counteracting automaticity, 753
improving performance for years and decades, 75
magnitude of superiority exhibited by, 480
as primary teachers at advanced levels (masters), 9
recalling more information from structured
patterns, 682
regressing to non-expert performance levels, 682
showing much smaller differences between them than
novices, 220
study of the development of, 77
expert pianists. See also pianists
age-effects reduced or fully absent in, 843
depending on constancy in the environment, 433
practice hours accumulated, 654
professional activities in older compared
with young experts, 845
ranging in age from 50 to 70 years, 761
reproducing exact timing and key pressures, 749
younger spending more time
on deliberate practice, 761
expert pilots
cognizant of emotions, 464
having more anticipation in the direction of travel, 362
relying more on long-term memory for SA than
on working memory, 717, 725
expert reasoning. See also reasoning
“base model” of, 184
elements of, 176
expert role(s), 127
based on research from social psychology, 128
redefinition of, 138
rethinking, 138
social division of labor and, 139–141
“The expert” social form, 140, 141
expert social performance, 298–300
expert status
in social groups, 23
in social settings, 21
expert superiority, involving “chunking,” 69
expert systems, 12, 84. See also system(s)
claims about expertise resulting from, 89
combining the judgments of multiple
with specialized knowledge, 99
common goal, 62
duplicating the performance of experts, 76
emergence of, 89
filling in reasonable defaults, 91
foundational ideas, 84–86
main areas for research on, 89
as models of human expertise, 91
perspective from computer science, 84–86
relying on large amounts of knowledge, 92
relying on symbolic knowledge, 85
separation of key components, 84
showing the rules connecting inferential steps linking
primary facts, 94
as a subclass of knowledge-based systems, 85
tangible benefits of, 96
variations in the implementation of, 98–99
expert teachers. See also teachers
consistent differences favoring designated, 437
defined, 440
in a dysfunctional school system, 434
identifying, 437
lacking a clear conception of, 431
expert teams, 458–459. See also team(s)
characteristics of, 509–510
comparing to a team of experts, 506
tending to work on ongoing rather than static “interactive team
cognition,” 514
expert technical performance, 300–301
expert ways
of being, 37
as a myth, 76
“The expert”-interaction, constituents of, 140
expertise. See also expertise; human expertise
achievement of, 64, 763
acquired nature of, 76
acquisition of. See expertise acquisition
aging and, 835–850
allowing retrieval from long-term memory, 420
applications constructed to explicitly study, 60
arising through specific adaptations, 665
assessing from an ecological perspective, 776–777
associated with other senses, 238
assumed to constitute a continuum rather than
a novice–expert dichotomy, 794, 807
assumption of separate independent components of, 36
basis of, decoupled from general abilities, 843
both context-sensitive and dependant on tacit knowledge, 24
brain accommodating, 235
bringing improvements in strategies, 358
as a capacity or property acquired by socialization, 21
capturing and unpacking, 457–459
capturing the essence of, 746
categorizing along two dimensions, 93
changing low-level perceptual experience, 157–160
changing the functional and structural properties
of the brain, 248
in the classroom, 440–443
cognitive mechanisms of, 233–235
Cognitive Systems Engineering and, 167
in commercial flying as a function of the aircraft, 358
compensating for cognitive decline, 357
in competitive activities, 17
in complex institutions, 434
conceived along a quantitative scale, 315
conceptions of, 4, 454–456, 836–837
conceptualizing, 771
as a consequence of gradual accretion of knowledge, 336
consisting of something other than knowledge
and skills, 34
continuous process of reaching, 277
in creative thinking, 820–828, 832
definitions of, 3, 40, 49, 272–274, 401
depending upon embodied being in the world, 35
developing along a quantitative scale, 315
developing, 35, 443, 444, 755, 771
as a different representation and organization
of knowledge, 12–13
as difficult to achieve and quite rare, 44
as difficult to quantify and multi-dimensional, 95
dimensions of, 27–28, 141–143
discerning with indicators other than conscious intent, 49
disordinal interaction with large differences in, 793
displayed by non-humans, 15
domains of, 3
as domain-specific, 771
in drawing, 589
as dynamic, embodied, intersubjective and plural, 37
ecological view of, 771–772
effect on tasks involving surfaces drivers, 362
effecting critical processes involved in developing
SA in complex domains, 716
expertise (cont.)
effects of in a visual category, 158
effortless mastery of as a myth, 76
as elite achievement resulting from superior learning environments, 13
enacted and embodied, 35, 37
evolution of, 40–46
in evolutionary and ecological context, 53
examining the growth of as a function of time devoted to practice, 344
as exceptional performance, 49–50
exhibiting superior strategies for gathering information, 735
extending to dynamic environments, 356
as the extrapolation of everyday skill to extended experience, 11–12
factors of, 142
functioning as a costly signal, 44
gaining in complex domains requiring learning to see well, 578
generalizable aspects of, 10–14
generalizable characteristics of, 66
generating sufficient revenue for a number of domains of, 9
guiding the deployment of perception in complex tasks, 152
hallmark in SA, 722
held in and sustained by the activities of a social group, 23
highest levels characterized by contextually based intuitive actions, 12
identifying different levels of, 23
ignoring the power of, 174
including knowledge of how a system works, 466
individual representations of varying, 112
in interpersonal tasks, 230
intertwining of knowledge and basic reasoning in, 67–68
investigated using a seven country sample of entrepreneurs, 392
involving deeper and more functional representations of tasks, 69–70
involving extreme skill, 40
involving larger and more integrated cognitive units, 68–69
involving many more cognitive processes than just the simple act of perception, 237
involving treatment of humans as much more difficult to measure, 746
limited to a domain of knowledge, 66–67
limited to a proscribed frame of reference, 93–94
as a long-term developmental and adaptive process, 64
long-term investment into, 849
maintaining differing between athletes, 274
in medical diagnosis, 95
models of, 84
modern day emerging from a confluence of factors, 40
new methods for studying, 52–53
new perspectives on, 4
in non-human animals, 49–55
not always necessary for high performance
problem-solving, 93
not leading to inflexibility, 74
not necessarily scarce, 25
objective definitions of, 49–51
occurring in evolutionarily novel secondary domains, 46
operationalising along three different dimensions, 27
as an outcome of prolonged learning, 51
overlapping variables of important to NDM investigations, 454
in a particular domain, 719
of particular social groups, 22
partly defined by experts’ ability to explain their reasoning, 94–95
perception in, 151–160
as performance, 21–22
postulated as playing a similar role in cognition, 820
preservation and dissemination of, 96
as a professionalized competence in differentiated domains, 128
progressing through transient stages, 338
as property, 23
providing general benefits at advanced ages, 847–849
psychometric approaches to, 213
pursuit of, not much different from “normal” skill acquisition, 45
putting demands on the brain, 239
as real, 23–24
reasoning and self-monitoring in, 73
re-conceptualizing, 142
relational or performative understanding of, 21
as reliably superior (expert) performance on representative tasks, 13–14
relying upon embodied being in the world, 35
requiring dealing with the uncertainty of knowledge and assumptions, 91
requiring practice over large periods of time, 436
research on, 37
resting on implicit assumptions about the context of a program, 95
role in creative thinking, 812
role in innovations of many sorts, 813
role of perceptual routines in, 152–156
routine processing versus controlled, 73–74
SAs and tightly linked, 734
as scarce and expensive, 96
seeming to impact perceptual performance, 158
serving as the foundation for creative achievement, 826
from short-term to long-term working memory, 70–71
as a social construction, 50–51
social signaling and, 44–46
socially defined nature of performance criteria for, 402
as a status, 21
structure of and its acquisition, 3
studies of from psychological perspectives, 59–77
study of associated with several specific measurement
problems, 216
sustained through both purposeful and deliberate
practice in a domain, 389
tacit knowledge and practical intelligence as, 772–774
in teaching, 431, 436–439, 440
training for, 459–460
trait predictors of, 221–225
transferring, 823, 839
as truly domain-specific, 89
trying to apply to novel situations, 832
using perceptual processes for novel purposes, 155
in venture formation inferred from participants’
responses to the script-scenarios, 392
expertise acquisition, 273–274, 780, 806–808, 837
in classical composers, 315
empirical findings, 317–320
examining from the perspective of situated and social
cognition, 401
individual differences in, 318
involving gradual improvements in abilities, 839
requiring around a decade of committed training
and practice, 317
through socialization, 21–28
expertise advantage. See also expert advantage
most evident in memory-based skills, 838
projecting video-sequences of game situations, 706
in transportation, 359
expertise analysis of creativity, 820
expertise and expert performance
experience alone not sufficient for the development of, 75
general books on the topics of, 66
proposing a general theory of, 9
toward generalizable characteristics of, 66–75
tracing the development of knowledge of, 5–10
expertise effects
face-selective voxels in, 74
obtaining, 359
expertise management, NDM-based, 458
expertise perspective
in the case studies presented here and elsewhere, 830
on creative thinking, 812
expertise reversal
different categories of reported within
the context of cognitive load, 801
in training sensorimotor skills, 803–804
expertise reversal effect, 17
caused by novice learners benefiting
more from free-choice practice
than deliberate practice, 807
in cognitive load theory, 793, 805
cognitive load theory as a framework for, 794–797
defined, 793
empirical evidence for, 797–802
implication for the design of instruction
in different domains, 806
most evidence for collected in cross-sectional
studies, 798
expertise reversal studies
examples of, 800
most conducted in technical and academic domains, 802
not many including very high-level experts, 807
expertise space, three-dimensional, 27
expertise status, explicitly recognized within the group, 140
expertise studies
general approaches to, 66
historical development of, 59–66
history of, 59
incorporating ideas and concepts from situated
and social cognition into, 401
expertise view
assuming that changes in the world are slow, 820
assuming that presentation of a problem results
in retrieval of knowledge from memory, 813
assuming that the creative imagination is structured, 813
depending on near- or already-established associative
connections, 828
evidence for, 812
expertise-driven general abilities account, 839, 848
expertise-related abilities, tested for pianists, 843
expertise-related changes, in the visual cortex, 157
expertises. See also expertise
contributory and interactional, 28
located within small groups, 25
periodic table of, 24–25
in possession of every person in a society, 25
expert-level perception, networks serving, 157
expert-level performance, seeking to deliver, 85
“expert–novice” approach, 66
expert-novice difference research, 65
expert-novice differences
in ability to perceive relevant information, 63
in advance information pick-up, 680
in gaze behaviors, 661
| experts/exemplary journeymen, having a greater number of shorter fixations, 361 |
| explaining one’s behavior, as a method to make education more effective, 207 |
| explanation, 94, 446 |
| explanations and descriptions, by co-workers, 114 |
| explanatory variables, defined at any level, 280 |
| explicit and implicit knowledge, distinction between, 107 |
| explicit connections, making between problems and concepts, 439 |
| explicit consensus, for team members, 168 |
| explicit instructional guidance, providing to novices, 806 |
| explicit instructional support, 797 |
| explicit knowledge, 165, 168 |
| explicit monitoring, 804 |
| explicit processes accessible to conscious awareness, 179 |
| in team coordination, 508 |
| explicit task-relevant knowledge, 803 |
| exploratory activities, yielding knowledge, 775 |
| explosive detection dogs, rating, 51 |
| expressive power, of computational methods, 100 |
| extended activities (running and climbing), capturing superior performance in the laboratory, 749 |
| “extended cognition,” 461 |
| extended engagement, in domain-related activities, 750 |
| extended narrative, composing, 415 |
| extended practice, 754 |
| extended professional experience, associated with decrements in performance, 753 |
| extensions, into more knowledge-intensive fields, 65 |
| extensive experience, in a domain, 745 |
| extensive reading, 638, 647 |
| extensor muscles, inhibition of, 567 |
| external contingencies (constraints), influencing expert performance, 302 |
| external feedback, for writers, 421 |
| external instruction, substituting for knowledge, 805 |
| external memory aids, removing access to, 703 |
| external memory device, sketching as, 380 |
| external representations, 379, 380 |
| external scene, coordinating with visualized values, 153 |
| external social judgments, based on ubiquitous knowledge, 25 |
| externalized plans, intended only for the writer’s private use, 414 |
| extraordinary explanations, ruling out, 295 |
| extraordinary performance, expertise as the base of, 142 |
| extraordinary skills, relating to changes in brain anatomy, 559 |
| extrapolation, 446 |
| extreme base rates, problem of, 220 |
| extravisual, among experts, 224 |
| eye and hand movements, in naturalistic drawing, 591 |
| eye fixations during actual soccer games, 706 |
| patterns of, 72 |
| in situations when a hazard was signaled, 363 |
| eye movement (visual search) patterns, of experts, 679 |
| eye movements fixating the first (non-optimal) move that came to mind, 604 |
| information fixated during sequences of, 198 |
| relationship to anticipatory and interceptive skill, 684–686 |
| eye tracking methods, comparing experienced and novice teachers, 443 |
| eye–hand span, as the best predictor of typing speed, 706 |
| eye-line, half-way down the head, 584 |
| eyes, embedded in a face, 159 |
| eye-tracking results, 155 |
| studies, 645 |
| techniques, 598–599 |
| using with NDM, 465 |

Index of Subjects

faces
- holistic processing of, 159
- images of produced in a pixel drawing task, 588
- importance of explicit domain-specific directly supported with regard to, 584
- instant perception of, 235
- perception involving different aspects, 237
- positioning the eyes too far up the head, 584
- presenting the pinnacle of perceptual skill, 235
- separated into top and bottom halves, 159
- upright and inverted, 158
- facial geometry, brain region involved in processing, 156
- factor analysis, 485
- factor-analytic intelligence studies, 485
- factual knowledge, 84, 165
- “Faculty of Royal Designers for Industry,” 373

failures
- to craft knowledge for readers, 424
- feedback necessary for diagnosing, 399
- initiating learning from mistakes, 114
- resulting in new information becoming available, 832

Fallingwater (house), Frank Lloyd Wright’s design of, 302, 825–826

familiarity
- 661

families
- early instruction and support by, 13
of high-achieving children, 536
influencing the acquisition of extraordinary
expertise, 317
supported musical activities, 536
family background
as influential in the context of elites, 143
world-class expertise emerging from, 317
“far” object, seeming larger than the “near” object, 582
“far” task, 664
far transfer, denoting remote transfer, 821
“fast,” concept of, 74
fast finger movements, 552
fastball sports, 660
faster start, for outstanding composers, 319
faults, 71
“faute de mieux”-mechanism, peer review as, 137
feedback
about performance weaknesses and strengths, 480
flow state requiring, 421
on hazard perception as poor, 365
for hazards usually vague and uncertain, 363
immediate, 399
on mistakes and problems, 754
vs. no feedback, 800, 801
on performance, 398, 779
providing copious, 668
providing knowledge of results, 424
provision of rich meaningful, 464
representing forms of partial instructional support, 800
seeking, 459
females, as more risk-averse than males in chess, 606
Feng Wang, recalled 300 digits perfectly, 701
FFA (fusiform face area), 236
FGCs (fireground commanders), 456
fiber tracts
aligned in a less parallel manner, 560
investigated in musicians, 560
volume and direction, 559
fiction writers, 425, 426
fidelity, 341,
field hockey, 275, 655, 705
“field notes,” 260
field settings, exploring teams in a variety of, 518
fifty-year olds, usually performing better than older athletes
(sixty-year olds), 274
filament, 818
film or video stimuli, permitting the vision of the opponent’s
action to be occluded, 678
films (movies), evaluated for each director, 321
financial decision making, 97
financial prospects, deciding among several, 479
financial resources, starting a new venture on minimal, 396
financial services industry, 97
findings, comparability and generalizability of, 264–265
fine motor control, 566
movement production age-related declines and, 837
fine motor differences, isolating as a function of artistic
expertise, 591
fine motor skills, developing in both hands, 550
finger movement
mental training of sequences, 558
rapid, 566
finger movement representation network, in the calculation process, 628
finger or hand maps, intensive musical
training associated with, 558
finger placement, triggering the development
of dystonia, 564
finger sequences, young pianists and non-musicians
performing simple and complex, 841
finger tips, ability to hang with necessary for climbers, 749
fingerprint matching, 236
Finkelstein, Salo, 617, 622
fire
as also the solution, 819
control of, 41
creating a protective buffer zone, 830
fire commanders
expert decision processes, 465
knowledge elicitation and knowledge representation
undertaken with, 186
firefighters
expert, 71
Klein studies of, 183
wildland, 456
fireground commanders (FGCs), 456
firms, studying innovation in, 292
first draft phase, of writing, 415
first-person action video game playing, 591
first-time entrepreneurs, 392
fitness activities, 655
Five Fs, 120
“five stage model,” of Dreyfus and Dreyfus, 23
fixation
awareness of and attitudes towards
by expert designers, 383
effect in design, 382
locations and duration of skilled and less-skilled
soccer players, 664
“flash anzan,” 626
“flash of insight,” 379
flashcards, 640
flat associative hierarchies, remote
associations and, 814–815
<table>
<thead>
<tr>
<th>Page</th>
<th>Index of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>flautists, the left hand more commonly problematic, 564</td>
</tr>
<tr>
<td></td>
<td>Flexecution Model of (Re)planning, 461, 462–463</td>
</tr>
<tr>
<td></td>
<td>flexibility of knowledge-based systems, 90</td>
</tr>
<tr>
<td></td>
<td>retained at only the highest levels of expertise, 74</td>
</tr>
<tr>
<td></td>
<td>flight hours, not significantly predictive of SA group, 729</td>
</tr>
<tr>
<td></td>
<td>flight paths, of birds as spiral, 829</td>
</tr>
<tr>
<td></td>
<td>flight scenarios, simulated with both inexperienced and experienced GA pilots, 728</td>
</tr>
<tr>
<td></td>
<td>flight trajectory, processed in the parietal areas, 247</td>
</tr>
<tr>
<td></td>
<td>flip of understanding, 819</td>
</tr>
<tr>
<td></td>
<td>flow entered into facilitated by having a strong motivation to write, 421</td>
</tr>
<tr>
<td></td>
<td>producing, 420</td>
</tr>
<tr>
<td></td>
<td>fluency role in spoken and written form recognition and production, 642</td>
</tr>
<tr>
<td></td>
<td>of vocabulary knowledge, 639</td>
</tr>
<tr>
<td></td>
<td>fluent speech, producing under severe time pressure, 645</td>
</tr>
<tr>
<td></td>
<td>fluid intelligence facets of, 838</td>
</tr>
<tr>
<td></td>
<td>numeracy out-predicting, 493–494</td>
</tr>
<tr>
<td></td>
<td>predicting general decision making skill, 491</td>
</tr>
<tr>
<td></td>
<td>problem-solving dependent on, 607</td>
</tr>
<tr>
<td></td>
<td>psychometric tradition considering facets of, 838</td>
</tr>
<tr>
<td></td>
<td>“quantitative reasoning” tasks measuring, 485</td>
</tr>
<tr>
<td></td>
<td>representing intelligence-as-process, 227</td>
</tr>
<tr>
<td></td>
<td>testing for, 488, 493, 494</td>
</tr>
<tr>
<td></td>
<td>fluid intelligence factor Carroll’s current, 494</td>
</tr>
<tr>
<td></td>
<td>explaining overall general intelligence, 484</td>
</tr>
<tr>
<td></td>
<td>fluid intelligence scores, historical increases in during the 20th century, 493</td>
</tr>
<tr>
<td></td>
<td>fluid mental abilities, 836</td>
</tr>
<tr>
<td></td>
<td>flying machine, Wright brothers’ invention of, 827–828</td>
</tr>
<tr>
<td></td>
<td>fMRI. See functional magnetic resonance imaging (fMRI) focal dystonia. See also dystonia abnormalities in three main areas, 566</td>
</tr>
<tr>
<td></td>
<td>aetiology of as probably multifactorial, 566</td>
</tr>
<tr>
<td></td>
<td>affecting high-level musicians, 544</td>
</tr>
<tr>
<td></td>
<td>physical and psychological traumata, 566</td>
</tr>
<tr>
<td></td>
<td>symptoms marking the beginning of, 563</td>
</tr>
<tr>
<td></td>
<td>focusing on the big picture, experienced military officers rated higher on, 731</td>
</tr>
<tr>
<td></td>
<td>folk biology, 42</td>
</tr>
<tr>
<td></td>
<td>folk physics, 42</td>
</tr>
<tr>
<td></td>
<td>chess building from, 43</td>
</tr>
<tr>
<td></td>
<td>folk psychology, 42</td>
</tr>
<tr>
<td></td>
<td>chess building from, 43</td>
</tr>
<tr>
<td></td>
<td>followers, possessing expertise for mission execution, 299</td>
</tr>
<tr>
<td></td>
<td>food manufacturing, 118</td>
</tr>
<tr>
<td></td>
<td>football players, cannot be assigned to different teams, 221</td>
</tr>
<tr>
<td></td>
<td>footballers, 656, 657</td>
</tr>
<tr>
<td></td>
<td>forecups, requiring a high level of expertise, 444</td>
</tr>
<tr>
<td></td>
<td>forearm rotation, degree of differing between pianists, 542</td>
</tr>
<tr>
<td></td>
<td>forecasters, clear differences in proficiency among, 184</td>
</tr>
<tr>
<td></td>
<td>forecasting future situation events and dynamics, 716</td>
</tr>
<tr>
<td></td>
<td>impact on solving social innovation problems, 297</td>
</tr>
<tr>
<td></td>
<td>studies focused on, 298</td>
</tr>
<tr>
<td></td>
<td>foreign exchange trading, 97</td>
</tr>
<tr>
<td></td>
<td>Forestalling, in RAWFS, 457</td>
</tr>
<tr>
<td></td>
<td>form, knowledge of, 641–642 “form of life,” idea of, 23</td>
</tr>
<tr>
<td></td>
<td>formal knowledge, 133, 780</td>
</tr>
<tr>
<td></td>
<td>formal modeling, 610</td>
</tr>
<tr>
<td></td>
<td>formal or informal settings, words appropriate for, 643</td>
</tr>
<tr>
<td></td>
<td>formal rules, needing informal meta-rules, 24</td>
</tr>
<tr>
<td></td>
<td>formal training, years since an individual initiated, 315</td>
</tr>
<tr>
<td></td>
<td>formalization described, 133</td>
</tr>
<tr>
<td></td>
<td>promoting professional standards and support technologies, 133</td>
</tr>
<tr>
<td></td>
<td>requiring the cooperation of professions with other social institutions, 134</td>
</tr>
<tr>
<td></td>
<td>formative assessment, skill at, 440</td>
</tr>
<tr>
<td></td>
<td>formative years, participation characteristics during, 261</td>
</tr>
<tr>
<td></td>
<td>form-based associations, characterizing a sparser lexicon, 643</td>
</tr>
<tr>
<td></td>
<td>form–meaning links, 640</td>
</tr>
<tr>
<td></td>
<td>formulaic language, 644</td>
</tr>
<tr>
<td></td>
<td>aiding and speeding up language processing, 645</td>
</tr>
<tr>
<td></td>
<td>as crucial for fluent language use, 644</td>
</tr>
<tr>
<td></td>
<td>described, 644</td>
</tr>
<tr>
<td></td>
<td>facilitating the production of fluent speech, 645</td>
</tr>
<tr>
<td></td>
<td>as a hallmark of the highest stages of language mastery, 647</td>
</tr>
<tr>
<td></td>
<td>importance of, 645</td>
</tr>
<tr>
<td></td>
<td>use of by second language learners, 646</td>
</tr>
<tr>
<td></td>
<td>formulaic sequences appropriate use of, 646</td>
</tr>
<tr>
<td></td>
<td>defined, 644</td>
</tr>
<tr>
<td></td>
<td>L2 learners improving, 646–647</td>
</tr>
<tr>
<td></td>
<td>problem of choosing which to teach, 647</td>
</tr>
<tr>
<td></td>
<td>processed faster in the brain, 645</td>
</tr>
<tr>
<td></td>
<td>relying on the frequent use of, 644</td>
</tr>
<tr>
<td></td>
<td>as standard ways of realizing functions and expressing ideas, 645</td>
</tr>
<tr>
<td></td>
<td>as very frequent in language, 645</td>
</tr>
<tr>
<td></td>
<td>ways of learning and teaching, 646</td>
</tr>
<tr>
<td></td>
<td>forward chaining, 99</td>
</tr>
<tr>
<td></td>
<td>Foucault, on the nature of governmentality, 131</td>
</tr>
</tbody>
</table>
foundational methods, summary of, 181–182

Foundations of Statistics (Savage), 479

Four-Component Instructional Design (4C/ID) model, 806

fractional anisotropy (FA), 559, 560, 561
frame structure, 99

framework. See also problem-solving model

including knowledge of word parts, 642

understanding and analyzing occupational expertise, 106

framing
effects in prognostic decisions, 335

tolerance to, 486, 487
Franklin, Benjamin, 296

fraud detection, 97, 98

free recall tasks, 803

frequency

of measuring in a longitudinal study, 278

with which hazards occur, 365

of words, 637

frequency distributions, words having different, 643

fringe search, 301

frontal-parietal circuitry, 838

fronto-parietal network, 627

Fry, Roger, 581

full concentration, limits on daily durations of, 761

Full Scale Numeracy, 490

Fuller, Thomas, 624

function words, 637

functional assets, of experienced operators, 368

functional brain changes

in cognitive expertise, 239–244

in perceptual expertise, 235–239

functional brain imaging, 628

functional heterogeneity, measured with

a diversity index, 516

functional leadership, 520

functional magnetic resonance imaging (fMRI), 235

comparing neural activities between musicians

and non-musicians, 559

highlighting localized brain regions mediating specific
cognitive processes, 415

indicating perceptual regions associated

with grouping, 155

investigating the neurological bases

of design cognition, 376

study of poetry composition, 418

functional nature, of experts’ task representations, 71

functional networks, development of specialized, 156–157

Functional or Ecological Interface Design, 170

“functional task alignment,” 341

functional use, 645

functionality, within equipment, 174

fundamental pitch, 543

Fusiform Face Area (FFA)
of the brain, 74, 156, 235, 236
fusciform gyrus, 156, 561
future, as an endogenous creation, 394

future expert performers, acquiring initial

and intermediate levels of performance, 77

future experts, more efficiently training, 76

future research, in entrepreneurship, 403–404

future system states, projection of, 721

future team research, opportunities for, 519–523

future travel, 367–368

Fuzzy-Trace Theory, 483

g. See general intelligence (g)
gabor patches, matching the orientation of, 619

Gaelic footballers. See footballers

Galileo Galilei, 135

Galton, Francis, 193

criteria of “eminence” in Hereditary Genius, 616

dominance depending on “natural ability,” 618

on high achievement, 835

influential historiometric study, 311

original proposal, 839

social and educational effects of growing up

in a talented and well-connected family, 626

tripartite theory of eminence, 629

“gambits,” repertoires of, 382

gambling game, division of stakes in, 479

game intelligence, 275

game positions

in chess, 601

skill effect in the recall of, 600

game sports, influenced by the performance

of the opponent team, 273

games

analyzing between the very best chess players

in the world, 758

studies on age and expertise in, 840
types of, 203

Gamm, Rüdiger

activations consistent with developing LTWM

for arithmetical calculations, 628

case study of, 617

forward span of 11 digits and 12 digits backwards, 623

investigation of working memory, 622

solving multi-step problems quickly and accurately, 624

teachers never explained arithmetic in ways he could

understand, 625

training up to four hours a day, 625

gap, between mental content and expert performance, 37

“garden-path” problem-solving, 74

“gatekeeper role,” of disciplines in science, 137
Index of Subjects

“gatekeepers,” in companies, 141

gathering information and following procedures,
experienced military officers rated higher on, 731
Gatewicks, Carl Friederich, 616
gaze, 120
behavior, 661, 679
directed to where the target is expected
to be in the future, 685
directed towards body segments, 684
in driving, 360
as flexible with expertise, 361
less constrained with expertise unless
there is a threat, 360–362
measurement, 680
more variable in the horizontal plane with experience, 361
patterns of experienced and less-experienced vehicle
operators, 360
table of data, 664
gaze-contingent displays, 686
gaze-tracking systems, 685
Gc. See crystallized intelligence (Gc)
GE Plastics, configuring a color formula, 97
gender, in chess, 607, 608
gendering, of science, 137
gene combinations, attainable performance of individuals
and, 762
general abilities. See also abilities
correlated with performance for beginners, 67
influence greater on performance of beginners, 708
predictive of individual differences in performance, 746
general ability factors, 70
general and broad content ability measures, 223
general aviation (GA) pilots
analysis of SA problems in low-time, 727
less experienced comparing to more experienced, 726
as passive recipients of information (Level 1 SA), 726
task prioritization and task management skills as
important, 730
typically far less experienced, 726
general cognitive abilities, 490
effects on expert decision makers, 497
as weak correlates of expert performance in older
age, 849
General Decision Making Skill Assessment Battery, 490
general decision making skill, 481–482. See also decision
making
acquired, 494
best-fitting model of overall, 493
conducting studies of, 489
predictors of, 476, 482
referring to differences in judgment and decision making
quality, 477
General Fluid Memory and Learning, 494
general inference methods, 85, 89
genereal intellectual capacity, 629
genereal intelligence (g)
decision making skill and, 483–485
at early stages of skill acquisition, 836
exact nature of yet unknown, 775
links with life outcomes, 483
as an umbrella term, 477
viewed as a relatively stable characteristic, 775
genereal pedagogical knowledge, 441
General Problem Solver (GPS) computer program, 11,
60, 63
genereal skill training, eficient, 496–497
generealization, across diverse domains of expertise, 9
generals, probability of winning a battle, 315
“generate and test” method, 61
“generative” reasoning, used by more experienced
designers, 377
generic-cognitive skills, primary knowledge including, 795
genes
influence of individual, 762
located on the X-chromosome, 564
genetic endowments
factors involving individual differences in, 762
known immutable limits imposed by, 344
relevance of, 317
genetic influences, evidence for, 536
genetic predisposition, 551
genetic selection, influencing elements of physical and
sensory capacities, 52
Genetic Studies of Genius (Terman), 312
genetic susceptibility, to malfunctioning of neuronal
networks, 564
genetics
controlling for animals, 52
as a factor in dog physical skill and expertise
development, 52
impact on mathematical computation, 626–627
role in exceptional achievement, 312
genetics researchers, supporting the idea of an innate
domain-specific system, 627
genius and talent
associated with distinctive education and training, 317
insights into the origins of, 317
not randomly distributed across space and time, 318
geniuses
designation of, 10
sample of unquestionable, 312
genomes, with most information borrowed from
ancestors, 796
geographic dispersion, of virtuality, 517
geographical areas, operations in new, 728
geologists, acquiring mental transformations, 153
geometry component, of numeracy, 488
Geometry Theorem Proving Program, 87
geoscientists, recognizing word-forms fractured like rocks, 152
German professional musicians, suffering from MD, 564
Gestalt psychologists, concepts of restructuring and insight in problem-solving, 813
“getting there” phase, 540
GF. See fluid intelligence
glances, of apprentice drivers, 360
global and local levels, shifting attention between, 586
global context, characteristics of, 463
global organization leaders, cognitive tasks, 463
Global Positioning Systems (GPS), determining total movement within a practice, 258
GM. See gray matter (GM)
Go board game
structural study on the experts of, 244
variants of CHREST applied to, 600
goal(s)
already perceived, 717
emerging through the effectual process, 396
formation of, 119
as ideal states, 717
recursive structure with subgoals, 63
teachers having clearly defined, 440
understanding types of, 386
goal state, representing, 61
goal-directed action, accounts of, 114
goal-directed nature of, teaching, 433
goal-directed reasoning, as backward chaining, 99
goal-directed training, intensity of as extremely high, 553
goal-driven processing, alternating with data-driven processing, 717
goaltenders, superhuman reactions of expert, 257
golf, role of SA in, 714
golfers, 192, 205, 248, 714, 752
Gombrich, E. H., 584
good decisions
defined by logical processes, 479
plausible real-world correlates of, 486
good guessing, knowledge underlying the art of, 85
good judgments, 440
good performance
involving not just the known “normal” situations, 723
on one case as poor predictor of performance on another case, 332
Google-style statistical learning, 92
governmentality, formation of, 131
GPS. See General Problem Solver (GPS) computer program; Global Positioning Systems (GPS)
graded readers, use of, 647
graduated driver’s licenses, 357
grammatical functions, of a word, 640
grammatical patterns, word classes following, 643
grammatical usage in a text, counseling a user on, 98
grandmasters
able to reach international level years faster, 751
able to reproduce entire chessboards, 11
advantage in perception and memory, 579
carrying out shallower searches than Masters, 602
choosing better moves than the experts, 602
reaching the status of, 67
searching less than weaker masters, 605
simulating playing against, 703
granularity, in research on purposeful and deliberate practice, 398
graph literacy, 494, 496
graphemic representations, 414
graphical co-option, of the conceptual, 155
graphical representations, of numerical expressions of probability, 494
graphs
building useful mental models of, 496
children learning to read, 153
gravitational wave physicists, 26
gray matter (GM), 543, 553, 561, 562, 628
The Great Mental Calculators: The Psychology, Methods, and Lives of the Calculating Prodigies (Smith), 617
“greebles,” 158
Greek philosophers, science started with, 134
Greek sophists, called a “profession,” 134
Greek tradition, as central to the scholastic tradition, 134
Gretzky, Wayne, 714
Griffiths, Arthur, 624
group activities, involving several trainees at a time, 757
group comparisons, producing a bias, 554
group-based practice, 757–758
group-level military conflict and strategy, simulating, 43
groups
expert performance of, 747–748
expertise as the property of, 23
studies correlating performance of and their performance on general ability tests, 746
growth spurt, individual differences apparent, 276
Guernica (painting), 826
guidance
forms of close or interpersonal, 120
partial forms of, 799
used intentionally to assist learning, 119
guided discovery approach, 689
guided learning, 120
guiding principles, offering starting points for imposing order, 375
“guiding themes,” of experienced architects, 377
“guild of masters and students” (universitas magistorum et pupillorum), 6
guilds, 5, 6, 8
guitarists, right hand more frequently involved, 564
gustative stimuli, 238
gustatory expertise, 237
gymnastics, smaller stature beneficial for, 276
Habitat for Humanity, 296
habits, based on experience of the world, 35
habitual actions, constituting forms of knowledge, 35
habituated actions, basis for, 35
hairdressers
principles and practices used by, 110
responding to exigencies of settings, 110
shaping work activities, 112
hairdressing salons, sequencing activities in, 118
“Hammerklavier” sonata, by Beethoven, 544
hand, requiring neurons in the primary motor area, 556
hand and eye movements, bidirectional influences of, 591
hand areas, of the cerebellum, 558
hand dystonia, 567
handball coaches, 274
handball players, 706
handbook, general outline of, 14–17
Handheld Standoff Mine Detection System, 174
handicrafts, 7
“handover,” communication breakdowns during, 347
handwriting, 423
haptic skills, required for shaping clay, 117
“hard modularity” approach, to cognition, 42
“hard-to-learn” knowledge, premises relevant for constructing, 120
Hawthorne Effect, 260
hazard awareness, 734,
hazard detection, training for drivers, 364–365
hazard perception. See also perception experience as a poor way of acquiring the skill, 365
improving, 363, 365
predicting crash risk and on-road driving performance, 362–363
thought to be a non-automatic cognitive process with a substantial top-down component, 363
training for, 364
hazards
missed more often by the apprentices, 363
as relatively infrequent, 363
head movements, during actual soccer games, 706
headhunters, no studies of, 402
head-mounted eye movement registration systems, recording visual point of gaze, 660
health condition, impact of, 847
health professionals, relations among, 129
healthcare
as an application area for Cognitive Systems Engineering, 187
delivery as a primary concern, 331
settings, 347
simulations used for research and training in, 465
healthcare professionals, having specific and narrow expertise, 188
healthcare system, changes in, 340
Healthcare Technical Group, within the Human Factors and Ergonomics Society, 187
hearing losses, from overexposure to noise, 544
“heat map” representation, of eye fixation areas, 604
hedges, 417
Heidegger, Martin, 34
height, 752
helicopter flight, fixations on the instrument panel, 361
helpfulness experiment, 404
help-seeking behavior, affected by perceptions of other’ willingness to help, 402
hereditary factors, role in dystonia, 565
Hereditary Genius: An Inquiry into Its Laws and Consequences (Galton), 10, 311
heritability, inferred from twin studies, 762
Heschl’s gyrus, 559
heterogeneity
in extraversion trait among team members, 515
in methods, 265
heuristic deliberation, 483
heuristic knowledge, 85
heuristic methods, 821
used by Watson and Crick, 823
heuristic model, 565
heuristic processing, referring to a failure of selective attention, 159
heuristic-based evaluation, 482
heuristics
bound together through “effectual” logic, 394
centered on control, 401
defining general-purpose, 87
example of the use of, 821
few verified experimentally, 333
involving expertise, 821
from LT were generalized into a model, 60
seeking to exert control over the environment, 394
viewed as “hard-wired” and universal, 334
Heuristics and Biases approach, 454
hexagonal model of interests, 226
hidden profile, as a common experimental design, 140
hierarchical leadership, compared with shared leadership, 515
hierarchical linear model, 280, 321
hierarchical linear modeling, 217, 316
High Ability Studies, special issue of on “Expertise and Giftedness Research,” 11
high achievement, attributing to innate, stable dispositions, 835
high achieving countries, teaching methods varying markedly, 439
high-achieving athletes, developing skills, 654
high-creative individuals, produced more low-frequency word-association responses, 832
high-knowledge individuals, greater recognition and recall memory for new material, 68
high-level cognitive processes, 662–663
high-level expertise, hard to acquire, 25
high-level knowledge and planning, in chess, 604
high-level performance, experts consistently demonstrating, 36
high offices and positions, attainment of, 314 “high performing” group, in soccer, 658
high prior knowledge learners, 799
high prior knowledge students, 800
high speed scanning task, 361
high-performance judgments, aided by computerized tools, 142
high-performance sport, funding involved in, 653
high-performing anticipation group, 687
high-performing group, in soccer, 658
high-performing older adults, distinguishing from those showing pronounced decline, 844
high versus low-creative individuals, 832
higher prior knowledge students, 798, 800
higher reasoning in humans, 61
Hindu Vedic priests, cortical thickness in, 244
hippocampal and parahippocampal areas, 238
hippocampus, 244, 555
historic figures, samples out of the norm, 322
historical background, of research on expertise, 697
historical development, of expertise studies, 59–66
historical increases, in levels of performance, 544
historical individuals, 310
historical records, 322
historiometric data, analyzing complex subject matter, 305
historiometric emphasis, on the nomothetic, 311
historiometric inquiries, into the role of genetics in exceptional achievement, 312
historiometric inquiry, of Quetelet, 311
historiometric methods, 310–322
historiometric research as correlational rather than experimental, 316
depending on significant samples, 317
empirical results of, 317–322
historiometric studies, diversity of research designs, 315
historiometrics defined, 310
history of, 311–313
methodological issues, 313–317
relying on biographical and historical data, 322
“Histoiremtry as an Exact Science” (Wood), 312
history-making achievements, complexity of, 315
hockey experts, anticipation skill in, 247
holistic processing, 159, 235
holistic ratings, 590
holistic-like process, typical of radiological expertise, 236
hominid brain size, 41
homme moyen (“average person”), 311
Homo sapiens, engaged in visual art, 576
homogeneity in research on purposeful and deliberate practice, 398
of teaching practices within countries, 434
homophones, 642
“homuncular” order, 556
honors, receipt of major, 314
hospital-based critical care, SA errors, 715
hospital-based critical errors, 716
hotel room attendants, patterns of progression, 118
Hou Yifan, Chinese Grandmaster, 608
hours of practice, passing with minimal awareness of the passage of time, 420
the “how,” of The Ask, 398
“how to” knowledge, automatized with practice, 773
how-to manuals, training artists throughout history, 584
human(s) capacity for accumulating crystallized intelligence, 273
competing against each other, 41
computer expertise and, 65
controlling a plane in the air, 827
developed “expertise” in functional domains, 40
exhibiting expertise in differentiated domains, 45
forming broad multilevel networks, 40
functioning effectively, 444
machine systems and, 60
by nature social and embodied, 402
as predominantly visual creatures, 576
using a tool, 772
human capital, 391
human cognition. See also cognition differentiating us from other species, 41
Index of Subjects

<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>906</td>
<td>Index of Subjects</td>
</tr>
<tr>
<td></td>
<td>human cognition (cont.)</td>
</tr>
<tr>
<td></td>
<td>interplay of intuition and deliberation, 480</td>
</tr>
<tr>
<td></td>
<td>models of, 42</td>
</tr>
<tr>
<td></td>
<td>Human Cognitive Abilities – A Survey of Factor Analytic Studies (Carroll), 484</td>
</tr>
<tr>
<td></td>
<td>human cognitive architecture, 795–797</td>
</tr>
<tr>
<td></td>
<td>human development, experiential nature of, 772</td>
</tr>
<tr>
<td></td>
<td>human domain experts, knowledge-based methods of, 62</td>
</tr>
<tr>
<td></td>
<td>human expertise. See expertise</td>
</tr>
<tr>
<td></td>
<td>human experts. See expert(s)</td>
</tr>
<tr>
<td></td>
<td>human flight, Leonardo having a long-standing interest in, 829</td>
</tr>
<tr>
<td></td>
<td>human genome, size of, 796</td>
</tr>
<tr>
<td></td>
<td>human long-term memory, providing a functional equivalent of a genome, 796</td>
</tr>
<tr>
<td></td>
<td>human chess master, building, 606–610</td>
</tr>
<tr>
<td></td>
<td>human mind, classical view of, 233</td>
</tr>
<tr>
<td></td>
<td>Human Problem Solving (Newell and Simon), 11</td>
</tr>
<tr>
<td></td>
<td>human–human and human–automation teams, 467</td>
</tr>
<tr>
<td></td>
<td>human–machine systems, designing of, 65</td>
</tr>
<tr>
<td></td>
<td>Husserl, Edmund, 34</td>
</tr>
<tr>
<td></td>
<td>hybrid ecologies, 466</td>
</tr>
<tr>
<td></td>
<td>“hybrid” entertainers, starting new ventures, 390</td>
</tr>
<tr>
<td></td>
<td>hybrid environments, 466</td>
</tr>
<tr>
<td></td>
<td>hybrid model of learning, for entrepreneurship, 393</td>
</tr>
<tr>
<td></td>
<td>“hybridized” professionalism, 132</td>
</tr>
<tr>
<td></td>
<td>hydroelectric power, Wright obtained, 825</td>
</tr>
<tr>
<td></td>
<td>hypotheses</td>
</tr>
<tr>
<td></td>
<td>about mediating cognitive processes, 193</td>
</tr>
<tr>
<td></td>
<td>generating rapidly and effortlessly, 332</td>
</tr>
<tr>
<td></td>
<td>for mechanisms mediating superior performance, 198</td>
</tr>
<tr>
<td></td>
<td>testing on large samples of historical individuals, 311</td>
</tr>
<tr>
<td></td>
<td>hypothetical constructs, asserting to capture contributions to performance, 60</td>
</tr>
<tr>
<td></td>
<td>hypothetical probes, 176</td>
</tr>
<tr>
<td></td>
<td>hypothetical restructuring, of Carroll’s cognitive ability model, 494</td>
</tr>
<tr>
<td></td>
<td>“hypothetico-deductive method,” 332</td>
</tr>
<tr>
<td></td>
<td>hypothetico-deductive model of reasoning, 336</td>
</tr>
<tr>
<td></td>
<td>iconic sources, progressing to generic types, 381</td>
</tr>
<tr>
<td></td>
<td>ideas</td>
</tr>
<tr>
<td></td>
<td>expressing, 645</td>
</tr>
<tr>
<td></td>
<td>new arising in two ways, 822</td>
</tr>
<tr>
<td></td>
<td>new most valuable as the result of remote associations, 815</td>
</tr>
<tr>
<td></td>
<td>remotely associated, 812</td>
</tr>
<tr>
<td></td>
<td>retrieved from long-term memory, 423</td>
</tr>
<tr>
<td></td>
<td>identification criteria, for formulaic sequences, 644</td>
</tr>
<tr>
<td></td>
<td>identified mechanisms, mediating increases in performance, 198</td>
</tr>
<tr>
<td></td>
<td>identities, known and not interchangeable, 313</td>
</tr>
<tr>
<td></td>
<td>IDEO industrial-design consulting firm, 824–825</td>
</tr>
<tr>
<td></td>
<td>ideological leaders, 299, 300</td>
</tr>
<tr>
<td></td>
<td>idioms, 644</td>
</tr>
<tr>
<td></td>
<td>if-then rules</td>
</tr>
<tr>
<td></td>
<td>chaining to form a line of reasoning, 98</td>
</tr>
<tr>
<td></td>
<td>as inferential knowledge, 90</td>
</tr>
<tr>
<td></td>
<td>specifying a precondition and an action, 85</td>
</tr>
<tr>
<td></td>
<td>illegitimate events, 293</td>
</tr>
<tr>
<td></td>
<td>illness scripts, 72, 120, 337</td>
</tr>
<tr>
<td></td>
<td>illnesses or diseases, remembering particular, 120</td>
</tr>
<tr>
<td></td>
<td>ill-structured domains, 393, 397</td>
</tr>
<tr>
<td></td>
<td>ill-structuredness of problems, in the early stages of design, 384</td>
</tr>
<tr>
<td></td>
<td>illumination, 814</td>
</tr>
<tr>
<td></td>
<td>illusions, 582, 591</td>
</tr>
<tr>
<td></td>
<td>illusory shared cognition, 514</td>
</tr>
<tr>
<td></td>
<td>image manipulation software, 588</td>
</tr>
<tr>
<td></td>
<td>imaginary scenarios, running, 41</td>
</tr>
<tr>
<td></td>
<td>imagination</td>
</tr>
<tr>
<td></td>
<td>drawings of objects produced from, 584</td>
</tr>
<tr>
<td></td>
<td>of mathematical prodigies, 616</td>
</tr>
<tr>
<td></td>
<td>imagined objects, interfering with perception, 157</td>
</tr>
<tr>
<td></td>
<td>limitation Game, 27</td>
</tr>
<tr>
<td></td>
<td>immediate indicators, of learning, 440</td>
</tr>
<tr>
<td></td>
<td>immediate memory, 697</td>
</tr>
<tr>
<td></td>
<td>Immersive Simulated Learning Environments, 465</td>
</tr>
<tr>
<td></td>
<td>immersive simulation platforms, 465</td>
</tr>
<tr>
<td></td>
<td>ICSAD, 34</td>
</tr>
<tr>
<td></td>
<td>Imperial College Surgical Assessment Device (ICSAD), 34</td>
</tr>
<tr>
<td></td>
<td>implementation, successful teaching always including, 445</td>
</tr>
<tr>
<td></td>
<td>implications, of the Ask, 400–403</td>
</tr>
<tr>
<td></td>
<td>implicit approaches, to learning, 688, 689</td>
</tr>
<tr>
<td></td>
<td>implicit knowledge, 165, 168</td>
</tr>
<tr>
<td></td>
<td>implicit learning, 455</td>
</tr>
<tr>
<td></td>
<td>implicit perceptual training, 689</td>
</tr>
<tr>
<td></td>
<td>implicit processes, 178, 179, 508</td>
</tr>
<tr>
<td></td>
<td>improvements</td>
</tr>
<tr>
<td></td>
<td>of cognitive performance, 195</td>
</tr>
<tr>
<td></td>
<td>identifying opportunities, 399</td>
</tr>
<tr>
<td></td>
<td>observed in skilled decision making, 496</td>
</tr>
<tr>
<td></td>
<td>plateauing, 393</td>
</tr>
<tr>
<td></td>
<td>Improving Diagnosis in Medicine (Balogh, Miller, & Ball), 332</td>
</tr>
<tr>
<td></td>
<td>incidental acquisition, of formulaic language, 647</td>
</tr>
<tr>
<td></td>
<td>incidental learning, 639, 689</td>
</tr>
<tr>
<td></td>
<td>incidental memory for music just played, 541</td>
</tr>
<tr>
<td></td>
<td>inclination, of mathematical prodigies, 616</td>
</tr>
<tr>
<td></td>
<td>inclined lines, 155</td>
</tr>
<tr>
<td></td>
<td>inclusive communication, in expert teams, 459</td>
</tr>
<tr>
<td></td>
<td>increased age, bringing increased job-specific knowledge and skills, 840</td>
</tr>
</tbody>
</table>
increased time available for planning, increasing quality of the moves selected, 201
incubation stage, of creativity, 814
Indian musicians, showing interesting problem-solving strategies, 167
indicators, associated with high standards of performance, 167
indirect cue–hazard connections, 364
indirect precursors, 363
indirect scenarios, 364
individual accomplishment, 27
individual activities and sports, rated high for enjoyment, 655
individual aptitude contributing to expertise, 347
showing a consistent positive relationship to outcome, 345
individual attainment, gauging, 314
individual differences accounting for in the development of expert performance, 752–759
in chess, 607
variables predicting outcomes in performance, 45
individual excellence, professional expertise and, 142
individual level data, aggregating to the team level, 515
individual level leadership, compared to shared leadership, 515
individual performance, measuring in domains with treatment outcomes, 746–747
individual states, affecting performance on testing occasions, 214
individual traits, parsing the sphere of, 224
individualized coaching and teaching of students, importance of, 806
individualized practice, 656
teacher or coach designing, 761
without a coach, 758
individualized training, 554, 755, 757. See also training individuals. See also persons acquiring memory skills, 701
developing the expertise of, 444
discriminating between high and low quality, 44
engaging practice activities with full concentration, 759
exhibiting reproducibly superior performance in mental calculation, 703
expertise as the property of, 23
having to meet to be professionally successful, 106
highly experienced, 753
improving performance of, 750
learning occupational practice, 121
looking for data to either confirm or deny their assessments, 718
with more knowledge and experience, 70
observing, measuring, and analyzing performance in teams, 747
remaking occupational practices, 112
superior levels of performance in specific domains, 836
talented, success of leading them to practice more, 763
training individually in darts, bowling, and chess, 758
variation between, 796
indoor climbing gyms, 749
inductive approach, to identifying experts, 437
inductive factors, 485
“inductive inference,” 485
inductive logic, 479
industrial design
case study, 824
students, 385
industrial designers, 383
industrial production, 372
industries, investing in knowledge preservation projects, 849
ineffective moves, jettisoned, 796
inefficiency, of novices, 720
infants, capacities with numbers, 617
inference engines (inference procedures), 84, 99
inference methods, 85
capturing expertise, 99
inferences
confirmed by studies using other methods, 295
strength of about expert performance increasing, 304
inferential (outcome based) case studies, 295
inferior (PHG) brain area, 243
inferior parietal lobe, 246
inferred reconstructions, 198
influence, as a signal, 519
influential chunking theory, 597
“informal” learning, 108
information bottlenecks identified, 174
connecting new with already existing, 239
distributing across team members, 723
from the external environment, 822
from failure, 822
generating action appropriate to the environment, 797
obtaining from others as biologically primary, 796
rapid categorization of, 718
transmitting in complex ways, 41
information change, understanding of relative priorities and frequency of, 717
information flow, between cortical and sub-cortical areas, 556
information gathering task, 301
information loss, in artworks, 576
information pick-up, 619, 774
information processing
applicable to operational contexts, 453
characteristics of evolutionary theory, 795
invariant limits on, 76
models, 61, 598–606
program of primitive, 61
progressive modification of individuals, 116
view, 72
viewpoint, 61
Information Processing Language (IPL), 59, 63
information stores, 795, 796
information technologies, 466
information technology specialists, 170
informational value, 517
information-loss model, of age-related slowing, 838
information-processing approach, in cognitive science, 64
information-processing domains, with associated cognitive modules, 43
inhibition
abnormal demonstrated at the cortical level, 567
lack of, 566
weaker between global and local processes, 586
initial design ideas, dominant influence of, 382
“initial states,” transforming, 64
initial success, acting as self-reinforcement, 537
initial task performance, relationship with the amount of learning, 217
innate ability, role of in human expertise development, 54
innate basis, of numerical abilities, 617
innate dispositions, 836
innate domain-general talents, 839
inner speech, 194, 195
inner-directed control, form of, 132
“innocent eye”
arguing non-veridical percepts interfere with veridical perception, 581
mixed evidence for, 582
proposed by art historians John Ruskin and Roger Fry, 581
strong version not supported by empirical evidence, 583
innovation, 143, 301–302
Innovative Applications of AI, annual conference, 96
innovative solution, fixated on the underlying principle of, 383
input, facilitating a process, 508
input–output models, 183
input–process–output (IPO) model
describing constant change within a team, 510
of team effectiveness, 508
inquisitiveness, methods facilitating, 783
insight
versus analysis as modes of thinking, 817
arising from restructuring, 817
remote associations and, 819
reported when the solution was the first word that came to mind, 831
instantiation, of a problem in a domain, 86
Institute of Medicine (IoM) of the National Academy of Science, report published by, 331–332
institutes, 130
“institutional imperatives,” guiding the work of scientists, 137
institutionalization
puzzle of, 143
of science, 135–136
institutionalized expertise, research on, 141
institutions and authorization area, of sociological and anthropological work, 22
instruction
guiding processing of unfamiliar information, 805
nature of depending on the type of expertise being acquired, 318
purpose of, 804
supporting construction of knowledge, 805
by teachers during childhood and adolescence, 755
instructional assistance, research on optimizing, 797
instructional behaviors, determining the frequency of, 260
instructional design implications, 794
instructional guidance (worked examples), 797
instructional methods, 806
instructional objects, 445
instructional or training methods, selection of, 806
instructional routines, 442
instructional strategies, 338–339
instructional support, 17, 806
instructional techniques, 793, 804
instrumental groups, subdividing into single instruments, 564
instrumentalists, requiring perceptual and motor skills different from non-musicians, 543
instruments, relative rarity of certain musical, 564
instrument-specific pitch perception preferences, 543
insula area, 238, 240
insurance companies, assessing risk, 97
intangibles, for creating a new venture, 398
integral teamwork elements, facilitating, 522
integrated understanding, 481
integrative conception, of expertise, 770
integrative optimization techniques, 479
intellectual abilities, 836
intellectual capacities, fixed, 484
“intellectual component,” of professional work, 133
intellectual trends, extrapolations about perceived, 484
“intellectual/cultural” trait complex, 226, 229
intelligence, 619. *See also* artificial intelligence (AI); crystallized intelligence (Gc); fluid intelligence; general intelligence (g); practical intelligence; psychometric intelligence denoting stable, individual differences in domain-general abilities, 815
determined by genetic factors, 484
due more to the methods than to the knowledge, 87
predicted superior decision making in young adult participants, 486
as a strong determinant of decision making quality, 484
Intelligence, special issue on “Acquiring Expertise: Ability, Practice, and Other Influences,” 11
intelligence analysis, 172
intelligence information, techniques for gathering, 730
intelligence test
originator of, 617
performance stable from one occasion to the next, 221 scores on correlating with a criterion of academic performance, 216
intelligent behavior, understanding the mechanisms of, 84 intelligent people, tending to acquire higher levels of decision making skill, 488
intensive practice, advancing the writing skills of college students, 425
intensive writing, steady and reliable gains for students, 425
intentional experiences, securing rich learning, 115 intentionality, exercise of, 112
interaction between processes, as dynamic, 663
interactional expertise, 53 acquiring, 21, 27
defining via domain-specific language competence, 139 depending on immersion in the relevant community, 25 intellectual roots of, 26
as a means to compete socially, 53 interactions
among planning, translating, and reviewing, 415
effect on the dependent variable, 280
exploring between perceptual-cognitive skills, 663–665 tracking between performers, 258 “interactive team cognition,” 514
interactive tools, conceptualizing and encoding expertise, 92 interconnected words, network of, 640
interdependence, of performance, 220–221 interdisciplinary collaborations, having a complex division of labor, 26
interdisciplinary contrasts, 317
interests, hexagonal model of, 226
interfering task, reducing recall only marginally, 600
inter-individual differences central to psychological measurement and psychometrics, 213
found in cognitive approaches of investigating expertise, 112
in intra-individual change, 217
inter-individual preconditions, 105
inter-individual variability
of hours of deliberate practice to become chess masters, 609 during learning or skill acquisition, 217
substantial changes in typically found only for tasks within the capabilities of nearly all learners, 217
inter-judge agreement and reliability, 294
intermediate effect
in clinical case studies, 802
demonstrating that encapsulated knowledge is an important feature of a medical expert, 803
in studies of medical expertise as manifestation of the expertise reversal effect, 804
intermediate footballers. See footballers intermediate levels of expertise, 805, 806
intermediate social structures, research on, 141
internal attention, spreading broadly, 816
internal consistency, 263
internal judgments, 25
internal memory resources, tracking the current step, 155 “internal model,” 557
internal quality control, 137
internal representation of numbers in LTM, 704
internal representations, 757
international competitions, winning, 67
ternational contexts, preparing professionals for work in, 465
International Journal of Sport Psychology, special issue on the “Nature versus Nurture in Sport,” 11
international level
in chess, 750
training and engagement shown to be necessary to reach, 755
international chess masters, 602, 605
international medical graduates (IMG), performance on a written licensing examination (USMLE 2 – Clinical Knowledge), 345
inter-observer reliability, 215
interpersonal domain, predicting expertise in, 230
interpersonal exchange, revealing prevailing condition–action linkages, 781
interpersonal interactions, expertise in, 229
interpersonal processes, pedagogic practices comprising, 117
interpersonal skills, jobs highly dependent on, 230
interpretation, of cases, 294–295
interpreters, 704, 705
inter-professional competition, based on a specific kind of knowledge, 133
inter-professional cooperation, requiring “relational expertise” and “relational agency,” 141
interruptions
creating a significant challenge for SA, 724
effect of, 335
informing process, 335
minimal impact on accuracy, 347
with no effect on accuracy, 335
inter-subjectivity, role of, 401
intertwinning, of knowledge and basic reasoning in expertise, 67–68
interval capacity, longitudinal changes in, 281
interval endurance capacity, 275, 281
interval level rating scale, 597
interval shuttle run test, 281, 285
interval training, for long-distance running, 759
interventions
designing for developing older adults’ potentials, 849
to overcome limits, 544
interview analysis, 279
interview studies, of designers, 373
interviewing
not as successful as interactive discussions, 92
techniques comprising face-to-face discussions, 261
“in-the-loop,” 719
intra-individual comparisons, making during youth, 285
intra-individual differences
referring to differences within individuals, 213
relegating to measurement error, 228
intra-individual fluctuations in performance, 229
intra-individual preconditions, 105
intrinsic motivation, in writing, 424
introspection, 192, 194
introversion, positively correlated with skill in male chess players, 607
intuition, 92, 112
intuitive judgments, interplay with deliberation, 74
“intuitive” way of thinking, in design, 373
invariant approach, used in sports questionnaires, 261
invasion activities, transfer value of, 688
invasion-game team sports, research completed in, 687
inventors, not wishing to become entrepreneurs, 402
inverse optics problem, 584
inversion costs, 158
inversion effect, 158, 236
inverted fingerprints, experts struggling with, 236
inverted stimuli, impaired the performance of skilled radiologists, 236
investment theory, of Cattel, 836
investments, small step, 396
investor “pitch,” 399
investors, obtaining resources from, 399
Iowa Writer’s Workshop, 424
iPhone, as a noteworthy social innovation, 296
IPL (Information Processing Language), 59, 63
IPS (intraparietal sulcus), predicting performances on fine tactile discrimination tasks, 238
IQ
differences between musically trained and untrained, 848
not distinguishing the best among chess players, 10
obtaining reliable estimates of score, 312
providing a reliable and valid indicator of academic success or failure, 222
tests providing predictive validity, 222
Irving, John, 426
“IS-A” or “PART-OF” hierarchy, 99
isolated components, vs. interacting components, 800, 801
isolated–interactive elements technique, 800
Italian Renaissance, 135
Italian sociology, notion of “elite” introduced within, 139
items, recommending to Internet shoppers, 98
iteration, of analysis, synthesis and evaluation processes, 378
iterative process, with understanding driving the search for new data, 718
iterative refinement, of a knowledge base using case presentations, 92
jam sessions, improving performance, 538
“jamming,” 536
Japan, mathematics teaching following a different cultural pattern, 434
Japanese pottery workshop, apprentices progressing in, 118
jazz
communal practice, 538
guitarists starting much later, 536
with improvised structures, 566
soloists requiring extensive practice in groups, 536
job design, informing, 291
job knowledge, 773, 774
job types, classification of, 223
JOHNNIAC computer, at the RAND Corporation, 60
Joint Forces Air Component Commanders, training scenarios for, 458
joint problem-solving, 120
journal clubs, 425
Journal des savants, 136
Journal of Cognitive Engineering and Decision Making, special issues in, 454
journalists, learning by doing, 425
journals, 136
journeymen, 5, 361
judges
of case studies, 294
providing accuracy ratings for drawings, 590
judgment. See also decision making
accuracy of experts, 142
combining with feature inspection, 783
compared to decisions, 476
exercising responsible, 37
of expert teachers, 442–443
tasks with irreducible uncertainty, 777
Judgment and Decision Making (JDM), 453
juggling, compared to calculating abilities, 618
Juicy Salif (lemon squeezer), 374
junior and senior grades, of proficiency, 454
“jurisdiction,” 133
Kanfer-Ackerman Air Traffic Controller task, 219
karate, 248
Kasparov, playing simultaneous chess games, 603
Kepler, Johannes, 136
keyboard players, brain use and changes in, 560, 561
kinaesthetic feedback, 555
kinematic information, 680
kinetic information, stored in the brain, 245
kinetics, differentiating among experts and novices, 341
“king defense configuration,” as a chunk, 69
Klein, Wim, 624
knot tightness and stability, measures of, 341
Knowing Differences theme, 784
Knowing Process theme, 784
Knowing Self theme, 784
knowing that (declarative knowledge), 455
Knowing Why theme, 784
knowledge. See also abstract knowledge; accumulated knowledge; acquired knowledge; canonical occupational knowledge; declarative knowledge; domain knowledge; domain-specific knowledge; elicited knowledge; expert knowledge; factual knowledge; formal knowledge; high prior knowledge learners; implicit knowledge; job knowledge; meta-level knowledge; musical knowledge; negative knowledge; occupational knowledge; procedural knowledge; shared knowledge structures; specialized knowledge; tacit knowledge; vocabulary knowledge; word knowledge
about what is not known or should not be done, 107
accessing and applying to improve students’ learning opportunities, 441
active engagement and construction of, 121
allowing experts to deal with more complex situations, 364
benefits of overlapping and complementary, 459
compilation and automatization of, 121
components of, 89
of the conditions under which disease emerges, 337
as the “currency” of competition, 133
delineating different modes of, 107
delineating the meaning of, 587
depth of in vocabulary, 639–640
described, 165
developing by accessing workplace activities and interactions, 114
different types and qualities of, 107
different usages of the concept, 107
of a domain, 89
of educational contexts, 441
of educational ends, purposes, and values, 441
eliciting the right, 168
embedded within a larger conceptual framework, 93
of experts, 5, 165–188
experts’ usability of their, 71
extensive, well-organized, 797
formal and public, 93
forming a line of reasoning, 99
of formulaic sequences, 646
groups with a high and low level of, 68
informal and private difficult to elicit, 93
integrating new, 86
as a key component of chess expertise, 599
of learners, 441
linked to social values and interests, 132
new co-production of, 138
no longer seen as a “nuisance variable,” 67
passive view of, 99
perceptual organization principles and, 597
power and primacy of, 481
providing access to what might not otherwise be learnt, 118–119
relation with performance, 345
relevant to a decision, 98
required for expert teachers, 440–441
required for expert-level performance, 87
requisite dependence on for expert performance, 771
secondary, 795
strategies to encourage mastery of relevant, 339
studying the structure of, 70
teaching focusing on acquisition and application of, 338
transferring to a computer program from an expert, 91
of which aspects of a system or events are relevant, 721
of a word, 644
knowledge and skills
focus on acquiring, 33
formed and organized into embodied ways of being, 36
knowledge and skills (cont.)
integrating into being expert, 35
role of, 391
Knowledge Audit (KA), 458
knowledge base
containing explicit representations of knowledge, 85
continued maintenance of, 92–93
of an expert system, 84
modifying, 86
over-simplified model of with an inference engine, 90
preventing rapid, significant changes to, 797
of radiologists, 234
knowledge components, for a given word, 643
knowledge crafting, 413, 423
knowledge deficits, errors arising from, 334
knowledge driven work, trajectory for, 180
knowledge elicitation
in Cognitive Systems Engineering, 166, 167–170
combining with knowledge representation, 178
as the core of the design process, 466
for Decision-Centered Design, 166
developments in the methodology and applications of, 187
methods, 167, 521
products of, 170
protocols, 167
revealing implicit knowledge by scaffolding workers, 168
stopping point for, 168
strategies, 168
techniques making tacit knowledge explicit, 781
uncovering elements of expert reasoning, 176
knowledge encapsulation theory, 802
“knowledge engineers,” with social skills, 91
knowledge intensive domains, creation of models of, 178
knowledge management initiative, 781
knowledge models, 178
knowledge representation, 89
developments in the methodology and applications of, 187
integrating with the process of knowledge elicitation, 178
organizing elicited knowledge, 170
of a program, 87
Knowledge research category, for transportation, 357
knowledge restructuring, 106
“knowledge sharing,” 93
knowledge structures
different from other stages, 337
information about, 228
in long-term memory, 805
other kinds of, 90
proposed, 333
knowledge telling, producing a string of assertions, 423
knowledge “transfer,” problem of, 35, 37
knowledge transforming, yielding complex argument structures, 423
knowledge usability, problems associated with overload or inefficiency, 71
knowledgeable learners, exploring and solving relatively new tasks, 798
knowledge-based methods, applied to logic and mathematics, 88
knowledge-based paradigm, in AI, 85
knowledge-based system, properties of, 86
knowledge-based systems. See also expert systems
applications of, 95–99
constrained in scope, 100
focus on accuracy, 84
in general, 85
history of, 86–87
knowledge-based theory of reasoning, 336
knowledge-driven influences, facilitating perception and drawing accuracy, 584
knowledge-laden task environments, AI addressing, 62
knowledge-related generative processes, skills based on, 541
knowledge-rich programs, experimenting with, 87
L1 Hebrew learners of L2 English, 646
L2 (second language)
learners improving use of formulaic sequences, 646–647
learners knowing how words behave in context when surrounded by other words, 643
learning a new word as first and foremost a matter of relabeling, 642
practical suggestions for gaining expertise, 647–648
vocabulary, expertise in, 634–649
labels and referents, giving thoughts verbal expression, 195
laboratory drawing tasks, 578
laboratory studies
of hazard perception, 336
presented in support of the remote-associates view, 831
uncovered mechanisms mediating instances of exceptional memory performance, 701
of the use of both temporal and spatial occlusion techniques, 679
land transport, expertise in, 356
landmine detection, 172–173
Lang Lang, legendary pianist, 552
Langley, Samuel, 827
language. See also English language; L2 (second language)
adapting to better suit the learning biases of the neural mechanisms, 157
affecting “thought,” 152
described, 644
<table>
<thead>
<tr>
<th>Index of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>913</td>
</tr>
</tbody>
</table>

facilitating skill acquisition, 53
producing through handwriting, 415
role of in expertise development, 53
language chunks, accessing quickly, 644
language input, increasing through extensive reading, 647
language of a specialization, expertise in, 139
language processing, 414, 622
language users, 51, 644
laparoscopic (pin hole) surgery, 764
laparoscopic cholecystectomy surgery, 344
laparoscopic inguinal hernia repair surgery, 342
laparoscopic surgeons, 343
laparoscopy skills, 343
“large meaningful patterns,” characterizing expertise, 68
large team, having several observers with assigned responsibilities, 168
“larger patterns,” of experts, 66
last work, seldom the best, 321
late Acheulean tools, required secondary competencies and self-control, 45
late mature, 276
latent growth modeling, 217, 279
later adulthood
deliberate practice and expertise maintenance in, 842–843
neuropsychological substrates of expertise in, 841–842
lateral areas (pMTG and SMG), 243
lateral occipital complex (LOC), 236, 238
lateral temporal areas, 241
latex glove, musicians suffering from dystonia playing with, 568
Latin, instruction in, 6
law
certification to practice in France and the USA, 9
as a distinct social system, 137
law professions, tied to justice, 132
“lay” audience, expert addressed in front of a, 140
lay people, placing their trust in professional workers, 129
leader(s)
leaving a rich body of archival material, 298
mistakes by historically notable, 295
problems, successfully solving, 300
requiring different educational experiences from creators, 318
substituting rankings and rationale for those of experts, 460
of teams, 509
working to reduce conflict in highly virtual teams, 518
leader extraversion and cognitive ability, as predictors of initial levels of leadership efficacy, 520
leader performance, cases of, 298–300
leader problem-solving, judges appraise cases of, 294
leader styles, experimental studies of, 300
leader types, 300
leader–member exchange, 520
leadership. See also shared leadership; team leadership
directing and organizing team members’ interdependent actions, 508
as a domain where expert performance is valued, 298
effective, 298
ef ficacy, 520
expert, 778
expertise, 778
problems, 299
styles, 299
traditional forms of, 515
virtuality–team performance relationship and, 517
learned behaviors, cultivating an organizational climate supporting, 522
learned domain, promoting good SA in, 724
learned information, expert reviewing and modifying, 92
learned mental models, 778
learned problem-solving, judges appraise cases of, 298
learned routine, cues outside, 723
learner characteristics (aptitudes), 801
learner prior knowledge, as the single most important factor influencing learning, 806
learner-manipulated variables, 799
learners. See also novice learners
acquiring formulaic sequences from reading, 647
active, 114
adopting different learning or performance strategies, 218
advanced, 646, 806
becoming expert performers after five or six hours of practice, 218
effective, 121
engaging in and mediating what they experience, 119
feedback provided to during problem-solving, 800
knowledge of, 441
low knowledge studying worked examples, 798
matching written subtitles to words spoken on screen, 648
more experienced benefiting from methods, 806
more experienced deteriorating, 807
more experienced problem-solving with minimal guidance, 800
more expert profited from continuous animations, 800
more expert requiring additional resources, 805
more knowledgeable focusing only on their weak areas, 807
more knowledgeable needing to process redundant instructional guidance, 805
musical, 542
need to know a large number of lexical items, 639
poorest performing having the most to gain, 217
vocabulary size required, 637–639
learning. See also deep learning; mastery learning; perceptual learning
arising incrementally, 115
in chess, 606
distinguished from performance, 667
effective, 64
following a power function, 606
guided by more expert partners, 120
improving the efficiency of, 9
inferred from changes in behavior over time, 667
inferred and shaped by the social and material work environment, 122
mindful of opportunities for, 459
monitoring and enhancing, 36
not directly observable, 538
not possible to predict actual, 116
as a permanent change in behavior over time, 216
to see well, 152
styles, 776
taking time, 440
through discovery, 119
through practice, 121
through work, 120
understanding in a particular setting, 36
work activities and, 114–115
to write in a specific domain, 419
learning curves, 344
learning environments, 13
learning goals, formulating clear, 440
learning mechanisms, accounting for the acquisition of everyday skills, 11
learning objectives, 342
learning opportunities
construct of, 439–440
creating in the classroom, 440
producing student outcomes, 440
teachers creating precise, 440
learning processes
conceptualizations of, 115–116
different resulting in different representations, 541
learning through work, 122
learning-by-doing literature, in economics, 393
learning-from-experience hypothesis, rejecting, 393
lectures, teachers presenting the same material to all listeners, 757
left DLPCF, 240
left frontal brain regions, 416
left hemisphere, 555
left inferior frontal gyrus, 237
left intraparietal sulcus, 627
left parietal lobe, 627
left premotor cortex, 240
left primary auditory cortex, 554
left superior parietal cortex, 415
left superior parietal gyrus (SPG), 240
left superior temporal gyrus, 559
legal documents, incomprehensible to the general public, 424
legal domain, 402
legislation, recognizing the value of experience, 357
legitimacy, 131, legitimate events, in studies of leadership, 293
Leibniz, G. W., role of, 134
lemon squeezer, design process of, 374
Lemonade principle, 395
Leonardo da Vinci, 590
aerial screw, 818, 829–830
knew that air was compressible, 830
leap of analogical thinking connecting two remotely associated ideas, 819
routine system to understand any object, 578
Leopoldina (early academy), 136
less exceptional individuals, examining using case studies, 305
less-experienced drivers. See also drivers
problems with efficient intake of information in, 735
visual information processing of, 359
less knowledgeable students, 798
“less obvious” recombinations, as “more creative,” 813
less skilled players, gained most from planning for the easy problems, 202
less talented, failure leading them to practice less, 763
lesson(s)
debriefing sessions following, 447
functioning similarly to the designed practice tasks described by Ericsson, 446
separated in time, 433
spending weeks or months on a single, 447
success of depending on a teacher’s preparation and planning, 434
lesson study
Japanese practice of, 446
as a lab for deliberate practice, 446–447
providing teachers with skills to transform their daily work, 447
less-skilled participants, using an experience-based model, 686
less-skilled players, depending more on superficial elements, 684
“letting go,” during a first draft, 419
level(s)
of achievement, 745
of discomfort, 464
of expertise, 794
Index of Subjects

of specialization, 602
Level-1 trauma cases, 510
Level-1/2/3 verbalizations, 195
leverage points, finding, 456
lexical coverage, 635–637
lexical decisions, tasks requiring, 838
lexical space, metaphor of, 639
“liberal arts,” in philosophy, 137
life expectancy, controlling for, 317
lifetime accumulated practice, related to the level of performance attained, 537
lifetime productivity, 314
lifeworld, 34
lifeworld perspective from phenomenology, 37
light bulb, Edison’s invention of, 818, 829
lightness constancy, 583
Lilienthal, Otto, 827
Lilies problem, 821
limitations, of individual adaptation, 846
limited attention, 717, 719
limited working memory compensating for, 644
effects on SA, 717
limits, to human recall, 264
linear functions, tracking, 153
linear process, determining team performance, 508
linear progression, 718
linguistic abilities of humans, differentiating them from computers, 26
linguistic discourse, 27, 28
linked habits, theory of, 63
lip representation, altered in patients suffering from embouchure dystonia, 567
lips, requiring neurons in the primary motor area, 556
liquidity constraints, 390
list structures, 60, 99
listeners, recognizing individual spoken lexical forms, 635
listening
lexical coverage required, 636–637
to music as a complex task, 554
list-processing computer language, 59
literacy
foundations of established in toddlers, 422
in the use of information and communication technologies, 37
literacy skills, experts with, 127
literature on NDM, bifurcating people into experts versus novices, 454
“lived body,” overcoming problem of a gap between contents of the mind and expert performance, 35
lived experiences of occupational being enacted, 117–118

presenting in terms of cues, strategies, factors, and novice difficulties, 460
LOC (lateral occipital complex), 236, 238
local transfer, 821
locations, along a route, 239
logarithms, memorizing the table of, 624
log/diary, 259
logic, categories of, 479
Logic Theorist (LT), 60, 63
Logic Theory Machine, 61
Logic Theory Program, proofs to theorems in Whitehead and Russell’s *Principia Mathematica*, 87
“Logical Competitor Set,” for a case, 69
“logical-mathematical” intelligence, 629
logistic Item Response Theory models, 488
longitudinal data
absence of using comprehensive, multi-disciplinary test batteries, 666
collected in a retrospective fashion, 263
collecting over a period of time, 262
two-level hierarchy defined in, 280
longitudinal dataset, on practice-related variables, 259
longitudinal designs, of historiometric studies, 315–316
longitudinal measurements, permitting a direct comparison of performance improvement, 751
longitudinal or prospective designs, addressing issues of predictive ability, 266
longitudinal research, nature of, 262
longitudinal results, regarding shared leadership in teams, 520
longitudinal studies
acquisition of drawing skill versus various perceptual abilities, 589
describing detailed development of the structure of expert performance, 709
detecting developments or changes in the characteristics of the target population, 271
extending beyond a single moment in time, 271
highly relevant from repeated observations, 271
majority utilizing an aggregated design, 316
measuring change in outcomes at the individual level, 285
multidisciplinary, 271
pointing to general gains in cognition, 848
showing that a minimum of ten years of experience seems to be necessary to become an expert at an international level in chess, 751
statistical analyses in, 278–280
studying the acquisition and maintenance of expertise, 271
training novices to memorize chess positions, 606
longitudinal study design applying, 275
measuring soccer performance and technical skills, 278
not as flexible as cross-sectional studies, 285
long-lived creators, remaining productive, 320
long-term commitment, predicting involvement and practice, 537
long-term episodic memory, experts and, 622
long-term goal, 276, 277
long-term memory (LTM)
accumulated knowledge of experts stored in, 696
areas involved in, 244
automatic retrieval from, 71
differences in, underpinning skill differences, 605
coding of sequences of 3-digit groups, 199
evidence for storage in with retrieval cues, 704
exploiting the unlimited capacity of, 622
guiding processing of familiar information, 805
instances of radiological images in, 234
large capacity of, 71
number of chunks held in, 600
rapid access to, 419–420
size of having no adequate measure, 796
stored, biologically secondary information obtained from other people, 796
structure and contents of, 599
structures circumventing the limitations of working memory, 718
utilizing pre-existing knowledge in, 483
long-term musical training, protecting the auditory system from age-related decline, 842
long-term outcomes, effects on, 432
long-term predictability, of talent tests, 836
long-term talent identification programme, predictive utility of, 666
long-term working memory (LTWM), 17, 622
deployed by experts, 623
encoding chess position in, 70
model, 701
“looked but failed to see” error, 723
lookup task, with pairs of nouns, 218
“losing,” oneself in work, 420
Love Canal, 22
low-coherency environment, 175
low-fidelity models, 341
low-fidelity simulation format, assessing domain-specific tacit knowledge, 776
low knowledge learners, studying worked examples, 798
“low-level” engineering efforts, mathematically modeling neuronal cell assemblies, 63
low-level perceptual processes, touched by expertise, 160
“low-level” transfer, possible between sports, 669
low-level visual processing, systematic changes in as a result of video game playing, 591
low-physical-fidelity simulations, used by NDM practitioners, 460
low prior knowledge students achieved better by studying worked examples, 798
benefited from the added visuals, 800
benefited from worked examples, 800
low-validity environments, people performing significantly more poorly than algorithms in, 175
LTM. See long-term memory (LTM)
LTWM. See long-term working memory (LTWM)
M1 Abrams tank turbine engine, 96
machines, making decisions, 100
macrocognition
assuming a dynamic, ongoing and iterative engagement, 183
combining concepts in with concepts from conflict management, 462
extending the focus of NDM, 460–463
macrocognitive functions, generally performed as collaborations, 461
macrocognitive model, of expert forecaster reasoning, 185
Macrocognitive Modeling, 183–184
macrocognitive strategies, for problem detection, 466
macro-social view, on expertise, 401
macrostructure, of search in chess, 602
macro-social view
maintenance of reputation, 295
through deliberate practice, 840, 849
management for older experts, 837, 845
role of in sports, 842
making music, relying on voluntary skilled movements, 555
maladaptive plastic changes aiming to reverse, 568
in the brain’s sensory and motor networks, 566
malformed collocations, 646
mammal species, skilling up their offspring, 53
“man in the head,” no specification of the processes of, 194
management by discovery, 462
performance on a daily basis, 446
of resources, 358
of time by teachers, 433
“management by objectives,” 462
managerial decision making, in medicine, 347
managerial literature, 130
managers, compared to entrepreneurs, 396
managing
memory, 623
uncertainty, ambiguity and time pressure, 456
Mangiamele, Vito, 625
manipulables, early experiences of calculators involving, 622
Mann Gulch fire, 830
manual motor practice, of the non-dominant left
hand, 560
manufactured objects, configuration of, 97
manufacturing, 97
map experts, not showing better memory for traditional
types of maps, 699
MAPP computer program, 600, 602
marathon- or half-marathon runners, effects of regular
training, 842
market, for entrepreneurship exercise, 406–407
market research, realistic, 405
market research studies, experts skeptical about, 394
marketing campaigns
examining performance in developing, 297
formulating for a new product, 303
marketing slogan, discourse of professionalism in, 130
marriage counselors, 402
Marshall, George C., 294, 298, 299
martial arts group, negative age-effects, 845
Marxist interpretations, focused on medicine and law, 129
mass educational provisions, meeting the needs of
industrialized economies, 113
master and apprentice, relation between, 9
master checker players, interviewing, 87
master chess players
choosing better moves, 600
finding good moves with minimal search, 604
making good decisions under time pressure, 603
memorizing at least 100,000 opening moves, 598
new estimates of the vocabulary of, 602
reproducing the chess pieces in a position on the
board, 683
masterpieces, 5
masters
organized existing knowledge, 6
paintings, of sharing a profound fidelity to the visible
world, 577
Masters Driver’s License in the United States, 359
mastery learning, 342
mastery-based training approaches, 342
mastiff dog breeds, 51
match, between expertise and the problem, 822, 823
math operations test, predicting wages, 485
Mathemtica software package, 88
mathematical abilities, twin study showing concordance
rates for monozygotic and dizygotic pairs, 627
mathematical calculation
deliberate practice in, 75
development of expertise in, 16
mathematical constant π, memorized 60,000 decimals
of, 200
mathematical expertise, 616–630
brain systems for, 627–629
describing, 618
no evidence for differences in innate specific capacities
leading to, 630
mathematical ideas, connections with core underlying, 435
mathematical models
accounting for the fine structure of careers, 322
characterizing humans’ apprehension of environmental
conditions, 777
mathematical precocity, of mathematical prodigies, 616
mathematical problems, calculation of, 703
mathematical skills, role in decision making, 477
mathematical tasks, not studied, 628
mathematically gifted children and adolescents,
investigated, 628
mathematically related proficiencies, evident in adults’
lives, 477
mathematicians
professional, 628
tending to live less long than other scientists, 317
mathematics
based on detailed physical and control models, 93
expertise in, likely to show a Matthew effect, 218
often overly precise and awkward, 100
producing an “instrumental” understanding of, 434
“relational” understanding of, 435
Mathematics Knowledge for Teaching (MKT), 441
mating and survival, evolutionary imperatives of, 44
Matthew effect, 218
maturation, 276
maturation and skill development, allowing for working
animals, 54
mature reasoners, 155
maximal performance
becoming a rigidly determinate quantity, 10
in real settings, 847
Mazumdar-Shaw, Kiran, 395
McClelland’s categorization, of professionalization “from
within” and “from above,” 131
mean performance, in the early sessions of practice, 218
meaning
knowledge of, 642–643
of a word, 640
meaningful associations, encoding arbitrary information
by, 700
Meaningful Learning, theory of, 176
means
compared to each other, 280
under control of entrepreneurs, 395
Means, James, 828
“means–ends analysis,” 61
measurement(s)
of change over time, 216–220
of domain-specific reproducibly superior performance, 746
multiple taken in a longitudinal study, 271
of reliable individual differences among experts’ and
professionals’ performances, 748
measurement artifacts, 216
measurement occasions, 217
Measures of Effective Teaching (MET) project, 438
“measures of musical talents,” 535
mechanical ability, 749
mechanical arts, 6
mechanical engineering design, 380
mechanical engineering designers, 378, 382
mechanisms. See also acquired mechanisms; causal
mechanisms; expert mechanisms; mediating
mechanisms; perceptual mechanisms
acquisition of, 708, 763
allowing transformation from novice to expert in a
domain, 725
artists outperforming non-artists using, 579
creating for team cooperation and coordination, 510
executing expert performance, 76
experts using knowledge of, 90
for forging linkages, 820
gradually acquired versus innately given, 745
identifying, 699
mediating, 199
mediating chess expertise, 201–203
mediating expert chess players’ superior ability, 203
mediating memory performance for numbers,
700–701
mediating performance on representative tasks, 763
mediating superior performance, 749
mediating verifiable expertise, 480
necessary for developing good SA, 716–718
underlying expert performance, 70
underlying good SA, 724
media, task requirements of different, 592
medial (RSC) brain area, 243
medial frontal cortex, 240
medial frontal gyrus, 240
medial superior parietal gyrus, 240
medial temporal lobe, 244
mediating mechanisms
inferred from verbal reports, 199
step-by-step development of, 199
mediating processes and structures, producing superior
performances, 64
mediation
described by phenomenology, 132
experts’ intuitive actions and, 12
mediator
accounting for variability in team performance, 508
performance as, 402
medical and surgical expertise, predictors of, 344–346
medical diagnosis, one of the first knowledge areas for
expert systems, 96
medical doctors. See also physicians
developing expert levels of performance, 397
experienced, more accurate in diagnoses, 699
handwriting of, 4
interactions with patients, 204
learning to practice medicine effectively, 118
mortality and morbidity meetings, 119
relying on a higher-level representation, 708, 803
roles of, 111
societal expectations for, 109
troubleshooting automobile engine problems, 89
medical education, expert–novice studies, 65
medical educators, providing instructions for visually
diagnosing clinical cases, 783
medical error, morbidity and mortality as a result
of, 332
medical expertise, intermediate effect in the encapsulation
theory of, 802
medical experts
able to explain diagnoses, 73
not always outperforming less experienced
individuals, 802
medical field, expertise reversal in, 802–803
medical images, requiring perceptual diagnosis, 204
medical practitioners, taking patient perspective, 27
medical profession
analyses of, 129
tied to the value of health, 132
medical records, managing for the UK National Health
Service, 171
medical schools, 336
medical science, expert dogs or other animals useful in
diagnostic science, 54
medical situation, stressfulness of a simulated, 347
medical students
less experienced outperforming relatively more
experienced medical practitioners, 802
piecemeal representation of a diagnosis, 73
reproducing the information in a case with all detailed
biomedical knowledge, 803
wanting to know more about underlying reasons, 100
medical teaching, identifying the need for articulation of tacit knowledge, 785
medical tests and treatment effectiveness, predictive power of, 495

medicine
AI addressing, 62
career in, resulting in documented achievement, 344
certification to practice in France and the USA, 9
diversity of skills involved in, 344
effective treatments associated with sets of symptoms, 91
fundamental goal to treat patients to increase health and wellbeing, 203–206
future issues, 346–347
language of modern as a formal system, 133

memories
for facts, 624
involving the hippocampus, 554
managing and strengthening, 623
memorizers, 239, 240, 244

memory.
See also long-term memory (LTM); short-term memory (STM); transactive memory; working memory
“accuracy” and “rapidity” of distinguished from “association,” 620
circumventing capacity limitations, 498
constraints of, 333
deleteriously assisted by creating an internal map of a musical piece, 539
domain-specificity in, 623
exceptional, 623, 700
of mathematical experts, 620–624
for move sequences using blindfold chess, 605
of music demonstrated by savants, 541
playing a crucial role in motor expertise, 245
remembering responses to a survey or test, 214
skilled as a by-product of chess skill, 703
memory competitions, 700
memory demands, integral to selecting chess moves, 203
memory development, role of knowledge on, 606
memory encodings, of experts in chess, 708
memory expertise, 841
memory experts
making better use of brain regions, 841
superior performance on specific memory tasks, 700

memory processes
accuracy of, 837
in chess, 599–602
memory recall, for positions in chess, 600
memory research, on the encoding and retrieval processes, 199

memory skills
based on LTM, 702
experts maintaining efficient access to diverse information, 13
memory span
increasing performance with training, 698
testing in flute players at different levels of music skill, 707
memory strategies, spontaneous use of, 68
memory tasks
capturing superior performance on, 700
studying performance on, 11
“memory type,” used by prodigies, 617
memory-based applications, processes superseding, 343
men, outperforming women in chess, 607
mental abacus
activating motor regions of the brain, 628
carrying out another task in parallel not involving numbers, 626
development requiring practice on mental addition problems, 704
expanding by one additional digit estimated to take about 1 year of deliberate effort, 704
more experienced calculators using, 626

mental activity, detailed descriptions of, 166
mental and material, dissolving the traditional conceptual split between, 35
mental calculation, working memory during, 703–704
mental calculators, 239. See also calculators (human)
Inaudi, 700
relied on the traditional multiplication table for single digit combinations, 703
Index of Subjects

mental capacities, individual differences in, 10–11
mental content, “leaping out” into expert performance, 33
mental models, 132
advantages of, 721
building, 460
combined with modular plasticity, 41
deﬁned, 720
embodying stored long-term knowledge, 721
expertise highly dependent on, 720
of experts, 455
experts’ superior, 17
generating, 41
inaccurate, 514
insufﬁciently developed, 728
of judges inﬂuence appraisals of events and actions taken, 294
overreliance on, 728
providing a signiﬁcant short cut for determining Levels 2 and 3 SA, 722
providing cognitive mechanisms, 718
providing “default” values to, 721
similarity and accuracy jointly predicting task performance, 459
stretching beyond limits, 724
mental multiplication
of numbers, 195
task involving, 197
mental representation(s)
of an abacus, 704
constructing what the text says, 416
detecting minor, but consequential, deviations, 74
having multiple functions, 73
for implementing a plan on an instrument, 541
mediating expertise during execution, evaluation, and learning, 72–73
for musicians, 541
students needing help to acquire, 76
mental resources, 363, 722
mental simulation
arriving at assessments, 722
envisioning a sequence of events, 455
mental structures and their functioning, addressing, 61
mental tests, developed by Galton, 10
mental training, 558
mentors, identifying, 464
mentors and role models, focusing on the inﬂuence of domain-speciﬁc, 315
Merleau-Ponty, Maurice, 34
Merton, Robert K., 137
meso-level structures, as coordinating mechanisms in temporary groups, 510
message, expressing, 645
meta-analyses
on performance attributable to practice, 762
on shared leadership, 515
meta-analytic methodology, revisiting prior studies of personality, 390
meta-analytic reviews, documenting age-related declines, 837
metacognition, 398, 456, 498
metacognitive control, of experts, 464
metacognitive effects, exerting a direct effect on affective responses, 496
metacognitive heuristics, correcting or circumventing costly mistakes via, 483
metacognitive processes, 482
metacognitive skills honing, 459
musicians regulating their practice themselves, 539
relevant to developing expert performance, 277
metacognitive understanding, of one’s abilities, resources, and constraints, 486
Meta-DENDRAL, discovered new rules of mass spectrometry, 88
meta-expertises, as expert domains, 25
meta-knowledge, MYCIN indicating the order in which to pursue different goals, 90
metal detector, detecting landmines, 172
metal sensing device, development of a new type of, 173
meta-level knowledge, 90, 100
metaplasticity, referring to sensitive periods in the lifetime, 566
meta-processing, varying with experience, 365–366
meta-rules, directing the selection of rules to be invoked, 99
meta-strategies, experts having good, 724
meteorologists, 153
method of loci, 239, 240, 244
Method-of-Loci strategy, 841
methodological artifacts, 316–317
methodological issues, in any case study, 293
methodology, 195, 277
methods from Cognitive Systems Engineering, 175–181
for measuring expert teams, 518
resulting in different representations, 541
MeteLife, 97
metrics, based on total practice time, 258
Mexican birth attendants, skill acquisition of, 119
Michelangelo, 576
Mickelson, Phil, 714
“microcognitive” functions, 461
micro-genetic development (moment-by-moment learning), 112
micro-level ethnographic studies, of professional socialization in workplaces, 130
micro-pitches, sensitivity to, 552
microscopic changes, as the brain purges unnecessary connections, 245
microscopic slides, of stained tissue, 204
microstructure of deliberate practice, 656
of practice, 258
microsurgery proficiency and training, 342
Middle Ages, craftsmen formed guilds, 5
middle putamen, 557
middle-distance runners, practice activities for, 759
mid-frequency vocabulary, 638
MIDI-technology, assessing finger movements, 560
mid-life, animals reaching peak level performance in, 53
Migration Period – the Dark Centuries, 134
Miler, George, 61
military command and control simulations, examining the impact of technology on team operations, 465
military decision making, studies of, 461
military experts, strategies to detect landmines, 173
military officers experienced, concentrating more on the enemy situation, 731
experienced, rated higher on SA related behaviors, 731
learning how to gather and disseminate key information on the radio, 723
preparing for operational decision making, 465
military pilots. See also pilots
experienced, engaging in practices or skills beneficial to SA, 726
information available to dependent on specific actions, 723
societal expectations for, 109
tenfold difference in SA, 725
mimicry, as a signal, 519
minaret builders, 118
mind comprised of computationally distinct mechanisms, 42
shifting focus from to bodily perceptions, 35
minicomputers, facilitating the manufacture of semi-custom, 97
mini-lessons, planning to incorporate instructional routines, 442
minimum unit of analysis, for expert performance involving other people, 401

Minotauromachy (painting), 826
“mirror neuron network,” 558
mirror neuron system, 681
mirror neurons, 246
misconceptions, explaining emergence of, 447
misperception hypothesis, of drawing errors, 581
misinformation, ignoring, 91
“mission critical” applications, 97
Mitchell, Ronald, 392
mixed designs, of historiometric studies, 316
mixed methods, combining quantitative and qualitative, 207
“mixed practice” strategy, 339
MKT (Mathematics Knowledge for Teaching), 441
mnemonic encoding, testing the role of, 199
mnemonics reminding doctors about a series of interrelated conditions, 120
used by artisans in Early Imperial China, 116
mobile devices, widespread use of, 266
modality of vision, 576
“mode 2,” 138
“mode-1/2 knowledge,” 107
model(s) of expertise, 84, 90
integrating macrocognitive functions and processes into NDM frameworks, 461
for knowledge elicitation, 168
providing as the designer’s goal, 380
model essays, in the worked example condition, 798
modeling projects, building functioning computer programs, 194
moderators, identifying the impact of, 520
mode of communication, 520
of seeing, 154
of transport, 356
modular functions, supporting universal, primary competencies, 42
molar-equivalence-molecular-decomposition approach, 844
molecular modeling, to construct the structure of DNA, 823
Mondeux, Henri, 623
monitoring, 277
monocular depth cues, 581
mono-disciplinary, cross-sectional studies, 285
monopoly of competence, 129
monopoly practice, legitimacy of, 129
Moorsel, Leontien Zijlaard-Van, 277
moral community, professionalism as a form of, 128
moral questions, feedback and, 498
morally relevant biases, 498
more experienced learners
performance deteriorating, 807
problem-solving with minimal guidance, 800
more experienced students, benefited most from step-only guidance, 799
more expert learners
profiting more from continuous animations, 799
requiring additional resources, 805
more knowledgeable learners
improved more by focusing only on their weak areas, 807
need to process redundant instructional guidance, 805
“more like this” button, 98
more versus less-creative people, differing in response
hierarchies, 831
morphology, of the corpus callosum, 561
most frequent words, providing the greatest amount of
coverage, 637
“mother” disciplines, dominated research in
entrepreneurship, 391
mothers, experience with learning a musical
instrument, 539
motion
of the arm holding the racquet in badminton, 679
extraction of information on, 684
motion pictures, evaluations of, 314
motivation
effect of, 281
to engage in a task, 424
indirect effect by moderating practice in chess, 609
integrated into the L2 speech community, 646
to maintain intense training, 847
motivational component, to self-efficacy, 225
motivational factors, individual-difference variables
and, 592
motivational rituals, practicing, 420
motivations and intentions, considering a multiplicity
of, 403
motor actions, 556
motor and visuo-spatial pathways, of children with abacus
experience, 244
motor anticipation, in fast-moving sports, 246
motor associative areas, 240
motor basal ganglia loop, 561
motor brain function, 558
motor component, compared to the visual component, 246
motor control
increasing degree of loss of, 565
theories of, 342
motor co-representations, activation of, 558
motor domains, 233, 245
motor excitability thresholds, reduced, 558
motor expertise
crucial neural component of, 246
functional brain changes in, 246–247
(pre)frontal areas in, 248
structural brain changes in, 248
motor familiarity hypothesis, 681
motor homunculus, represented upside-down, 556
motor mechanics, 111
motor performance, 749
motor performers, expert, 681
motor processes, 591
motor proficiency (doing), 342
motor skills, clinical procedures using, 340
motor system, 555, 566
motorcyclists, high fatality rate, 360
move, deciding on the next in chess, 243
movement, as not thought about movement, 35
movement efficiency, differentiating experts and
novices, 341
movement pattern information, anticipatory encoding of,
681–684
movement pattern of others, use of advance information
from, 678
movement perception and production, common coding
view of, 681
movement proficiency, 341
movement responses, 678
movements patterns, in response to visual cues, 556
movie directors, 321
Mozart, W. A., 540, 625
“Mozartians,” 418
MRI. See magnetic resonance imaging (MRI)
Müller-Lyer illusion, 583
multidigit arithmetic, by calculators, 623
multidimensional and longitudinal research
increase in over time, 278
overview of studies on, 282
providing valuable insight in measures of
performance, 285
studies applying, 281
multidimensional nature of expertise, considering, 276
multidimensional performance characteristics, hierarchy
of, 281
multidisciplinary approach, existing NDM methodologies
and theories taking, 467
multidisciplinary longitudinal studies, from the field of
sports, 271–285
multidisciplinary talent identification model, 667
multifaceted approach, using strengths from various
techniques, 266
multilevel analyses, revealing male and female elite youth
players, 281
multilevel data, regression analysis for, 280
multilevel designs, latest advances in, 316
multilevel modelling, 279, 280–281
multilevel modelling program MlwiN, 281
multi-method team performance measurement system, 519
multinational organizations, using virtual teams, 516
“multi-ness,” characterizing the current world, 467
multiple choice licensing examination, as a better predictor
of complaints to a regulatory body, 345
“multiple players,” operational settings involving, 458
multiple regression, appropriate for analyzing
hierarchically structured data, 280
multiple regression analysis, 316
“multiple-hurdles” approach, 220, 223
multiplication, number of operations growing with the
square of the number of digits, 621
multiplication tables, 624
multisensory connections between auditory and motor
areas, piano training and, 558
multisensory integration, tasks involving, 555
multitasking. See also attention
skills for, 730
multi-team environments, leadership in, 509
multi-team systems, 467
multivariate voxel pattern analysis (MVPA), 236
muscular-skeletal or neurological problems, of
musicians, 544
music
affected by societal factors, 544
brain regions involved in performing, 554–557
cognitive adaptations in, 541–542
experiencing, 554
expertise in, 535–545
as a grammar-based but non-semantic temporal
phenomenon, 545
individualized instruction in, 755
international level success in composing, 751
performance happening rarely, 445
performing at a professional level, 551, 552
performing in public, 553
playing by sight (sight reading), 707
playing depending on a strong coupling of perception and
action, 550
task specificity limitation to a domain, 67
music aptitude tests, 535
music composers. See classical music composers; composers
music educators, confronted with assumptions of
parents, 535
music experts. See expert musicians
music expression, aspired compared to actual music
expression, 756
music making, as a prime candidate for the study of
complex skills, 545
music memory, of savants, 541
music perception, 554
music performance. See also performance
aesthetic quality of, 570
anxiety, 553
deliberate practice in, 75
domain of, 552
effects on brain plasticity, 553
evaluation of by independent judges, 747
music practice, start of, 756
music students
accepting jobs as professional musicians, 761
beginners not correcting errors, 760
overcoming initial lack of motivation, 538
practicing by, 537
musical achievement, individual differences in, 535
musical activities
early commencement of, 561
inducing brain plasticity, 568
linked to conditions of high arousal and positive
emotions, 553
musical and compositional preparation, indicators of, 319
musical constraints, severe in classical music, 566
musical experience
advantages in advanced age, 848
length of correlated with performance, 552
musical expertise
brain changes associated with, 550–570
development of, 539–545
modeling, 561
predispositions and experience contributing to, 552
research conducted in the classical conservatoire
tradition, 536
musical genres, 536
musical instruments
adaptation to the specific demands of different, 561
growth curves associated with learning, 344
musical knowledge, 541
musical notation, 550, 555
musical performance, error processing during, 556
musical pitch information, transformation of, 555
musical prodigies, information on, 536
musical savants, special attention to, 535
musical stimuli, processing of, 562
musical structure, cognitive representation of, 541
musical talent, individual differences in, 319
musical tasks, 559
musical training. See also training
benefits of broader functions like IQ or school
performance, 848
cognitive and personality variables, 552
curricula, 755
effects on the brain, 543, 557–559
of professional musicians, 553
sustained leading to improved cognitive functioning, 848
musically trained individuals
advantage in signal-processing, 842
compared with controls, 841
musically trained individuals (cont.)
enhanced brainstem representations of musical sound
waveforms, 557
structural differences between older and novices, 842
musically trained middle-aged and older adults, 842
musicians. See also expert musicians; professional
musicians
advantage in near-transfer for pitch, but not for
words, 848
brain plasticity of, 568–570
common patterns in families, 536
consistently winning competitions, 67
continued activities of, 553
demands imposed on changing over time, 543
enjoying improvement but disliking actual practice, 538
extraordinarily skilled exerting more effort and
concentration during practice, 551
frequency and loudness discrimination, 543
getting the “big picture” of the piece, 539
imaging parts of pieces, 756
listening to tones of instruments, 543
male, more likely to have musicians’ cramp, 565
mental representations with associated retrieval
structures, 541
performing a piece of music with limited or no
preparation, 707
performing as a member of an orchestra, 747
performing in-phase symmetrical finger exercises on a
keyboard, 568
physiological adaptations of, 542–543
practice, belittling, 537
recalling musical material better than non-musicians, 541
recalling tunes after a single hearing, 623
structural brain differences in young and middle-aged,
841
studies of young and older, 840
suffering from dystonia, 569
training-induced brain changes transferring to non-
musical cognitive abilities, 848
musicians and non-musicians, engaging the SMA, 556
musician’s dystonia, 550. See also dystonia
loss of motor control in skilled movements, 552
as a syndrome of maladaptive plasticity, 563–566
music-score reading, 562
mutual learning, 138, 403
MYCIN program, 94
concept of degree of sickness, 95
diagnostic strategy, 90
expertise measured through a series of evaluations, 95
performance of, 95
procedure for diagnosis transferred to other domains, 89
using for tutoring, 100

myelin cells, 553
myelination, 244, 560
“nAch” (need for Achievement), 224, 390, 391
Nadia (drawing savant), 579
naming network, in the brain, 627
narrow limits of change principle, 796
narrow reading, 647
narrow-focus condition, for finding digits, 816
Nash, John Forbes, Jr., 224
National and international level athletes, activities for, 759
National Assessment of Adult Literacy, 477
National Board for Professional Teaching Standards
(NBPTS), certifying teachers, 437
National Health Service Care Records Service, 171
National Institutes of Health, training to write grant
applications to, 425
national licensing examinations, 345
native speakers, 634, 644
natural abilities, 311, 535
“natural” decision making settings, versus artificial
laboratory, 461
natural expertise, 15
“natural flying machines,” observing birds, 828
natural information processing systems, described by five
basic principles, 795–797
natural language speaking, 23
“natural” limits, of performance existing for experts, 543
natural performance environment, requiring complex
perceptual judgments, 678
natural scenes, vertexes created by intersecting boundaries
in, 157
natural threats, newly emerged, 139
natural work settings, interest in, 186
naturalistic contexts, decisions in, 479
Naturalistic Decision Making (NDM), 16, 132
background and history of, 453–454
complementary to the microcognitive approach, 461
cross-cultural research, 465
evaluation of expertise in, 454
emerging challenges and future research, 463–465
fields of, 386
frameworks, 456–457
insights and innovations regarding training and education
based on expertise, 65
as a leading framework for the study of expert decision-
making in operational environments, 453
macrocognition extending the focus of, 460–463
methods, 465
new designation for the paradigm of, 183
as a promising approach to understanding cultural factors
in experts’ sense-making, 465
researchers, 453, 454
technology and, 465
training relying on low-fidelity approaches, 460
naturalistic inquiry
into cognitive work, 183
within dynamic, high-intensity work settings, 166
naturalistic intelligence, 774
naturalistic settings, featuring words in natural speech, 642
naturalization area, of sociological and anthropological work, 22
nature
drawing using cylinder, sphere, and cone, 578
experimenting with in a controlled manner, 135
nature theorists, expertise research hotly discussed
by, 536
nature vs. nurture, issue of, 312, 551
nature vs. nurture debate, 52, 654
NBA (National Basketball Association), centers close to
seven feet tall, 43
NBPTS Certified teachers, 437
near task, skilled players fixating on, 664
near transfer. See also transfer
all creative thinking based on, 823
critical in Dodge’s insight based on expertise, 830
of expertise, 821
role in Picasso’s conceiving the overall structure of
Guernica, 826
used by Wright brothers in developing their control system, 828
Wrights’ expertise at work through, 826
near versus far analogies, effects on problem-solving, 831
near-associates perspective, 813
need for Achievement (“nAch”), 224, 390, 391
negative age effects
if tasks require more complex processing, 837
in memorization of musical materials, 845
negative age-related changes, emerging as early as the late 20s, 838
negative feelings, accompanying the early stages of writing, 422
negative knowledge, 107, 115
negotiation, 399, 403
Nelson-Denny reading test of verbal ability, 488
neo-behaviorism, 63
neonatal intensive care nurses, 186
nephrologists, diagnosing patients, 205
nervous system, demands placed on by music performance, 550
nested structure, of measurements, 280
network disorder, musician’s dystonia as, 568
“network of enterprises,” use of by Edison, 296
network or relational model, of expertise, 22
networked expertise, 106, 141
networks, adapting to handle visual categories, 160
neural adaptation, direct correlations with years of practicing, 842
neural basis
for abacus use, 626
of face perception, 235
of monkey numerical abilities, 617
of simple retrieval, 627
neural cell assemblies, 568
neural changes
in expert memorizers, 239
more extensive in experts, 248
in perceptual expertise domains, 233
neural complexes, mapping, 160
neural connections and circuitry of the brain, shaped by training, 754
neural correlates, behind experts’ performance, 233
neural differences, between two kinds of calculators, 239
neural implementation, of expertise, 233, 235
neural mechanisms
for experts’ anticipation skills, 246
underpinning expert anticipation, 690
neural net simulation work, 839
neural networks, building, 93
neural regions, 152, 156
neural responses, in musicians, 557
neural scaffolding processes, 844
neural structure, 561
neural substrates
of expert and “novice” mechanisms, 836–837
selective recruitment of by expert readers, 157
neural systems, development of, 156–157
neuro-active hormones, supporting neuroplastic adaptations, 553
neuroimaging data, 418
neuroimaging methods, 415
neuroimaging studies
on blind people involving areas of the brain reserved for visual processing, 238
featuring actual movements, 246
featuring exceptional memorizers, 239
on gustative expertise, 238
neuroimaging techniques, availability for research, 235
neurological damage, leading to spatial
network disorder, 626, 390, 391
neuroimaging techniques
neuroimaging techniques, availability for research, 235
neurological damage, leading to spatial
neurological seizures, diagnosed from brief video tapes, 204
neurological substances, of general intelligence, 775
neuroplastic changes, upper limit for attainable performance, 544
neuroplasticity, integral to adult learning and development, 754
neuropsychological studies, of differences in musicians' and novices' brains in young and middle-aged adults, 848
neuropsychological substrates of expertise, in later adulthood, 841–842
neuroscience
music training and, 542
study of design, 376
new information
connecting with already existing, 239
stimulating new ideas, 822–823
"new look" movement, Bruner's classic, 151
"A New Name for a New Science" (Woods), 312
new ventures, 395, 397
New York State Regents Examination in Plane Geometry, 87
Newell, Allen, 59, 61, 88
new-genre leadership, 515
Newton, Isaac, 134, 224
"next best move," selection of, 200
Next Generation Air Transportation Systems (NextGen), 366
Nightline television program, 824
Nijinsky, Vaslav, 224
No Left (Right) Turn sign, 364
no pain no gain, 439
Nobel laureates, 322
Nobel Prize winners, analyses of biographical data on, 13
nomothetic hypotheses, 310–311
non-ability characteristics, relating to learning and performance, 775
non-adaptive mutations, jettisoned, 796
non-artists, baseline performance of, 583
non-coach-led, sport-specific play, 659
non-coach-led practice activities, 659
non-compositional, degree of, 644
non-creative individuals, possessing a steep associative hierarchy, 814
non-drivers. See also drivers
controlling a powerboat simulator, 359
driving with, 359
with freedom to scan, 359
of powerboats, 359
slowed their boat going from slight to moderate seas, 360
non-European music genres, studies in, 544
non-expert askers, 402
non-experts
engaged the left Broca and the neighboring ventral prefrontal cortex, 240
examining using case studies, 305
superior decision making associated with a domain-general skill, 476
using the right prefronto parietal network, 241
non-functional domains, developing expertise in, 40
non-functional expertise, 15
non-laboratory performance, 838–839
non-language using animals, evidence of instruction and skill scaffolding amongst, 53
non-linguistic signals, during face-to-face interactions, 519
non-monotonic, single-peaked function, with a mid-career optimum, 311
non-musicians, controlling complex sequences, 841
non-reactive verbal reports of thinking, 195–197
non-representational style, of painting, 827
non-routine events, stories about, 175
non-routine problem-solving, engaging in, 112
non-situation specific context, 665
no-prompt group, outperformed the prompt group, 799
non-verbal signals, providing valuable insight into team and social dynamics, 519
non-creative individuals, possessing a steep associative hierarchy, 814
non-normative project, 478
Norton Anthology of Poetry, biographies of poets listed in, 425
notational algorithm, defined a search space of chemical structures, 88
notational methods, externalizing plans during pre-writing, 418
"notebooks of the mind," 414
non-participation in play, 659
non-prompt, 175
novel activities or interactions, requiring effortful conscious thought, 116
novel combination, of diverse bits of information, 813
novel design decisions, correlation with triple-mode periods and the occurrence of, 379
novel information, strong demands in handling, 223
novel problems
applying knowledge and procedures to, 195
randomly generating moves and testing for effectiveness, 796
novel situations, information encountered in, 774
novelists, work sessions, 422	novelty, degree of as person dependent, 116
novice(s)
applying explicit rules, 23
attention directed toward technical, low-level aspects, 540
avoiding gross mistakes, 752
ball flight and, 685
concentrated on the visual composition, 385
dealing with the chess board in a piece-by-piece manner, 69
developing SA, 720
factors affecting SA, 719–720
finding bottom-up strategies useful, 587
having more scattered information search patterns, 717
inability to access knowledge, 71
initiated into a domain of skilled practice, 21
interpreting scenes of fires, 71
knowing the basics of a domain, 315
lack of domain-specific knowledge in, 248
not having a vast knowledge base, 234
not realizing what information to seek out, 720
organizing the perceived world according to “surface similarities,” 364
outperformed experts with violated location information, 364
performance of enhanced, 794
performing well in sports, 802
problems building SA, 735
profiting from segmentations of animations, 799
reasoning by analogy in chess, 606
recalled about five chess pieces, 68
showing similarities to expert ways of being, 36
thinking about presented problems, 66
understanding displayed by performing complex tasks, 33
novice cognition, 64
novice groupings, organized by salient objects, 69
novice learners
benefiting from explicit support during problem-solving, 800
benefiting from step-by-step procedures, 806
dealing with unfamiliar problems, 804
explicit external instruction, 805
instructional methods for, 797
using search-based problem-solving approaches, 805
novice pilots. See also pilots
constrained by working memory, 717, 725, 730
with low or moderate SA, 728
overloaded by tasks, 729
novice platoon leaders, 732, 733
novice recall, not capturing basic game-advancing, 69
Novum Organum (Bacon), 6
nuclear power operators, 186
nucleotide building blocks, of DNA, 823
nucleus caudate, 243
“nuisance variable,” in experiments, 67
null moves, in chess, 605
numbers, memorizing, 622, 700–701
numeral. See also statistical numeral
exerting a direct effect on affective responses, 496
focus on the acquired skill, 477
measured with the Berlin Numeracy Components Tests, 489
out-predicting fluid intelligence, 493–494
questions, 477
related to fluid intelligence, 490
scores predicting accuracy of disease risk interpretations, 477
skills, 616
standard for assessment, 477
supporting skilled decision making, 496
numerical abilities, explaining life outcomes, 485
numerical capacity, in infants, 617
numerical stimuli, experts “seeing” differently, 619
numerosity, 617, 619
nurses
handovers, 119
neonatal intensive care, 186
patient length of stay and, 519
nursing, reviews of, 206
Oates, Joyce Carol, 425
obituaries, employed in case studies, 293
object(s)
apparent shapes of perceived to be closer to their assumed “real” shape, 582
domain-specific knowledge of, 584
drawing, 577
identifying, 585
recognizing, 241
types of, 584
object-based attention, 155
objective achievement, study of expertise focusing on, 13
objective binary coding, of pixels, 588
objective constraints, limiting expert performance, 143
objective criteria, 295
sports with and without, 273
objective definitions, of expertise, 49–51
objective exceptional performance, expertise demonstrated by, 49
objective measures
obtained, 301
of a teacher’s relative performance, 747
objective metrics, of drawing accuracy, 590
objective performance
measuring by improvements and outcomes, 747
measuring in an age-independent manner, 750
on representative tasks, 755
Index of Subjects

objective representative performance, 760
objective scoring systems, determining expertise, 314
Objective Standardized Assessment of Technical Skills (OSATS), 340
Objective Structured Clinical Examination (OSCE), 340
objectivity, of scientists, 137
observable behavior, 63, 304
observable differences, between experts and novices, 15
observation, novices coming to understand and form goal states, 114
observational drawing
 entailing intense and prolonged perceptual engagement, 577
 not guided exclusively by visual information, 584
 psychological explanations for skill in, 580–86
 supporting more accurate, 584
observational drawing skill, aspects of perception associated with, 580
observational rendering, of realistic two-dimensional images, 577
observational reports, containing errors and partial truths, 90
observational studies, 271
observational verification, of a forecaster’s model, 186
observations
 available to appraise leader performance, 298
 of cases as structured or unstructured, 292
 of designers, 373
 as a method for measuring expert teams, 518
 studying self-regulation of learning, 277
observers, 684
obstacles, identified, 444
obstetrics, gave up forceps in favor of the Caesarean section, 444
“Occam’s razor,” 135
occipital lobe, 156
occipital visual areas, 240
occipito-temporal junction (OTJ), 241
occlusion techniques, 679
occupation(s)
 differentiating in terms of service orientation and “moral community,” 128
 with goals, practices, and outcomes manifested situationally, 107
 interest and willingness to learn, 120
 as learned, not taught, 113
 occupational and practitioner interests, 131
 work of linked or similar becoming indistinct, 132
 occupational activity, manifested in concrete situations, 110
 occupational capacities
 developing, 120, 121
 historical perspective of the development of, 113
learnt through participation, 113
maintaining across working lives, 114
occupational change (rationalization), 131
occupational closure, resulting in monopoly, 130
occupational competence
described, 109
explanatory account of, 122
key premises for developing, 120
occupational elements, learned through experience, 111
occupational experiences, promoting depth of understanding, 108
occupational expert, no such entity as, 111
occupational expertise
 bases of, 109–113
 central to achieving societal and economic needs, 107
 cognitive and socio-cultural accounts of, 121
 described, 105, 109
 developing and sustaining through work activities and interactions, 107–109, 113–116
 developing through everyday work activities and interactions, 105–122
 difficult to codify, 112
 domains of, 111
 predating provisions of education and training programs, 113
 premised in the circumstances of where practiced, 111
 represented as a product of personal history of experiences, 112
 skepticism about institutionalized, “schooled” activities, 106
occupational goal states, gaining access to, 119
occupational group, seeking a monopoly, 129
occupational identity, group constructing, 131
occupational knowledge
 domains of, 111–113
 making accessible, 119
 securing, 113
 “occupational level,” 225
occupational performance, 111, 774
occupational practice
 foundational domains of, 112
 identifying qualities of, 122
 learning, 118
 occupational roles, legal, 137
 occupational tasks, 109, 111
 occupational values or dispositions, derived socially, 110
occupational workers, all having expertise, 129
OCD, leading to dystonia-triggering behaviors, 564
Ocean, Humphrey, 592
ocular fixations of experts, 679
offshore drillers, situation awareness in, 458
Index of Subjects

offshore well control, simulations for research and training in, 465
Ogasawara, Naofumi, 626
“old” or “older,” no general consensus on, 835
older adults
benefiting less from training, 846
expert performance in, 839–840
increasing attentional costs exerted by simple bodily functions, 847
maintaining high levels of skill, 849
recruitment of symmetrically contralateral brain regions, 844
rediscovery of as valuable participants in the work force, 849
older amateur musicians’ rhythmical timing, 845
older chess experts, 844
older chess players. See also chess players diminishing return for cumulative purposeful practice, 846
need for greater current practice than younger players, 843
showing a second inflection point, 847
older experts
accomplishments presenting a puzzle, 835
actively maintaining specific skills, 849
compensating for age-related declines, 843
increasing difficulty expected to learn new techniques, 846
investing deliberate effort into the development of skills, 840
maintaining performance into older age, 75, 835
performance of exempted from age-related slowing, 838
showing “normal” age-graded declines, 840
stability of performance in, 840
timing skills protected from age-related decline, 841
undergoing decline from an initially higher baseline, 839
older individuals, adopting compensatory mechanisms, 844
older musicians. See also musicians advantages in auditory processing, 847
compensating for decline in primary auditory cortices, 842
older pianists. See also pianists counteracting losses in motor performance through practice, 540
maintaining levels of performance for expert, 844
maintenance practice by expert, 761
performance correlated with the amount of practice alone for expert, 761
years of “experience” compared to amount of deliberate practice for amateur, 846
olfactory expertise, 237, 239
olfactory experts, as rare, 238
Olympic medal winners, on performance characteristics needed to become an expert, 275
one-on-one instruction, 756
on-field anticipatory performance, 689
ongoing and desired performance, connection between, 542
online methods of data collection and verification, 266
online tutoring program, on using graphs, 496
on-the-job expertise acquisition, 398
ontogenetic development, 111
ontogenetic ritualization, 121
open information sharing, 403
open sports, 705
openings, in chess, 602
openness to experience, 391
operas, 314, 315
“operating conditions,” of science, 136
operational domain, stress, fatigue, and workload occurring as a function of, 719
operational experts, working independently, 185
operations component, of numeracy, 488
operators. See nuclear power operators; vehicle operators “opportunism,” 384
“opportunistic” behavior, of designers, 383
optimal designs, including multiple assessments/timepoints, 263
optimal environments, for reaching high levels of expertise, 625
optimization methods, 479
options analysis, 179
options and outcomes, feeling the weight of various, 483
oral history, employed in case studies, 293
oral mode, lexical coverage in, 636
orbitofrontal cortex, olfactory expertise and, 239
Orca mothers, 53
orchestra conductors, 538, 557
orchestra members, performance of, 747
order, imposing on uncertainty, 375
order of operations, mature deployment of, 155
ordinary occupation, expertise as the base of, 142
organic macromolecules, 823
organisms, responding to the present by using the past, 820
organizational climate, 522, 523
organizational professionalism, 131
organizational psychology, 838
organizational routines, 444
organizations facing highly competitive markets and continued change, 510
having to meet to be professionally successful, 106
implementing cooperative reward structures, 511
virtuality in as growing, 516
organized/formal “practice,” contrasted to “play,” 265
orientation, found in taxi drivers, 245
original approach, 813
Orosco, José, 827
outcome variables, 357
outcomes
assessment of, 295
cases appraised with respect to, 297
of teaching affected by numerous factors, 445
output, of highly influential works, 314
outstanding achievement, relation between age and, 320
outstanding designers, 373
outstanding performance, resting on specific mechanisms, 839
overall memory, compared to selective memory, 708
overlearned sensory motor programs, 564
over-pattern matching, as a risk, 724
“overtraining,” 318
oxygen, maintaining normal race pace, 749
oxytocin, increased release of, 553
Oz display, for pilots, 367
pain syndromes, neural studies of, 566
painting, using modern materials for, 827
pairwise comparison, as a measurement of SMM, 512
paradigm, 166, 642, See also problem-solving model
paradigmatic decision domains, 486
paradigmatic decision making competency, 488
parahippocampal area, 238
parahippocampal gyrus (PHG), 240, 243, 244
parahippocampal place area, 157
parents
designing optimal environments, 625
helping children plan practice and to identify errors and sustain attention, 756
rejecting consensual medical evidence, 22
parietal cortex, 247
parietal lobe, 555
Parsons, on professions, 128
partial structure, of a solution space, 378
participant and non-participant observation methods, 373
participant follow-up, 281
participant observation research, 260
participant-observer studies, 374
participants
attaining eminence in some domain, 313
attrition of, 281
in cultural activities, 435
giving similar tasks many times, 700
inferring reasons for decisions, 195
seeking to attain an acceptable level of performance in a new activity, 393
participation, predicted theoretical influence, 301
participation rates, in chess, 608
Pascal, Blaise, 479
passive learning, idea of, 393
patent trends, throughout Edison’s career, 296
path independence, 487
pathophysiological explanations, demonstrating the intermediate effect, 803
pathophysiological mechanisms, descriptions of, 337
paths, to expert performance, 76
pathways, as means of organizing learning, 118
patients
care of, 119
length of stay, 519
with musician’s dystonia, 568
outcomes, 342, 747
presentations, 344
satisfaction ratings, 747
pattern(s). See also chunks
allowing experts to retrieve suitable actions from memory, 11
with associated action patterns, 115
of chess pieces, 697
as configurations of cues, 455
defined across multiple data types, 455
experts extracting, 481
identifying, 661
mediating improvement in skill, 11
much of language composed of, 643
occurring within the sport domain, 684
order of presenting, 683
slow acquisition of more complex and refined
in LTM, 697
pattern matching, 722
experts’ ability to use, 456
facility with significantly correlated with SA, 722
to learned schema, 722
skills coming into play, 725
some people better at, 722
pattern recall, 682, 683
pattern recognition
closely related to pattern recall, 682
delineating in entrepreneurs, 392
essential information needed to guide, 684
probing a performer’s ability to recognize rapidly, 682
providing a better representational structure, 599
role in move selection in chess, 598
underpinning skill in chess, 603
Pauling, Linus, 823
PDSA (Plan/Do/Study/Act/) cycles, 444
peak, specific location of, 320
peak height velocity (PHV), 276
peak performance, 273, 750
peak rating, predicting in chess, 608
peak skill development, pattern of, 53
pear, drawing from observation, 577
pedagogic practices, as part of everyday work activities, 117
pedagogical content knowledge, 441
pedaling, as a highly refined skill, 561
peer reviews, 137–138
peer-nominations, by professionals in the same domain, 4
peer-report method, for measuring expert teams, 518
peers
assessing superior outcomes of experts, 746
described, 137
relying on secondary and non-specific information, 746
people, as goal driven, 718
people moving, across our planet, 356–357
perceived system information, 721
perceiving body, 34
perceiving visual stimuli, relationship with accurate
drawing, 583
perception. See also hazard perception; visual perception
centrality of, 152
changing across development, 151
collaborating with action, 35
complex, 152
concentrating attention during, 816
conscious, 581
directing attention during, 816
everyday, 577
in expertise, 151–160
expert-level, 157
hypothetical relations with drawing, 579
imagined objects interfering with, 157
influenced by experiences, 151
interwoven with development of expertise, 151
involving “bottom-up” and “top-down” processing, 580
of mathematical experts, 619–620
of music, 550, 554
never separate from action, 151
of relevant information from the environment, 715
risk, 486, 487
role in the acquisition and deployment of expertise, 152
sensory, 566, 567
shogi, 243
skilled, 274
skilled object, 242
tuning, 152
perception and action, connection between, 151, 157
Perception research category, for transportation, 357
perceptual advantages, of artists as real, 580
perceptual and memory mechanisms, underpinning skilled
performance, 597
perceptual and motor skills, art and art education and, 592
perceptual constancies, 581
perceptual diagnosis, limitation to a domain, 67
perceptual discovery learning, 689
perceptual discrimination and pattern perception, 454
perceptual encoding, 581
perceptual experience
in the course of the acquisition of expertise, 151
expertise changing low-level, 157–160
perceptual expertise, 235–239
categories of, 151
rarely necessary to complete skilled conceptual tasks, 154
structural brain changes in, 152
perceptual information, differential use of, 679–680
perceptual judgment errors, positive correlations with
drawing errors, 581
perceptual learning. See also learning
acquiring, 454
activities as “the very foundation of intelligence,” 774
aspects relevant to visual art, 578
impact on higher level mathematical skills, 619
theorists, 680
perceptual mechanisms
deployment of, 152
impact of, 151
sequential operations of, 153
perceptual memories, differences in, 362
perceptual processes
across different domains, 578
factors influencing, 716
pure, 152
perceptual processing, 235
perceptual regions, 157
perceptual routines, role in expertise, 152–156
perceptual sequences, early recognition of, 681
perceptual skill differences, tracing by examining eye
movements, 598
perceptual skills
learning appropriate, 152
providing a critical edge, 455
perceptual speed and psychomotor abilities, predictive
validity for task performance, 222
perceptual strategies, 153
perceptual task, facilitating creative thinking, 816
perceptual training. See also training
accelerating the rate at which anticipatory skills are
required, 688
producing dramatic gains increasing accuracy and
reducing response times, 620
perceptual training (cont.)
requiring learners to make anticipatory judgments while
watching occluded video clips, 688
perceptual-cognitive skills
aquired in one domain being exploiting in other
domains, 660
exploring interactions between, 663–665
importance of differing across task constrains, 664
relationships with practice activities, 658–660
transferring across related sports, 660
underpinning anticipation and decision making, 653, 669
perceptual-motor activity, 152
perceptual-motor adaptation, of musicians, 543
perceptual-motor integration themes, 591
perceptual-motor procedures, 77
perceptual-motor processes, 155, 759
perceptual-motor processing networks, conceptual tasks
offloaded onto, 152
perceptual-motor routines, aligning with existing
representations, 156
perceptual-motor skills, expertise in, 67
percussionists, 543
perfect pitch. See “absolute” or “perfect” pitch
perfectionism
attitude of, 420
characterizing writer’s block, 422
performance. See also deliberate performance; expert
performance; superior performance
accuracy of, 62
assessing, 44, 747
attaining a functional level of, 75
attributes, characteristics, competencies and skills
underpinning, 666
automatized and transformed through practice
to skilled, 115
averaging across multiple experts, 316
changing as a function of age, 314
in clinical practice, 344
constraints of in music, 544
control and reproducibility of, 759
development of, 275, 750–752
differences between usual and maximal, 847
as directly observed behavior, 667
distinguished from learning, 667
effectiveness of practice activities to improve, 759–763
effects of accumulated experience on attained level of,
752–754
effortful exertion to improve, 424
as expertise, 21–22
of experts, 67
fluctuations idiosyncratic to that particular person, 316
fluctuations of, 228
generating virtually automatically with a minimal
amount of effort, 753
high level inherent in the notion of being expert, 36
hypothetical development of, 272
improving, 344, 668
indicators, 762
interdependence of, 220–221
IQ, age-graded declines in, 837
limited by more basic and narrow abilities, 222
maintained in old age for speeded expertise tasks, 843
measures in historiometric inquiries, 314
measures taken in the simulation laboratory and in patient
care contexts, 342
measures taken under artificial laboratory conditions, 221
measuring, 272, 700
of a musical piece, 539
not solely dependent on the efforts of the individual
performer, 220
outcome, measuring between various sports, 285
placing within context, 274
reaching a plateau, 752, 754
related to the difficulty level of the sight-reading
task, 707
representative in domains, 12
reproducible, 4, 23, 750–752
restriction of range of, 220
studying the development of, 274–276
success depending on the actions or behaviors of others,
or on environmental influences, 220
systems used to collect data, 258
tests yielding predictive scores differing at different
ages, 752
tracing the development of, 746–748
performance characteristics
specific, 274–276
studying general, 276–277
subject to change to a much larger degree, 278
unraveling, 272
performance domains, 50
performance means, over task practice, 219
performance metrics, related to quality of precision
movements, 340
performance modeling, 777
performatory activities, producing an expected result, 775
performers
comparison of young to already elite counterparts, 265
diaries of, 259
modifying behavior when observed, 260
reaching highest level of performance in
mid-to-late 20s, 750
Periodic Table of Expertises, 24, 25–26
periodization, 264
Index of Subjects

933

Index of Subjects

peripheral vision, 686
person relative motion information, facilitating pattern recognition, 661
personal domains, of occupational knowledge, 109, 111–113, 115
personal epistemologies, 117, 120–121, 122
personal experience, affecting perceptual experience, 151
personal mediation, of individuals, 109
“personal professional theories,” 106
personality
of chess players, 607
diversity influencing team relationships, 515
individual-difference variables like, 592
personality traits. See also affective traits
measures correlating with success, 224
as predictors of change over time in leadership efficacy, 520
personality variables, 390, 391
personalized CMC, positive effect on extra-group network size and structural holes, 517
personalized training tasks, 806
personally oriented heuristic deliberation, 483
person-dependent process, of learning and developing domains of occupational knowledge, 121
person–environment coupling, as the unit of analysis, 771
persons. See also individuals
having the opportunity to make their own decisions, 498
persons and world, inescapable relation between, 34, 38
“persons-in-the-shadow,” role of, 107
persuasion, inherently intersubjective, 403
“the phantom plateau,” examples of, 194
phatic communion, 645
PhaVE List for phrasal verbs, 647
PhD candidates, productive writing by, 420
phenomenological account, of improvising jazz on the piano, 540
phenomenological approach, investigating transition experiences of developing athletes, 262
phenomenology, founder of, 34
PHG. See parahippocampal gyrus (PHG)
Philosophical Transactions of the Royal Society
in 1665, 137
phrasal verbs, 644
Phrasal Verbs Machine application, 648
PHRASE List for non-transparent formulaic sequences, 647
physical actions, performing more automatically, 722
physical and mental resources, showing differential age-related changes, 845
physical capacities, tending to peak around the age of thirty, 273
physical demands, of musical instruments, 564
physical environments, 154, 466
physical exercise program, during space flights, 754
physical growth spurt, 276
physical limitations, on performance at high levels of expertise, 217
physical or cognitive abilities, small differences exaggerated as performers reach elite levels, 43
physical process, changing, 178
physical setting, for design thoughts, 380
physical skills
developing required, 729
non-conscious levels becoming automated, 114
physical tasks, automaticity of, 722
physical traits, 213
physical trauma, 566
physicians. See also medical doctors
accuracy in diagnosis after hearing the chief complaint, 332
clinical judgment not cultivated using a deliberate-practice approach, 779
exceptional identifying common themes, 345
experienced, outperformed medical students on diagnostic performance, 802
expert having a more differentiated knowledge of diseases, 66
expert representing diseases as an extended process, 71
full scope of expertise, 780
looking for negative reactions to medications, 724
peer nomination of, 344
referring to comfort level while deciding to continue with laparoscopic surgery, 464
physics, studied by thinking aloud procedure, 63
physics problem solvers, expert and novice sorted groups of problems, 69
physicists, from introductory college courses, 195
physiological adaptations, of musicians, 542–543
physiological characteristics, of adults, 754
physiological factors, limiting performance of selected individuals, 543
physiological fitness, of astronauts reduced during low-gravity space travel, 754
physiological limits, of musical performance, 544
physiology and anatomy, adapting to particular types of training and experience, 752
Piaf, Edith, 552
pianists. See also expert pianists; older pianists
actual practice behavior of professional, 207
central sulcus depth in, 560
cramp, 563
deliberate practice for, 757
drawing on a whole set of complex skills, 550
eyear start of training, 536
effect of expertise on life-long plasticity for middle-aged, 560
pianists (cont.)
experiences from a very young age, 554
expert and amateur of different ages, 843
hand-independence in rhythmic timing, 837
movement inhibition following a stop signal in, 567
observing video sequences of a moving hand at the
piano, 558
obtaining an objective measure of abilities, 562
older professional showing normal age-related
decays, 843
optimized functionality of neural structures, 563
practice hours accumulated by amateur, 654
predicting regularity in scale playing of adult, 540
requiring increased sensitive tactile discrimination, 543
right hand more frequently involved, 564
showed more gray matter in specific regions, 562
showed no extra activation to accommodate task
complexity, 841
summary of the results of the study on, 562
tapping faster and more accurately than controls, 543
targeting the middle putamen in the basal ganglia, 561
tending to be practice fanatics, 537
trained to perform memorized pieces, 746
piano, 40 million Chinese seriously playing now, 544
piano lessons, older participants showing improvements, 848
piano playing
causal relationship with enlargement of the corpus
callosum, 560
practice time as the only predictor of variation in
“temporal evenness” in playing scales, 262
role of pedaling in, 561
skill level of, 561
starting students with basic techniques, 751
piano tones, responses to in musicians, 557
Picasso, Pablo, 625, 826, 831
pieces (musical)
deemed unplayable at the time of their composition, 544
learning new and working on difficult spots as most
effortful and not enjoyable, 538
polishing of, 539
PIFS (Practical Intelligence for School) program, 783–784
pilot error, 727
Pilot-in-the-plane principle, 395
pilots. See also civilian aircraft pilots; experienced pilots;
expert pilots; military pilots; novice pilots
anticipating engine failures, 723
better, gathered more information, 725
better, more attuned to constraints, 725
with better SA, 725
developing mental models, 720
experienced, better at directing attention to critical
cues, 721
experienced, having more automated skill and a more
refined mental model, 717
experienced, outperformed the inexperienced, 728
glider, performed better on a divided attention task, 725
keeping track of many factors, 715
learning to communicate with ATC and to scan their
instruments, 723
less experienced, accounting for the majority of aviation
accidents and fatalities, 726
less experienced, flew more stable approaches in black
hole conditions, 360
less experienced, having problems dealing with
distractions and high workload, 728
line, dealt more at the level of comprehension (Level 2
SA), 726
more experienced, actively modified the situation, 360
older, gaining less from simulator training, 846
poorer, interpreting cues inappropriately and under
estimating risk, 725
projection taking up a considerable portion of time, 734
risk assessment during a hypothetical windshear situation
at takeoff, 464
running procedural checklists to make sure they check
each item, 723
SA and expertise in, 726–730
SA errors, 715
selected through a number of screening tests and highly
trained, 726
simulator training affecting gains for a variety of tasks, 846
societal expectations for, 109
trainee, permitted to solo, but not allowed to take
passengers, 357
using simulation data to examine decision processes
in, 465
piriform cortex, enlarged in perfumers, 239
piriform gyrus, olfactory expertise and, 239
“the pitch”
consisting of an entrepreneur targeting particular
stakeholders, 399
nomenclature of, 399
pitches (musical)
accurate discrimination for, 543
naming without a reference pitch, 551
perception absent or highly deficient, 552
pitfalls, as artifacts of technology, 466
PL (perceptual learning), 620
place of performance, musicians adjusting performance
to, 73
Plan/Do/Study/Act cycles, of improvement science, 446
planning, 179, 277
addressing, 61
for the future, 433
goals of, 462
increased with higher skill, 206
reducing mistakes and failures in chess, 702
scheduling systems and, 97
skills in the sciences, 294
for writing, 414
plasticity. See also brain plasticity
adaptability and, 660
coping with variation and change, 41
involving the sensitivity of systems, 42
plateaus
as a consequence of strategies used, 194
in improvements, 393
performance reaching, 752, 754–757
in professional domains, 752
platinum wire, configured as a possible burner, 818
platoon leaders
as the entry-level officer position, 730
of power, 876
scenarios of Scripture, 867
scoring, 726
scoring models, 726
scoring the workout, 726
plasticity. See also brain plasticity
adaptability and, 660
coping with variation and change, 41
involving the sensitivity of systems, 42
plateaus
as a consequence of strategies used, 194
in improvements, 393
performance reaching, 752, 754–757
in professional domains, 752
platinum wire, configured as a possible burner, 818
platoon leaders
as the entry-level officer position, 730
of power, 876
scenarios of Scripture, 867
scoring, 726
scoring models, 726
scoring the workout, 726
post-peak decline, varying according to the particular domain, 320
post-training brain scan, for taxi drivers, 245
postural information, access to, 664
potential interaction, between different perceptual-cognitive skills, 663
potters, placing hands upon those of novice potters, 117
potter’s wheel, 118
poured paintings, of Jackson Pollock, 826–827
power
of elites, 139
in knowledge, 87
power and control, linking expertise to, 21
power athletes, 248
powerboat drivers, 359
powered flight, Wright brothers’ development of, 300
PPIK (intelligence-as-Process, Personality, Interests, and Intelligence-as-Knowledge), 227, 228
practical decision-relevance, inductive logic, 479
practical inductive reasoning, decision makers skilled in, 483
practical intelligence
as acquisition and use of tacit knowledge, 774–776
commonality among measures of general tacit knowledge, 775
practical intelligence (cont.)
derived, 774,
developing, 780–784
differences in appearing during the middle school years, 783
increasing prediction of both academic and extracurricular success, 779
leveraging conceptual alignment with ecological theories, 784
practical intelligence and tacit knowledge, theory of, 771, 784, 785
Practical Intelligence for School (PIFS) program, 783–784
practical know-how, essential to expertise, 781
practical problems, applying tacit knowledge to, 774
practical skills, research on high levels of, 65
practically intelligent behavior, addressing directly, 780
practice. See also deliberate practice; effective practice;
purposeful practice; team practice
age-related constraints on improvement through, 846–847
all types not equally effective in improving performance, 760
amount not correlated with performance for beginning music students, 760
amount of, significantly related to level of performance, 537
based on mentoring or expert instructional guidance, 464
characteristics of when the performer is in control, 260
comparing methods, 759
data, 265
differences between different types of, 709
durations, 537
in effectuation, 398
enhancing the quality of, 538
evaluations of the micro-structure of, 258
experiences, 654–656
for expert calculators, 625
with feedback improving memory performance, 698
as a function of time in season, 264
gauging amounts of, 264
high levels of seen in creative writers, 424
increasing performance through, 536–539
investing the time, 536–538
lacking inherent enjoyment, 538
as maintenance work, 539
methods for assessing, 759
motivated by a greater objective to improve performance, 398
permitting learners to acquire key, functional aspects of a task in a more transferable manner, 343
play related activities in sport and, 659
quality of, 258
rate of intensity declining after age 50, 842
reductions in leading to inferior performance, 763
related to improvements in working memory support of chess playing, 703
relating to anticipatory skill, 687
relation to attained performance, 761
remaining the key to practical accomplishment, 28
required to become socially competent, 393
required to develop skills and execute these complex tasks, 551
role and manifestation not identical in all musical genres, 536
schedules, 260, 668
settings, 121
systematic observation of, 260
taking into account current ways of being, 36
with zeal, 654
practice activities
current amount of, 393
differential effectiveness of, 759–763
hours accumulated by violinists, 654
identifying types of leading to specific skills, 656
improving specific aspects in a protected environment, 75
individually determined as deliberate practice, 265
meeting several of the criteria for deliberate practice, 758
modifying mechanisms mediating performance, 709
negatively related to mortality in the coronary care unit, 345
of older expert pianists, 761
outside the target domain, 659
versus “play” activities, 265
relationships with specific perceptual-cognitive skills, 658–660
relevant differing across domains, 393
taking account of the performer’s current skill level, 398
testing on a micro-level, 656
types of, 759
underpinning anticipation and decision making, 665
practice activity data, collecting and assessing, 257–266
practice alone, changes in the effects of, 760–761
practice and play related activities in sport, leading to specific adaptations in memory, 660
practice conditions, 667, 668
practice curriculum, 117–119
practice environments developing, 18
randomness and unpredictability of, 260
“practice guidelines,” prescribing the “correct” approach, 347
practice histories
analyses of successful and less successful individuals, 262
gaining across multiple age groups, 266
predictive reasoning, 394
predictive saccade (a fast eye movement), produced by
 cricket batsmen, 685
predictive strategies, useful in dealing with risk, 394
predictive validity, 216
accumulated hours of practice, 537
estimating for the SAT, 216
of a measurement tool, 264
predictor measures, 220
predictors
criteria and, 223
of expertise in medicine, 345
of expertise in surgery, 345–346
dispersing factors, 564, 565
pre-existing individual differences, from a large Swedish
twin study, 551
preferred leadership style, measure of, 300
preflight preparation, 726
prefrontal cortex, exchanging information with, 247
prefrontal regions of the brain, 838
prehistoric art, archaeological evidence of, 576
premature automaticity, 447
premature closure, 334, 719
pre-mission planning, 724, 726
premorbid OCD, found in dystonia patients, 565
premotor and motor areas, engaging, 243
premotor area (PMA), 247, 555, 556
preparation, long periods of, 820
preparatory (undergraduate) program, 6
preparatory nature, activities not as enjoyable, 538
pre-practice observation, 118
prescriptions, versus descriptions, 265–266
prescriptive feedback, providing sparingly, 668
prescriptive project, 478
present tense, in a journal article, 419
preserved differentiation accounts, 839
pressure, deteriorations in performance occurring
under, 803
prestige, accruing to those who develop expertise, 45
prestige bias, in other human learners, 45
pre-supplementary motor (pre-SMA) and rostral pre-motor
regions, activating, 841
prescribing, 415, 418, 421
priests, in pre-modern societies, 127
primary (direct) market research, results for
entrepreneurship exercise, 406
primary and secondary auditory areas (A1, A2), 554
primary auditory area, 554
primary auditory cortex (Heschl’s gyrus), in professional
musicians, 559
“primary generator,” instantiating a solution concept, 375
primary knowledge, 795
primary mental abilities, 836
primary motor area (M1), 555, 556
primary motor cortex, 560
primary olfactory areas (amygdala), 239
primary or innate abilities, determining expertise development, 837
primary school students, benefiting from feedback, 800
primary sensory-motor and inferior parietal cortices, connectivity changes in, 568
primary somatosensory area (SI), 555
primary source knowledge, 25
primes, man with an IQ of 67 generating and factorizing, 619
principal component analysis, 279
principal solution concept, 382
principles, of occupational knowledge, 110
principles and practices, underpinning adaption, 112
prior ability profiles, 848
prior examples, abstracting general principles from, 381
prior knowledge and expectations, role in SA, 718
private interests, pursuit of, 130
private pilot's license, 357
privately held knowledge, 93
privileged networks of expertise, 22
proactive leader sense-making, 456
probabilistic functionalism, Egon Brunswik’s theory of, 777
probabilities associated with events or outcomes of interest, 91
high, 662
probability component, of numeracy, 488
probability expressions, misinterpretations of, 494
probability statements, 91
probability theory, 479, 485
probe questions, 176
problem(s)
attending to important aspects of, 152
common, 205
definition, 386
exploring complex, 783
interactive discussions of specific, 92
simulating the complexity of actual, 777
tackling in a “difficult” way, 376
of writers, 414
problem and solution, as co-evolving, 378
problem formulation aspects, of design behavior, 377
“problem frame,” establishment of, 382
problem framing activity of, 385
by designers, 376–377
“problem paradigm,” of the designer, 377
“problem scoping,” successful design behavior based on, 386
problem setting, characteristic of professional reflective practice, 376
problem solvers
characteristics of expert, 86
expert and novice in physics, 69
successful, 462
problem solving
all breeds of dogs showing about the same average level of performance, 52
behavior, 375
classic work on general, 62
compared to designing, 376
computational models of, 605
computer programs modeling, 60
“exhibiting” some of the characteristics of, 62
exploring the power of knowledge in, 87
at high levels, 86
higher level theoretical constructs for, 61
information processing models of, 11
kinds and organizations of knowledge critical in successful, 333
making contact with internal mechanisms of great extent and complexity, 61
needed by experts, 774
in political science by experts and novices, 66
psychological theory of, 63
requiring imaginative groping towards a solution guided by tacit clues, 774
studied using blindfold chess, 605
variables bearing on, 299
in virtually all domains of expertise, 541
problem solving condition, 798
problem solving operations, 72
problem solving processes, in chess, 602–605
problem space
of assessing clients and responding to requests, 112
finding efficient means to search, 86
of an occupation, 111
in which teachers work, 432
“problem structuring” activities, at the beginning of the design task, 377
problem subcomponents, 155
problematic situation, applying one’s expertise to through repeated search, 832
“problem-based learning,” creation of, 65
problem–solution pair, 378, 381
problem-solving architecture. See problem-solving model
problem-solving knowledge, 91
problem-solving methods, 93, 99
problem-solving model, 99
problem-specific transfer, 821
procedural content knowledge (knowing), 342
procedural knowledge, 106, 120, 773
proceduralization, process of, 121
procedure and regulation compliance, 98
Proceedings of the Innovative Applications of Artificial Intelligence (IAAI) conference, 98
process(es)
everyday or practice-based, 106
fostering an output (team performance), 508
of writing, 415
process control analyst, 402
process models
of problem-solving in chess, 605
understanding expertise in chess, 598
process monitoring and control systems, analyzing real-time data, 96
process tracing, 207
process vs. product oriented examples, 798–799
processing
mechanisms underlying expert performance, 836
occurring rapidly, 718
restrictions in working memory, 797
speed of, 836, 838
process-oriented
vs. product-oriented worked examples, 801
worked examples, 798
procrastination, 420, 421, 422
prodigies
as born or made in chess, 606–608
defined, 625
described, 751
distinguishing in mathematics, 616
possibility of accelerating typical development as unknown, 540
product, imaginary, 405–406
product and services, personalized recommendations of, 98
product plans, employed in case studies, 293
production rules, 11, 87
production systems, building psychological simulations, 88
“productive confusion,” inducing, 435
productive knowledge, 642
productive struggle, producing learning, 439
productive thinking and insight, 817
productivity, in the final years of a career, 320
product-oriented worked examples, 798
profession(s)
as an alternative approach to the hierarchy of bureaucratic organizations, 129
“capturing” states and negotiating “regulative bargains” with states, 129
developing agreed terminology, 132
difficulties defining, 128
as the knowledge-based category of service occupations, 130
need to close markets, 130
science as, 137
as the structural, occupational and institutional arrangements for work, 130
professional actors, deep encoding by, 63
professional associations
akin to communities of practice, 781
certifying acceptable performance and the permission to practice, 9
membership of, 130
professional communication, 413
professional competence, age-related reductions affecting, 838
professional decision making, expertise in, 66
professional design, expertise in, 372–386
professional designers, think-aloud verbalizations by, 206
professional development
focusing on, 66
in teaching, 443
professional development program, 448
professional domains, evidence for plateaus, 752
professional engagement, 142
professional experience, 346, 846
professional expertise
age-comparative studies of, 840
consisting of two related dimensions, 142
different types of, 15
professional groups
categorized in terms of exclusionary social closure in the marketplace, 129
sociology of, 128
professional interpreters, 704, 705
professional mathematicians, 628
professional musicians. See also musicians aged 50 to 77 years of age, 848
larger middle section of the corpus callosum, 560
most suffering from medical problems, 544
outperformed controls, 848
poor performance on tests of musical talent, 836
professional project, 129
professional scientific identities, defining in science, 137
professional singers. See singers
professional skill or expertise, in domains with extreme demands on speed and accuracy, 839
professional values and identities, development in workers of shared, 130
professional work. See also work differentiating from human work in general, 132
epistemology of, 132–134
speed-up of, 96
Index of Subjects

<table>
<thead>
<tr>
<th>Page Numbers</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>413–414</td>
<td>deliberate practice in a particular genre and domain, 426</td>
</tr>
<tr>
<td>419</td>
<td>proposal writer, case study of, 419</td>
</tr>
<tr>
<td>420</td>
<td>as self-motivated, 420</td>
</tr>
<tr>
<td>422</td>
<td>“professionals profesa,” 129</td>
</tr>
<tr>
<td>423</td>
<td>crafting knowledge to the needs of a specific audience, 423</td>
</tr>
<tr>
<td>424</td>
<td>reflecting expertise in a particular genre and domain, 426</td>
</tr>
<tr>
<td>426–427</td>
<td>professional writing expertise, 413–426</td>
</tr>
<tr>
<td>429</td>
<td>professional–client relationship, in science, 136</td>
</tr>
<tr>
<td>430</td>
<td>appeal as a mechanism of occupational change, 132</td>
</tr>
<tr>
<td>431–434</td>
<td>professional writing, 413–426</td>
</tr>
<tr>
<td>435</td>
<td>force for stability and freedom, 128</td>
</tr>
<tr>
<td>436</td>
<td>property, expertise as, 23</td>
</tr>
<tr>
<td>438</td>
<td>protecting, 823</td>
</tr>
<tr>
<td>440</td>
<td>propositions, taking the form of two concepts linked by a statement of relationship, 178</td>
</tr>
<tr>
<td>441</td>
<td>professional writing expertise, 413–426</td>
</tr>
<tr>
<td>442</td>
<td>professional writing, 413–426</td>
</tr>
<tr>
<td>443</td>
<td>force for stability and freedom, 128</td>
</tr>
<tr>
<td>444</td>
<td>providing a normative value, 128</td>
</tr>
<tr>
<td>446</td>
<td>public, 130</td>
</tr>
<tr>
<td>448</td>
<td>requiring professionals to be worthy of trust, 129</td>
</tr>
<tr>
<td>449</td>
<td>accumulating experience without increasing objective performance, 75</td>
</tr>
<tr>
<td>451</td>
<td>expert role attributed to, 141</td>
</tr>
<tr>
<td>453</td>
<td>extensively engaged in dealing with risk, 130</td>
</tr>
<tr>
<td>455</td>
<td>many working independently without peers, 746</td>
</tr>
<tr>
<td>457</td>
<td>some acquiring confidential information, 129</td>
</tr>
<tr>
<td>459</td>
<td>“protestant science policy,” 135</td>
</tr>
<tr>
<td>460</td>
<td>protocol analysis, applications to expert performance, 203–206</td>
</tr>
<tr>
<td>461</td>
<td>capturing expert thought with, 192–207, 749</td>
</tr>
<tr>
<td>462</td>
<td>as a methodology, 195–198</td>
</tr>
<tr>
<td>464</td>
<td>as a primary tool, 207</td>
</tr>
<tr>
<td>466</td>
<td>prototype user-interfaces, formative evaluation of, 187</td>
</tr>
<tr>
<td>468</td>
<td>prototypes, 333</td>
</tr>
<tr>
<td>469</td>
<td>prototypical cases, knowledge of, 99</td>
</tr>
<tr>
<td>477</td>
<td>Programme for International Student Assessment, lessons from, 477</td>
</tr>
<tr>
<td>479</td>
<td>Programme of International Assessment of Adult Competence data (OECD), 114</td>
</tr>
<tr>
<td>480</td>
<td>designed to directly develop essential probabilistic reasoning skills, 497</td>
</tr>
<tr>
<td>482</td>
<td>functioning as “mid-range” theoretical constructs, 63</td>
</tr>
<tr>
<td>484</td>
<td>progressive deepening, 604</td>
</tr>
<tr>
<td>486</td>
<td>progressive temporal occlusion, 679</td>
</tr>
<tr>
<td>488</td>
<td>creating contingency plans for avoiding or dealing with negative events, 724</td>
</tr>
<tr>
<td>490</td>
<td>from current events and dynamics to anticipate future events, 716</td>
</tr>
<tr>
<td>492</td>
<td>projects, working on multiple, 296</td>
</tr>
<tr>
<td>493</td>
<td>Prolog computing language, 89</td>
</tr>
<tr>
<td>495</td>
<td>prolonged learning, expertise as an outcome of, 51</td>
</tr>
<tr>
<td>497</td>
<td>promising moves, ability to recognize in chess, 820</td>
</tr>
<tr>
<td>499</td>
<td>proof-by-contradiction, method for, 87</td>
</tr>
<tr>
<td>501</td>
<td>proofs, LT creating some novel, 60</td>
</tr>
<tr>
<td>503</td>
<td>propeller, amounting to an air screw, 819</td>
</tr>
<tr>
<td>505</td>
<td>properties, using to specify relations, 99</td>
</tr>
<tr>
<td>507</td>
<td>property, expertise as, 23</td>
</tr>
<tr>
<td>509</td>
<td>proposal writer, case study of, 419</td>
</tr>
<tr>
<td>511</td>
<td>propositional knowledge, depth of, 120</td>
</tr>
<tr>
<td>513</td>
<td>propositional networks, 333</td>
</tr>
<tr>
<td>515</td>
<td>occupations, appeal as a mechanism of occupational change, 132</td>
</tr>
<tr>
<td>517</td>
<td>dominating in fields where new standards for best practice need to be established, 143</td>
</tr>
<tr>
<td>519</td>
<td>as knowledge-based work, 132</td>
</tr>
<tr>
<td>521</td>
<td>needed to establish standards in a domain, 143</td>
</tr>
<tr>
<td>523</td>
<td>needed to turn excellence into paid work, 142</td>
</tr>
<tr>
<td>525</td>
<td>occupational control and, 131–132</td>
</tr>
<tr>
<td>527</td>
<td>powerful motivating force of control “at a distance,” 131</td>
</tr>
<tr>
<td>529</td>
<td>providing a normative value, 128</td>
</tr>
<tr>
<td>531</td>
<td>providing complex, discretionary services to the public, 130</td>
</tr>
<tr>
<td>533</td>
<td>requiring professionals to be worthy of trust, 129</td>
</tr>
<tr>
<td>535</td>
<td>sociology of professional groups, 128</td>
</tr>
<tr>
<td>537</td>
<td>subjecting individuals to the needs of the community, 128</td>
</tr>
<tr>
<td>539</td>
<td>as a unique form of occupational control of work, 130</td>
</tr>
<tr>
<td>541</td>
<td>professionalization, 129</td>
</tr>
<tr>
<td>543</td>
<td>professionals, accumulating experience without increasing objective performance, 75</td>
</tr>
<tr>
<td>545</td>
<td>expert role attributed to, 141</td>
</tr>
<tr>
<td>547</td>
<td>extensively engaged in dealing with risk, 130</td>
</tr>
<tr>
<td>549</td>
<td>many working independently without peers, 746</td>
</tr>
<tr>
<td>551</td>
<td>some acquiring confidential information, 129</td>
</tr>
<tr>
<td>553</td>
<td>“protestant science policy,” 135</td>
</tr>
<tr>
<td>555</td>
<td>protocol analysis, applications to expert performance, 203–206</td>
</tr>
<tr>
<td>557</td>
<td>capturing expert thought with, 192–207, 749</td>
</tr>
<tr>
<td>559</td>
<td>as a methodology, 195–198</td>
</tr>
<tr>
<td>561</td>
<td>methods of, 15, 193</td>
</tr>
<tr>
<td>563</td>
<td>as a primary tool, 207</td>
</tr>
<tr>
<td>565</td>
<td>prototype user-interfaces, formative evaluation of, 187</td>
</tr>
<tr>
<td>567</td>
<td>prototypes, 333</td>
</tr>
<tr>
<td>569</td>
<td>prototypical cases, knowledge of, 99</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
Index of Subjects 941

prototypical situations. See also schema(s)
learning, 722
proven experience, of an expert, 127
proverbs, 644, 779
proximal cues, 777
“pseudo expertise,” 16, 431
psychiatrists, showing poor decision performance, 142
psychical objects, resisting being entirely explained, 133
psycho-affective fidelity, 341
psychobiography, 310, 311
psychohistory, 310, 311
psychological adaptations, occurring in various types of
practice activities, 653
psychological evidence, applicable to all professional
writers, 414
psychological explanations, for skill in observational
drawing, 580–586
psychological mechanisms, producing expert
performance, 771
psychological perspectives, studies of expertise from,
59–77
psychological processes, underpinning expert performance
in sport, 653
psychological research, based on the theory of tacit
knowledge and practical intelligence, 770
psychological safety, as a mediator of virtual team
performance, 518
psychological sciences, simulations in, 60
“The Psychological Seminary of Cornell University”
(Mitchell), 616
psychological skills, maintaining expertise, 276
psychological study, of historical figures, 310
psychological traits, 213, 390, 564
psychological trauma, triggering musicians’ dystonia, 566
“psychological” triggering factors, assumed degree of, 565
psychological uncertainty, involved in the completion of
deductive rule-induction tasks, 485
psychology, writing compared to writing in the humanities, 419
psychology branch, of AI, 86
psychology of expertise, relations to various fields, 65
psychometric ability factors, 835
psychometric approaches
to assessing existing knowledge and skills of
individuals, 228
to chess skill capitalizing on the chess rating scale, 598
predictors, 214–216
studying the structure of expertise, 213–230
psychometric battery, including measures of complex
working memory to musicians, 707
psychometric decision science studies, 486–493
psychometric factors, performance on tasks described by, 70
psychometric intelligence, reliable impact of, 836
psychometric intelligence research, 485, 497
psychometric numeracy test, 477
psychometric reliability, 214
psychometric studies, 494
psychometric testing, Stumpf developing, 535
psychometric tests
for admitting students into professional schools and
academies, 10
of intellectual abilities, 835
psychometric tradition, considering facets of fluid
intelligence, 838
psychometrics
affinity with historiometrics, 313
compared to historiometrics, 310
defined, 213
discussion and challenges for future research, 229–230
psychomotor adaptations, not declining inevitably with old
age, 540
psychomotor skills, relationship with SA, 729
psychopathology, 317
psychotherapists, 747, 753
public interest, promoting and protecting, 131
public performances, of classical music, 566
public sector, “hybridized” professionalism in, 132
published research, categories of, 315
“pure” perceptual experience, 151
pure perceptual processes, 152
purposeful practice. See also deliberate practice
criteria for, 398
in domains characterized by complex indeterminate
causation, 400–403
effects of more pronounced in the older chess players, 843
in entrepreneurship, 396–397, 398
experts engaging in, 75
focused on continual improvement, 389
key role for expertise, 837
weak interaction between age and, 846
pushing performance beyond normal, methods of, 758
putamen, 561
putting, on a practice green, 205
Pythagoras, 134
Q-morphisms, 721
qualifications, of an expert, 127
qualitative, retrospective recall approach, 262
qualitative differences, in expertise, 36
qualitative interviews, 261–262
quality
of training hours, 276
of vocabulary knowledge, 639–640
quality control, through internalized values, 137
Index of Subjects

“quality” practice, trying to ascertain markers of, 264
quantitative analyses, features of in historiometrics, 310
quantitative dimension, of “historical,” 310
quantitative reasoning, 485
quantitative skills, 485, 497
quantitative social indicator, used for social decision-
making subject to corruption, 432
quasi-longitudinal methods, of collecting data, 266
questionnaires
eliciting practice-related information, 262
quantitatively oriented, retrospective, 261
studying self-regulation of learning, 277
Quetelet, Adolphe, 311
race car drivers, 221, 358
racquetball players, 685
radar, Wilkins’s invention of, 817, 828–829
radio waves, 818
radiologists
detecting relevant aspects of perceptual stimuli, 233
diagnosing normal or abnormal, 332
experienced, reaching a stable accuracy level, 204
expert, needing only a few fixations, 234
looking for inserted artificial modifications, 237
only the less skilled engaged the LOC, 236
showing good decision performance, 142
railroad crossings, 361, 362
Rajan, 199
Ramanujan, Srinivasa, 624
RAND Corporation, 60
random coefficient modeling, 217
random generate and test, 796
random mutation, 796
random positions
in chess, 601
recall of, 600
randomization manipulation, 242
randomness as genesis principle, 796
rap musician, practice for, 544
rapid categorization, of information, 718
rapid chess, small decrease in play quality during, 702
rapid recognition, leading to incorrect or inferior action, 74
rapid retrieval, from long-term working memory, 420
rapid rise in ability, during teenage and young adult years, 847
rates of improvements (ROI), 279
rating scale, for chess, 597
ratings, limited in inherent subjectivity, 590
rational decision making, goal of, 479
rational individual decision making, 400
rational thinking, 482
rationality, 478
Rationality and Intelligence (Baron), 482
Raven’s Advanced Progressive Matrices, 490
RAWFS heuristic, 457
reaction time delays, within “real world” tasks, 678
reaction times (RTs), 198
reactions, replicating themselves, 292
reactive consequences, 197
reactivity, avoiding, 193
reader representation, holding in working memory, 423
readers, referring back to lexical items in a text, 635
reader’s perspective, taking fully into account, 424
reading
learning by, 92
lexical coverage required, 635–636
reading and editing processes, as complex, 414
reading comprehension, 493, 715
reading skills, Matthew effect in, 218
real performance situations, accessing, 665
realism, 590
realistic observational drawing, 577
“reality testing,” needed for viable forecasting, 297
“realization problem,” 60
real-time interaction, 642
“real-world” context, looking at performance in a, 305
“real-world” creative problem-solving task, impact of constraints on, 303
“real-world” events, cases referring to, 293
“real-world” implications, of studies of expertise, 291
real-world jobs, cognitively demanding, 223
real-world problems, 85, 91
real-world task environments, making decisions in, 65 reasoning, 89. See also expert reasoning
behavioral forms and temporal skills in, 74
biases and limitations, 453
in Carroll’s estimates of the fluid intelligence factor, 484
dual process” model of, 333
evidence-based instructional approaches to teaching, 338
in expertise, 73
factors explaining fluid intelligence, 485
forward from available data as well as backward from overall goals, 99
heuristic including, 821
intertwined with knowledge, 67
mechanisms occupying a critical developmental role in learning, 337
models for seven proficient forecasters, 184
proceeding by two very different strategies, 333
progressing through a number of transient stages, 337
role of emotion in, 347
uncertain knowledge and uncertain data in, 91
with uncertainty, 91
recall limitations to, 264
measure of error, 683
paradigm, 683
performance, 683, 705
structured by major goal-related sequences, 69
task pattern, 681
receivers, remaining vigilant against deception, 44
receptive functions, musical training plastically altering, 557
receptive knowledge, 642
reciprocal relationship, between practical intelligence and
tacit knowledge, 774
reciprocal teaching and learning, 113
recognition
not an option in solving unfamiliar complex problems, 205
of a particular type of event or situation, 722
speed of for trained tasks, 74
recognition-based behavior, 74
recognition-based components, of skill, 73
recognition-based problem-solving, by experts, 73
recognition/metacognition (R/M), 457
Recognition-Primed Decision (RPD) Model, 166, 168, 183
recognition-primed decision making (RPD), 457
“recognition-primed” decisions, 386
records, bearing on the performance of a single expert, 291
Reducing uncertainty, in RAWFS, 457
reduction
abstraction as, 133
in weekly serious chess study, 763
redundant information, processing, 804
redundant learning activities, 805
Reference Class and Class-Inclusion Neglect, 490
reference image, superimposing a standardized
grid on, 588
referent, associating a new form to, 642
refinement, from many repetitions, 424
reflection
mediating expertise, 72–73
as a metacognitive skill, 277
reflective conversation, 380
reflective thought, 783
reflexive level, teams sharing cognition at, 513
reframing, 34
regional transfer, 821
register, knowledge of a word’s, 643
regression analyses, 279
regression equations, depicting the validity of various
cues, 777
regression to the mean, 216
regulation, value in learning, 73
“rehearsal,” of instructional routines, 442
rehearsal strategy, 240
reiterative thinking inside the box, 832
rejection of the past, breakthrough thinking calling for, 818
“relational agency,” 141
relational distances, between players, 684
“relational expertise,” 141
relationships, between students and content, 432
relative experts, making use of, 141
relative motions, between players, 684
relevant knowledge, growing, 92
relevant structure, improved encoding of, 620
reliability
assessing, 214
data, 263–264
estimating for a measure, 214
implicit in experimental research, 229
of procedures, 294
psychometric, 214–215
referring to the “consistency” or “repeatability” of
measures, 263
systematic review and evaluation of methods, 266
reliance on everyday experiences, limitations of, 116
Rembrandt, 581
remote associates
in creative thinking, 813–820
perspective, examples of, 813
perspective on creative thinking, 832
utilization of, 831
Remote Associates Test (RAT), 819
remote associations
detecting among unrelated words, 416
importance in creative thinking, 814
modern perspectives on, 815–820
notion of, 813
remote collaboration, cognitively demanding, 459
remote-associates view, 812
as basically misdirected, 832
on creative thinking, 813
on novel ideas, 812
re-examination of case studies, 828–830
support available for, 831
remotely associated ideas, coming together, 814
“remoteness,” scale of for measuring transfer of
expertise, 821
repeated (multivariate) analyses, of (co)variance, 279, 280
repeated practice, in solving problems, 804
repetitoary grids, identifying tacit knowledge a priori, 785
repetitive movements, in over-trained monkeys, 567
repetitive practice, compared with deliberate practice, 445
repetitive routines, experts acquiring differences from
novices, 4
repetitive tapping rate, showed typical age-related
decline, 844
reporting verbally, on particular cues, 679
representation method, capturing expertise, 99
representational depictions, 577–578
representational momentum, 684
representational perspective, 343
“representational redescription,” 780
representations
acquiring systems of, 756
assisting in design cognition, 379–381
developing the necessary, 760
differences associated with templates, 610
functionality of expert, 71–72
higher level, 708
of some physical system, 720
representative situations
advantage in memory recall, 697
identifying from the domain, 203
from real chess games, 699
representative understanding. See also understanding
promoting across evolving domains and conflicts, 498
rather than rational optimization, 476
sophisticated, affectively charged, 483
reproductive thinking, 817
research, comparing experts and novices in a given
domain, 68
research designs, of historiometric studies, 315–316
research methods, for studies of design, 373
research paradigms, evaluating anticipation and decision-
making, 664
“research participants,” departing significantly from the
norm, 322
research procedures, importance of appropriate, 135
research strategies, changed to identifying mechanisms, 849
research subjects, assembling, 313
research traditions, risks associated with aligning
different, 106
researchers, having greater data collection power, 266
residents or stakeholders, focusing on the local knowledge
of, 138
Resolution Method, 87
resource management deficit, characterizing
non-experts, 358
resource requirements, cases appraised with respect to, 297
resources
acquiring, 398
expert teams optimizing, 509
optimizing other life domains, 849
responding, slowing down while writing, 417
response bias, change in with experience, 734
response hierarchies, 832
response planning, advance information for, 678
response times, in solving algebra problems, 620
“responsible research and innovation,” 138
restructuring
based on failure, 822
as the basis for creativity, 817–819
central in the Gestalt psychologists’ discussion of insight
in problem-solving, 813
of situations, 817, 823
restructuring and remote associations, as separate
mechanisms, 814
results, experts consistently producing, 40
retention and transfer of skills, almost the reverse
conditions promoting, 668
retinal image, arising through an infinite number
of possible configurations of real-world objects, 584
retraining, requiring several years to succeed, 568
retrieval cues, kept in STM, 701
retrievers and task performance, 219
retrieving from memory and decomposition stage, 622
retrospective approaches, collecting and assessing practice
history data, 260–261
retrospective interview technique, 392
retrospective practice histories, 265
retrospective reports, 198
retrospective study design, 276
retrospective verbal explanations, 195
retrospective verbal reports, 664
retrosplenial cortex (RSC), 240, 242, 243, 244
reviewing, text, 414
revision, of writing, 415, 423
Revisiting theme, 784
rhetorical “problem space,” 414
rhetorical style, required in a given domain, 419
rhymes, used by artisans in Early Imperial China, 116
rhythmic gymnastics, deliberate practice for, 757
“RIASEC” model, Realistic, Investigative, Artistic, Social,
Enterprising, and Conventional, 224
“rich getting richer,” 218
rich learning, promoting, 117
Rigged up Perception-Action Systems (RUPAS), 155
right fronto-parietal infarct, 629
right fusiform gyrus, 239
right hemisphere, 555
involved in abacus calculations, 629
solving problems through insight, 819
right medial frontal and parahippocampal gyri, 628
right motor hand area, piano training and, 560
right primary auditory cortex, 554, 559
right putamen, size of correlated with the age at which
music training began, 562
right-handedness, 415
right-hemisphere involvement, in a range of tasks, 628
risk
evaluating and understanding, 478
exerting a direct effect on affective responses, 496
involving, 479
as a preoccupation of economists, 390
in selecting a chess move, 606
tolerance, 357
understanding, 498–499
risk literacy, 478, 492, 495, 496
risk management, issues of, 467
risk perception, consistency in, 486, 487
risk-taking, between groups of countries, 606
Riviera, Diego, 827
Robie house, Frank Lloyd Wright Prairie House, 826
robotic patient simulators, 332
Rod-and-Frame illusion, 583
roles. See expert role(s)
room layout, reorganized, 174
root contacts, during dental surgery, 346
rough draft, preparing, 418
routine experts, implementing set routines, 436
routine processing, versus controlled processing, 73–74
routines
considering a large number of, 440
developing adaptive knowledge of, 442
experts using, 455
Royal Academy of Music, 9
Royal Designers for Industry, 373
royal or princely courts, 136
Royal Society in London, 136
Royal Society of Arts (RSA), 373
RPD. See recognition-primed decision making (RPD)
RSC (retrosplenial cortex), 240, 242, 243, 244
rugby playmakers, training programs for, 458
rule, 87
“rule induction” tasks, 485
rule-based architecture, common, 74
rule-based paradigm, experiments with, 96
rule-based representation, discovering new rules of mass spectrometry, 88
rule-based systems, 87
rule-induction, in fluid intelligence tests, 493
rules, as essentially incomplete, 24
runners
aging effects on expert, 842
elite endurance, 73
marathon- or half-marathon, 842
measuring speed of, 214
middle-distance, 759
running economy, on a treadmill, 749
running or walking, helping some writers think through problems, 422
Ruskin, John, 581
SA. See situation awareness (SA)
SABIC, configuring a color formula, 97
saccades, 685
safe driving, among enlisted Army personnel, 779
Safe Speed Knowledge Test, 779
SAGAT mean scores, by experience level, 731
sales pitch, 399
salespersons, studies of expert, 402
sample membership, assigning, 313
samples, recruitment of large, 261
sampling
according to eminence, 314
across different age groups, 266
procedures, 313–314
satisfactory level, 753
SAT-M (Scholastic Aptitude Test – Mathematics), 616, 627
SAT-V (Verbal), 627
scaffolds, 552, 566
scale playing, preparation required, 567
scale-playing task, pianists completed, 562
scenarios
direct and indirect for hazards, 363
experiencing through the eyes of the experts, 460
Schadenfreude, 642
schema(s), 234
structure of, 99
uses of, 722
schema-based theories, 106
schematic illustration, 756
scholar-officials, in rising empires of antiquity, 127
scholars, from diverse domains, 772
scholars’ guild, established in the 12th and 13th centuries, 6
school system, insufficiency of the traditional, 76
school teaching, observing elementary and secondary, 437
school-based writing assignments, during adolescent years, 424
“schooled societies,” overlooking or minimizing the educational worth of experiences, 108
schooling
as a cultural invention, 435
privileging in the development of expertise, 115
schools
boosting performance of, 783
developed to prepare workers, 435
helping students acquire skills and mechanisms for proficient performance, 76
Schumann, Robert, 224
science
changing relationship with society, 138
constituting the core epistemic social (sub-)system within modern societies, 136
as the core accepted reference system for knowledge in current societies, 134
equating perceptions of control with the ability to predict, 395
function of, 137
historical overview, 134–135
incorporation into everyday practices, 22
institutionalized in the Western world, 135–136
linked to the idea of progress, 135
linking signs and symptoms to diseases, 339
as the main reference system for knowledge, 127
as a marginal activity within early universities, 136
operating conditions of today’s, 136–138
as a profession, 137
referring to technologies and systematized knowledge, 143
as a social system, 137
within communities of people sharing scientific interest, 135
“science as a vocation” (Weber), 137
science/math trait complex, 226, 229
The Sciences of the Artificial (Simon), 64
science–society cooperation, 138
scientific contribution of a scientist, 221
scientific creators, growing up in stable and conventional homes, 317
scientific cultures, required by professional science, 137
scientific enterprise, clear vision of the purpose of, 135
scientific leaders, assessing the performance of, 295
scientific management, development of, 296
scientific method, 135
scientific misconduct, 137
scientific paradigm, Thomas Kuhn’s idea of, 23
scientific research, on expertise, 233
scientific worldview, of Aristotle, 134
scientific writers, work sessions, 422
scientists
area expertise of, 301
developing and extending science as a knowledge base, 134
dimensions of, 301
interviews of peer nominated eminent, 13
leaving extensive records, 300
need the distinct educational experiences, 318
outstanding, best work at around 35 years of age, 751
testing aspiring performers during development of expertise, 14
“thinking like scientists,” 33
Scrabble game, 203
screening procedures, for artist participants, 589
script concordance tests, 776–777
scripts, 234
developing for particular diseases, 338
tying to schema, 722
script-scenario instrument, 392
Scripture, E. W., 616
sea transport, expertise in, 356
search and pattern recognition, dissociating in chess, 603
search heuristics, 88
search mechanism, “short circuiting,” 823
search pattern, determining the most effective, 661
SEARCH probabilistic model, 602, 605
search process, evaluating moves in chess, 598
search space, size of, 88
search-based approaches, not efficient as instructional methods, 805
searches, based on failure, 822
seasonality of birth, as a marker for chess talent, 610
second language (L2) learners
requiring much smaller amounts of vocabulary, 635
use of formulaic language by, 646
secondary auditory areas, 554
secondary auditory cortices, 558
secondary competencies, 42–44
secondary knowledge, 795
secondary market research, for entrepreneurship, 406
secondary motor areas, processing movement patterns, 555
secondary olfactory areas (orbitofrontal cortex and hippocampus), in blind persons, 239
“see the system,” learning to, 444
“seeing as,” 380
seeing problem, in algebra learning, 620
“seeing that,” as reflective criticism, 380
selection
basing on perceptual speed and psychomotor measures, 223
in drawing differing between artists and non-artists, 587
selection forces, changing to social pressures, 41
selective combination, 774, 782
selective comparison, 774, 782
selective encoding, 774, 775, 782. See also encoding
selective maintenance account, 839
selective optimization, with compensation, 540
selective search, by chess players, 603
selective skill maintenance interpretation, 844
selectivity, as a weakness of case studies, 830
self-checks, introduced to more knowledgeable learners, 807
self-concept, 222, 225
self-control, 132
self-designed versus coach-led practice, 656
self-determined practice, 260
self-driving cars, 366
self-education, various forms of, 318
self-efficacy, 222, 225, 277
self-estimated performance ability, for older musicians, 540
self-explanations
 benefits of, 339
 improving participants’ activities, 197
self-monitoring, in expertise, 73
self-observation, 192
self-organization, 127
self-purification, 139
self-regulated and effortless activities, 392
self-regulated learning, optimizing, 785
self-regulation, 398
 of experts, 73
 of learning, 277, 278
 methods for writers, 422
 motivation (need) to practice and, 536
 research on, 539
right of, 137
Self-Regulation of Learning Self-Report Scale
 (SRL-SRS), 657
self-regulatory activities, 260
self-report measure, for TMS, 512
self-report method, for measuring expert teams, 518
self-report surveys, measuring teamwork in medical teams, 518
self-reports
 avoiding pitfalls associated with traditions, 404
 of maladaptive real-world decision outcomes, 488
semantic axes, 333
semantic concepts, not all transferable between languages, 642
semantic markups, inferring knowledge from, 93
semantic memory, 61, 620
semantic web, 93
semi-professional work, speed-up of, 96
senior competitions, age of transition for, 273
sense of self (subjectivity), 120
sense-making, 456
cognitive process of, 172
commencing anywhere, 461
described, 461
ensuring and maintaining consistency among indicators, 466
in a hybrid ecology, 466
proceeding in fits and starts, 461
in real-world situations, 461
strategies involving, 457
sensitive periods
 of the brain, 569
 existing in the nervous system, 551, 563
sensitivity
 of experts to linked segment information, 680
to timing variations, 552
sensor based team measurement, in the field of healthcare, 519
sensorimotor delay, 684
sensorimotor expertise reversal effect, 803
sensorimotor skills
 expertise reversal in training, 803–804
 explicit monitoring theory of, 802
sensory abnormalities, driving a motor disorder, 568
sensory acuity, changing, 151
sensory homunculus, 556
sensory input, altered in musician’s dystonia, 568
sensory motor control, brain changes associated with, 566–568
sensory perception, altered, 566, 567
sensory retraining, in the form of tactile discrimination practice, 568
“sensory trick” phenomenon, 567
sensory-motor domain, 551, 560
sensory-motor integration
 changes in, 558
 impaired, 566
 impaired role in musician’s dystonia, 567
 sensory-motor programs, early optimization of, 566
 sensory-motor skills, 552, 563
sentences
 involving the language zone of the left hemisphere, 415
 retaining meaningful, 622
 writers generating cohesive links among, 414
separateness, of knowledge and domains of expertise and experts, 34
sepsis, 458
sequencing, 404
sequential reasoning, 485
sequential thinking, 515
serial evaluation, via mental simulation, 457
“serial-cue” approach, 338
serotonin, increased release of, 553
service and autonomy, making professionalism attractive, 131
“service” orientation, of professionalism, 128
severe time constraints, inducing anxiety, 347
sex difference, “environmental” hypotheses and, 627
sexing chickens, 152
sex-linked characteristics, contributing to mathematical expertise, 627
sexual reproduction, information reorganized during, 796
ShadowBox® training, 182

- accelerating progression towards expertise, 184–185
- recent work on, 404
- scenario-based training approach, 460
- shamans, in pre-modern societies, 127
- shape constancy
 - described, 582
 - effect, 582
 - errors, 589
 - illusion, 581
- “shadowed,” meaning “distributed,” 459
- shared cognition. See also cognition
 - current research on, 513–514
 - forms of, 511
 - pertaining to time affecting team performance, 513
- researchers considering the literature on TSM and SMM separately, 521
- of teams, 511

- shared conceptions, developing via dialogue, 403
- shared instructional objects, 445
- shared knowledge structures
 - held by members of a team, 512
 - of SMM, 513
 - of teams, 509

- shared leadership, 509. See also leadership; team leadership
 - behaviors distinct from individual-level leadership, 520
 - conceptualization of, 515
 - contributing to both team and individual creativity, 509
 - contributing to knowledge sharing, 509
 - defining, 520
 - distributed among the team, 520
 - integral in virtual project teams, 514
 - lack of construct clarity, 514
 - measured via behavioral, affective, and cognitive constructs, 515
 - meta-analysis on, 514, 515
 - multiple forms of, 515
 - research, 520
 - role of, 509
 - separating expert teams from others, 515
 - structures, 514

- shared mental models (SMM)
 - based on deliberate and conscious processes, 513
 - categorized into task and team related mental models, 513
 - conceptualizations of, 459, 513
 - content of, 513, 521
 - contributing to enhanced team processes and team performance, 513
 - defined, 512
 - distinguishing from TMS, 512–513
 - encompassing knowledge shared among all team members, 512
 - encompassing task content as directly related to performance, 521
 - expert teams holding, 509
 - important role on the performance of virtual teams, 518
 - measurement of, 512
 - representing team members’ knowledge, 458
 - types of, 513
 - shared professional identity, 130
 - shared temporal cognition, mitigating the negative impact of diversity, 513
 - shared values, of scientists, 137
 - shared vocabulary, 762
 - Shark Tank (TV show), 399
 - Shaw, Clifford, 59
 - Shepard illusion, 581
 - shogi, 243, 244
 - shopping cart
 - IDEO creating a new, 824
 - innovative aspects of, 824
 - short term results, practices yielding impressive, 431
 - shorter-term predictions, likely to be much more accurate, 220
 - short-term memory (STM). See also working memory
 - activating knowledge from long-term memory (LTM), 696
 - amount of information held in, 68
 - cognitive processes uniformly constrained by, 70
 - constraints, 72
 - decision makers circumventing attentional capacity limitations of, 483
 - invariant limits on, 76
 - skill not residing in differences in, 600
 - shot sequencing, access to varying levels of, 664
 - sighted participants, brain activity of, 238
 - sight-reading, 555
 - improving with overall musical ability, 543
 - influence on working memory, 707
 - of music notes engaging a number of areas of the brain, 237
 - by pianists, 746
 - playing music by, 707
 - predictors of performance, 707
 - signal value, of expertise, 45
 - signaled traits, 46
 - signalers, dissembling high quality traits, 44
 - signaling theory, 44
 - signals
 - development of, 44
 - types of in humans, 519
 - significance, testing, 280
 - significant samples, 313
similarity
among team members, 515
moderating effect of versus accuracy of the team’s
SMM, 521
of SMM measurements, 512
Simon, Herbert, 59, 61
doing psychology, 61
Grandmasters of chess viewed as intellectual
prodigies, 696
start of modern laboratory research on expertise
attributed to, 697
Simon–Chase theory of expertise
approaches drawing on, 12
limits and criticisms of, 697–699
simple check task, 241
simple games, no such thing as expert performance, 45
simple shapes, detecting embedded, 580
simplex-like effect, 221
simulation(s), 341–342
described, 120
exercises constructed from CTA data, 460
fidelity, 343
increasing use of, 340
method for measuring expert teams, 518
in the psychological sciences, 60
technology supporting teaching and assessment in
medical education, 332
tools using with NDM, 465
training, 460
using videos and standard actor patients, 338
simulation-based clinical education, 341
simulation-based learning environment, 342
simulator-based flying accuracy, 845
simulators
high-fidelity used in airline operations, 465
training with, 75
simultaneous translation, working memory during, 704–705
singers
amateur experienced lessons as self-actualization, 761
classical starting later, 536
educational traditions affecting practice duration, 538
found to have larger vital and total lung capacities, 542
working with an accompanist, 538
single-case designs, 316
Siqueiros, David Alfaro, 827
site constraints, vis-à-vis the principle of maximizing
sunlight, 302
“situated” act, designing as a, 379
“situated cognition,” 461
situated domain of practice, 111
situated expert performance, 122
“situated learning,” 23

“Situated learning: Bridging sociocultural and cognitive
theorizing” (Billett), 106
situated manifestations, of occupational expertise, 110–111
situated practices, 111
situation(s)
calling for immediate action with imperfect
knowledge, 453
emphasis on mutuality in, 402
expert reading of, 442
familiar, 455
not needing to be exactly like previously encountered
situation, 722
recognizing as typical, 386
situation assessment, 179
of experts, 456
information most critical to accurate, 455
most effort on, 453
situation awareness (SA), 442, 715–719
cognitive model of, 716
data available, 717
defined, 714, 715
developing in the infantry environment, 732
error causal factors across pilot groups, 727
exicise and, 714–736
factors affecting in novices and experts in a domain, 720
forming a central and conscious task for expert
drivers, 735
gathering of as an active process, 723
hallmarks of expert, 726
importance for army operations, 730
increasing with automation, 735
integral to many domains, 735
Level 1–2–3 progression, 718
Level 1–Perception, 715, 717, 725, 727
Level 2/3, 718
Level 2–Comprehension, 715
Level 3–Projection, 716
low, associated with cognitive automaticity, 723
problems for new platoon leaders, 732
qualitatively different depending the level of
experience, 731
ratings for pilots across four groups, 729
requiring “awareness” of information by definition, 723
role of expertise in, 719–726
skills required, 723–724
situation model development, in skilled reading
comprehension, 482
situation or problem, reaching an understanding of, 456
situation specific context, 665
situation typicality, 457
situational and structural effects, 347
“situational awareness,” 71
situational characteristics, demanding tacit knowledge, 784
situational/event probabilities, in sport, 662
situational-judgment testing format, 776
situationally derived goals, responding effectively to, 110
six-year-old children, effects of 15 months of piano
training, 559
size and shape constancy errors, 583
size constancy
artists and non-artists showing effects, 582
comparing with visual selection advantages, 589
described, 582
effects smaller among experienced artists, 589
size matching task, depth cue condition of, 587
sketching
assisting cognition in design thinking, 380
enabling exploration of the problem space, 381
purposes of, 380
tied in closely with features of design cognition, 380
skill(s)
acquired over time, 50
adapting effectively to new contexts, 343
affecting how progressive deepening is carried out, 604
altering or circumventing the processing limits of
attention and working memory, 76
as being first cognitive, then associative, and later
autonomous, 540
constant “stretching” through challenging cases, 464
deteriorating unless actively maintained, 839
developing through life, 540
differences of experts, 481
in drawing, 583
highlighting the specificity of, 340
knowledge mediating in chess, 599
learned explicitly less likely to be forgotten and more
robust under stress, 688
maintaining, 845–846
measures of retention and transfer, 667
needing to be explicitly taught and consciously
practiced, 795
obsolescence of becoming a risk, 849
performed in dynamic and unpredictable contexts, 343
in playing chess transferring to other domains, 607
processes of formation, 115
of professional writers, 422
progressions, 266
referring to acquired types of knowledge, skills, abilities,
and related capacities, 477
relevant to obtaining critical information, 723
required for expert teachers, 441–442
role in life history development, 53
training literature, 690
training of critical, 464

skill acquisition
in chess requiring a considerable investment, 608
in early and later “starters,” 569
experiment with a simplified air traffic controller (ATC)
task, 218
five-stage general model of, 385
involving the adaptation of pre-existing mechanisms, 591
models of as general cognitive architectures, 60
phases of, 115
specific adaptations in cab-drivers, 841
for writers, 422–426
skill components, 845, 846
skill development, 42, 51, 262, 540
skill level
continuing to improve during adulthood and
stabilizing, 569
correlated moderately with the cumulative amount of
individual practice in chess, 609
not correlating with handedness, 610
skill process changes, in animals, 54
skill-by-structure interaction, 541
skilled artists, guided by the veridical two-dimensional
appearance of the models, 581
skilled athletes
developing high-level knowledge structures in
memory, 662
intercepting fast-moving targets, 684
recalling player positions, 661
skilled batters, gaze behaviors of, 662
skilled chess players
having superior memory of chess positions, 697
recalling player positions, 661
skilled decision making, 479, 497. See also decision-
making
skilled encoding in LTM, key constraint for, 71
skilled individuals, looking further ahead in the text or
music score, 706
Skilled Decision Theory, 482–483
skilled decision-makers, 481, 482
skilled decision making, 479, 497. See also decision-
making
skilled perception, in chess, 242
skilled perception, appearing resistant to age-related
decreases in handball goalkeepers, 274
skilled performance, developing, 115
skilled performers, facilitating superior performance, 686
skilled players
ability to use higher-order cognitive information, 662
capacity to make perceptual judgments using information
picked up solely by peripheral vision, 686
more accurate at sports judgement, 662
needed a larger area around fixation to detect changes, 599
superior anticipatory skills, 687
using different anticipation search strategies, 664
skilled radiologists, example of, 233
skilled soccer players
group of with little to no basketball experience, 684
more often generated the best options (as assessed by coaches), 706
reported more relevant events and actions away from the ball, 207
skilled typing, research on, 706
skilled volleyball players, predictions of, 686
skillful knowledge, 165
skill-related tasks, aging and, 840
skill-sustaining deliberate practice activities, constrained by advancing age, 846
Skinner, B. F., 63
slogans, 644
slower learners
acquiring skills necessary for an expert level, 218
catching up over time, 222
SMA (supplementary motor area), 555, 556
“small theories,” 440, 447
SMG (bilateral supramarginal gyri), 241, 243
SMM. See shared mental models (SMM)
smokejumpers, 830
snooker players, 205
soccer players
asked to state their recommended action, 705
attainment of a professional contract related to early types of practice, 263
comparing practice history profiles, 655
deciding who is the better player, 273
“describing (aloud) actions taking place on the field,” 207
evaluating midfielders, 747
film sequences from the perspective of a central defender, 664
goalkeepers, 678
strongest predictor of decision making performance, 688
tests at particular ages correlated with attaining highest levels as adult players, 752
training aerobic fitness, 760
verbal reports when moving freely in front of a life-size video screen, 206
youth, 263, 277
social (sub-)systems, interacting with one another, 137
social activity, sport as, 655
social actors, constructing and contesting expert status, 22
social and cultural world, shaping human activities, 121
social and technological outcomes, putting indigenous or minority communities at risk, 22
social complexity, limiting the development of expertise, 46
social conception, of the expert, 401
social construction, expertise as a, 50–51
social constructivist approach, 22
social demands, coping with, 42
social division of labor, 141
social dynamics, anticipating and coping with, 41
social elite, scientists and professional experts as, 138
social embedding, in an expert community, 23
social emotions, evoked by music, 554
social exchange relationships, 299
social exchange theory perspective, studying shared leadership, 514
social fluency, sociological model of expertise as, 27
social groups
collaborations between, 25
defining the culture of, 27
classifying as a property of, 28
mobilizing cultural and epistemic resources, 22
social hierarchy, moving up, 41
social innovation
case studies, 296–297
described, 296
experimental studies of, 297–298
problems, 296
social integration, fostering unit-level, 516
social interaction, 645
social judgment analysis, identifying tacit knowledge a priori, 785
social learning, 781
social media, using in the L2, 648
social nature, of designing, 374
Social Network Analysis, 106
social phenomena, applying statistics and probability theory to, 311
social practices, participation in, 23
social pressures, 41
social scientists
justifying research, 26
understanding fieldwork setting, 27
social signaling, expertise and, 44–46
social stressors, within groups, 467
social system, science as, 136–137
social systems (teams), categorized by degree of complexity, 511
“Social” trait complex, 226
social use of expertise, 141
social voting criteria, for expertise, 50
sociality, 402
Index of Subjects

socialization
acquisition of expertise through, 21–28
as the foundation of expertise, 21
linguistic and physical aspects of, 28
socially relevant research tasks, 138
societal discussion, about the changing nature of work, 100
societal expectations
on literacy, 436
for occupations, 109
societal laws, recognizing the value of skilled or expert
societies
marked by a division of labor and specialization, 45
modern functionally differentiated, 136
society
developing experts in content knowledge who use their
knowledge to bad ends, 780
encompassing cultural and institutional provisions, 143
socio-contextual variables, influencing case reporting, 295
sociocultural context, expertise of the highest order likely to
appear in a particular, 318
socio-cultural perspective, emphasizing social
negotiations, 121
socio-cultural popularity, of a sport, 667
socio-economic conditions, of a young musician’s family, 536
sociological interest, in the enactment of expertise, 22
sociological point of view, expertise as professionalized, 127
sociological/philosophical perspective, on expertise, 21–28
sociology of professional groups, historical account of, 128–129
socio-technical work systems, working within, 187
Socrates, on expertise, 5
soft modularity, 42, 46
soft modules, top-down modification of, 42
software design, deliberate practice and, 75
software system designers, protocol analysis studies of, 383
software technologies, 172
software tools, facility with, 178
soi-disant professional artists, recruited from the
community, 589
solitary activities, allowing for focused practice, 758
solitary practice, 536, 759
solution alternatives, rating, 776
solution concepts, generating a range of alternative, 377
solution conjectures
by designers, 377–378
exploring and understanding problem formulation, 378
solution ideas and concepts, attachment to early, 382
solution precedents, store of knowledge of, 381
somatosensory areas, connection with nominally visual
areas, 238
somatosensory cortex, 567
somatosensory input, changing, 568
somatosensory perception, refined, 557
somatosensory representation, of the left fifth digit in string
players, 558
“somatotopic” order, 556
songs, 644
sound localization, 557
sounds, increased sensitivity to, 559
sources, 293
South African government, decision not to use AZT, 22
sovereign, acceptance of the divine right of, 131
space, managing within a map, 178
space crew teams, 516
spatial ability
higher in more skilled crafters in middle and older age
groups, 847
robust age-related decline in, 845
spatial “acalculia,” 623
spatial experts, 239
spatial learning strategies, intensive usage of, 841
spatial occlusion, 679
spatiotemporal control, 561
“special interactional experts,” 26
special populations, continued focus on, 592
specialist expertise, types of, 25
specialists, generating more complete explanations, 205
specialization, in TMS, 512
specialized knowledge
resting on a base of everyday knowledge, 94
as the wellspring of high levels of performance, 85
specialized roles, dividing into, 41
specific human capital, 391
“specification problem,” 60
specificity of practice, in the surgical domain, 343, 344
spectral aspects, musicians oriented toward, 543
speed of most types of perceptual-cognitive-motor
performance, undergoing age-related declines, 837
speeded performance, ubiquity of negative age-effects
in, 838
spelling, mastering the mechanics of, 422
spoken discourse, tending to be lexically less dense, 635
spoken form of a word, 640, 642
spoken or written discourse, words appropriate for, 643
sport(s)
accumulated hours of different practice activities, 762
age for top performance in, 321
application of the RPD framework to the domain of, 457
changed standards in, 543
deliberate practice in, 75
evolving with higher standards of expertise, 274
expertise in, 653–669
expert-performance approach applied to, 205–206
fastball, 660
with fewer predictor variables, 666
as inherently complex and multifaceted, 666
motor expertise and, 65
NDM tactics shown to improve performance in, 460
performance happening rarely, 445
rare to play at top form beyond the fourth decade, 847
studying skilled anticipation in, 690
task specificity limitation to a domain, 67
tasks, 677
teams playing matches against other teams, 747
working memory and, 705–706
sport expertise development, studies of, 265
sport expertise literature, 681
sport expertise studies, predictive ability of, 266
sport performance, profiling, 258
sporting domain, use of questionnaires, 261
sporting play, 264
sporting talent, predicting, 666–667
sport-practice activities, rated some high for enjoyment and relevance to improving performance, 655
Sports Car Club of America, 358
sports career, 276
sports science, as an academic field, 653
sport-specific stimuli and tasks, using more, 662
sport-specific training activities, importance of engagement in, 659
sport-specific training history information, athlete recall of, 264
sprinters, objective running times of, 50
spuriousness, source of, 317
squares or circles, viewing stimuli containing, 586
“squid-like” concept, from an analogy in the designer’s mind, 374
“stabilizing factors,” in the evolution of science, 137
stable traits, 213
staff positions, consolidating, 174
stage and phase models, for acquisition of a new skill, 539
stage model, of development from novice to expert, 36
stages of development, for future performers, 77
stakeholders engaged in the activity of co-creation, 403
helping shape the venture, 400
perspectives, 169
relationships, 401
setting their own terms, 400
standard cognitive paradigm, 165
standardized game situations, presentation using videos or scripted situations, 206
standardized instructions, 62
standardized measures of performance, 37
standardized methodologies, promoting validity and reliability of measurement, 265
standardized patients, 332
standardized performance measures, 37
standardized tests, 296, 438
standards experts establishing, 143
of logic, probability, and statistics, 479
used by professionals, 133
Starck, Philippe, 374
“start” and “stop” points, Flexecution model not assuming fixed, 462
starting age playing an important role in chess, 609
for practicing the violin, 654
for reaching an international level of achievement, 751
starting or halting points, for complex causation, 462
starting points, enabled designers to limit the problem, 375
“startle effect,” 464
startup environment, repeated practice of The Ask as an inevitable feature of, 399
start-ups, bootstrapped on budgets suiting every wallet, 390
states described in terms of systems of representations and their interconnections, 756
evaluating options for desired, 180
involved in the training of expert performers, 9
in a physical system, 178
representing temporary characteristics, 213
statistic controls, helping avoid the intrusion of spurious associations, 316
statistical analyses answering the research question, 278
choice for, 272
in longitudinal studies, 278–280
most people not computing, 479
statistical learning, 92, 93
statistical methods assessing probabilities, 88
for perceptual and motor tasks, 93
utilized to assess reliability and validity, 264
statistical modeling, rarely undertaken, 667
statistical numeracy, 488. See also numeracy as an essential component of general decision making skill, 483
link between general decision making skill and, 489
mediated any connection between fluid intelligence and decision making skill, 492
predicting decision making skill and risk literacy, 478
predicting general decision making skill, 479, 492
predicting skilled decision making, 498
statistical numeracy (cont.)
as a robust predictor of numerical and non-numerical
decisions, 478
working professionals having relatively low levels, 494
statistical numeracy tests
explaining 33% of the total decision making skill
variance, 489
representative judgment and decision making tasks, 478
as robust predictors, 494
tending to be the strongest single predictors of general
decision making skill, 476
statistical techniques, suitable for the analysis of
correlational data, 322
statistical theory, 485
“staying there” stage, with maintenance, 540
steep associative hierarchy, 814
steering into lane task, drivers’ gaze patterns not varying as
a function of expertise, 362
STeLLa: Science Teachers Learning from Lesson
Analysis, 448
STEP procedure, 457
stereo vision, among accomplished artists, 581
Sternberg, Robert J., 772
stimulus and response generalization, of the learning
theorists, 820
STM. See short-term memory (STM)
stored knowledge structures, 234
stored movements, in LTM, 234
stories
drafting by hand, 416
of lived cases, 175
strabismus, higher rates of, 581
strategic flexibility, of experienced artists, 587
strategic knowledge, 90
strategic positions, in chess, 604
strategic procedures, required for occupational competence,
108
strategies
bottom-up and top-down modes of perception as, 587
considering a large number of, 440
experts using to fine-tune skills to dynamically changing
conditions, 459
implementing to create learning opportunities, 440
individuals using to make superior decisions, 481
range of exploration of possible, 436
shifting when faced with high uncertainty or unmet
expectancies, 456
teachers deciding which to pursue, 442
testing of alternative, 447
used by experts as more flexible, 358
Strategies research category, for transportation, 357
stratification approach, 658
strengths and weaknesses, pattern of, 228
stress
as a cause of diagnostic errors, 347
promoting dysfunctional motor memory formation, 566
stress hormones (fear of failure), 553
stressors
effects on SA, 719
triggering a deterioration of motor control, 563
string players, left hand movements, 542, 561, 841
strong chess players, 601, 603, 604. See also expert chess
players
strong methods, dependent on knowledge of the problem-
solving area, 62
Stroop-like interference task, 599
Structural Adaptation Theory (SAT), 511
structural brain changes, 235
in cognitive expertise, 244–245
in motor expertise, 248
in perceptual expertise, 239
structural brain differences, reported in musicians, 561
structural consequences, of randomness as genesis
principle, 796
structural differences, between musicians and non-
musicians, 560
structural equation modeling, 279
structural process model, 495
structural supports, 517
structure
of expert performance, 709
extracting from the world, 442
in interactive learning environments, 799
structured data collection form, 260
structured objects, 99
structured patterns
in basketball, 682
experts applying, 683
structured plan, 383
structured practice activities, 264, 760
structured retrospective interviews, in domains outside of
sport, 262
student achievement, identifying experts based on, 437–439
students
attention to individual, 443
coming up with solution methods in Japan, 435
cooperation of, 434
diagnosing clinical cases, 339
novice superior on a near transfer post-test, 798
observation and analysis of thinking and learning, 447
outcomes, 432
participating in the PIFS program, 783–784
with poor knowledge of spreadsheets, 800
relationship with early teachers or coaches, 442
remembering steps used by the teacher, 434
time spending actively engaged in learning, 433
US uncomfortable with the experience of confusion, 435
writing samples, 437
studies, identifying natural and experimental variations in
practice behavior, 760
Studies of Expertise and Experience (SEE), 23
study methods, choice of, 272, 277–285
styles, prewriting strategies expressed as, 418
subcortical (brainstem) response delays, for auditory
stimulation, 842
subfields, understanding the discourse of, 26
sub-goals, 62, 114
subject matter experts, content validity established
through, 215
subjective accuracy ratings, by independent judges, 590
subjective assessments, based on surveys of scholars and
other experts, 314
subjective criteria, 295
subjective data, 258
subjective expected utility theory, 479
subjective ratings, 590
subjectivity, of qualitative interviews, 262
subject-matter expert (“SME”), debriefing, 85
subjects, asked to “think aloud,” 193
submarine technicians, NDM training of, 460
sub-skills, in different, though overlapping brain
networks, 552
sub-tasks, 114
subtitles, as a useful source of vocabulary learning, 648
success of actions, depending on the level of performance of
the opposing players, 748
successful maintenance, constraints on, 846
sunk costs, resistance to, 486, 487
superior decision making. See also decision making
in chess, 481
factors driving, 483
reflecting specialized knowledge, 476
superior individual performance of experts, 745–765
superior longitudinal fasciculus, 245
superior memory. See also memory
accounting for, 200
acquisition of, 199
associated with more expertise, 705
of chess masters, 11
associated with superior diagnostic performance, 699
of experts, 696
relating superior expert performance, 708
specifcicty of chess players,’ 703
superior parietal lobe (SPL), 247
superior performance. See also performance
analyzing, 72
attributing to domain-specific patterns or chunks, 579
capturing on memory tasks, 700
depending on expanded access to intermediate
products, 708
evidence of, 746
of experts, 193
identifying individuals with, 67
mechanisms mediating, 745, 748–749
superior performance approach, 105
superior temporal gyrus, 559,
superior working memory, expert-performance approach to,
699–700
supervision, during practice for beginning musicians, 539
supervisors, support from, 522
supplementary motor area (SMA), 555, 556
Suppressing uncertainty, in RAWFS, 457
supramarginal gyrus, 562
supra-national mobility and connections, of
professionals, 129
surface level, of team composition, 515
surface similarities, leading to predicting the future, 364
surgeons
cognition of, 465
experienced, at a disadvantage, 343
expert, “slowing down” for non-routine events, 456
expert skill, 341
laparoscopic, 343
maintaining public trust, 340
studies of expert, 72
with superior outcomes, 67
technical procedure outcomes, 346
surgery and medicine, mastery approaches to technical skill
education in, 342
surgery(ies)
direct relationship between specific surgical experience
and patient outcomes, 346
number of, associated with improved performance, 754
predictors of expertise in, 345–346
task specificity limitation to a domain, 67
technical expertise in as acquired and highly
local, 342
surgical expertise, research on the development of, 343
surgical knot-tying, expertise in, 341
surgical mortality rates, as a function of the number of
procedures completed, 346
surgical performance, 200
surgical procedures, 340, 460
surgical repair and the handling of any emergency
situations, influencing patient outcomes, 748
surgical skills, acquisition of, 73
surgical specialties, patient satisfaction ratings of, 747
surgical teams, 747
Index of Subjects

system knowledge, differing, 138
“system of playing methods,” in chess, 604
“the system of professions,” competition within, 129
system of teaching, improving, 444
system performance, enhancing, 188
system state, 180
systematic activity, of musicians, 538
table tennis, practicing thousands of hours, 44
table tennis players, gaze of expert, 685
tacit knowledge, 772–774
acquiring, 27, 774, 781–783
action-oriented and procedural in nature, 773
articulating during in situ instruction, 785
assessing, 776
associated with success, 778
association with expert performance, 778
defined, 772
developing, 780–784
development and application of, 771
of engineers, 458
enhancing, 780
expert identified and measured, 777
of experts, 455–456
as explicable, 85
exposure to, 27
facilitating expert occupational performance, 774
facilitating expert performance in non-work domains, 774
facilitating performance, 784
features of, 456
functional role of, 773, 784
future research on, 784
going beyond procedural knowledge, 773
facilitating expert performance in non-work domains, 774
facilitating performance, 784
features of, 456
functional role of, 773, 784
future research on, 784
going beyond procedural knowledge, 773
importance to expertise in wisdom and in teaching for wisdom, 779
level of professional development and, 778
making explicit, 780–781
for management, 778
methods for uncovering, 12
methods of making explicit, 780
not an automatic response, 773
practical intelligence and, 770
preceding explicit knowledge, 774
rising to awareness while performing a task, 784
role in practically intelligent behavior, 774
significant gains in for the Condition-and-Action method, 782
similar to job knowledge, 773
similarities with procedural knowledge, 773
weak association with personality, 776
weakly correlated with general intelligence, 775

survey method, identifying high-performing physicians, 345
surveys and questionnaires, researchers and designers of, 207
sutures
assessments of closures, 340
outcomes related to surgical expertise, 341
practicing in the microsurgery environment, 342
suturing
proficiency, 343
simulator, 341
sweeps, story re-telling cycling through, 176
swimmers, age-related effects delayed in active, 842
switching levels, cost of for artists, 586
symbol manipulation
defining efficient techniques, 86
in mathematics, 88
symbolic and conceptual knowledge, in technologies, 117
symbolic knowledge, about an entity, 99
symbolic programming languages, 63
symbolic representation, using words, 800
symbolic structure, of equations, 620
symbols, superior memory capacity for, 199
“symbols and symbol structures,” processing, 59
symptoms, understanding mechanisms of, 339
synapses, 553
synaptic connections, strengthening of, 553
synchronicity, 517
synergies, across trait families, 225
synonyms, 642
syntactic structures, deploying, 416
syntagms, 642
synthesis tasks, for expert systems, 97
system(s). See also expert systems
clear understanding of, 444
diagnosing and troubleshooting of, 96
creating to perform at a high level, 444
improving, 444
interfering with expertise and reducing performance, 466
multi-team, 467
creating to perform at a high level, 444
System 1 or Type 1 reasoning, as rapid, automatic and unconscious, 333
System 1 pattern-matching processes, 460
System 2 errors, as infrequent and unexpected, 334
system complexity, effects on individuals, 719
system components, knowledge of, 720
system control, gradual shift to learner control, 806
“system” errors, 332
system experts
in the context of co-production of knowledge, 141
residents as, 138
system interface, 719
Tacit Knowledge for Military Leadership inventory (TKML), 778

tacit knowledge inventory for auditing, 778
Tacit Knowledge Inventory for Managers (TKIM), 778
tacit knowledge scores, regarding safe driving, 779
tacit-knowledge inventories, 776
tactical combinations, embedded in a game position, 606
tactical skills, 275
tactile expertise, 237
tactile sensitivity, 552
“take-the-first” heuristic, 603
talent
development program, 285
identification, 265, 278, 667
potential mechanisms for explaining, 610
as a prerequisite in many domains, 143
requiring minimal external stimulation, 836
search and development, 665–668
Taliesin, with an artificial waterfall, 825
tangibles, for creating a new venture, 398
target, responding in a group of stimuli, 815
“target condition,” establishing, 444
target shape, finding within a more complex set of lines, 579
task(s)
activities elicited by standardized tasks, 198
analysis of, 197
appropriate for persons with specific levels of expertise, 802
classes of, 96
completing, 343, 511, 748
demands of, 18
diagram of, 187
distractions, 728
domains, 62
environment of, 64, 719
expertise involving representations of, 69–70
goals of, 157
knowledge, 459
in knowledge-based systems, 85
management strategies, 724
measuring the fixed capacity of STM dramatically improved by training, 698
mental models, 513
prioritization, 730
related to target performance, 398
representative, 14, 70
requiring longer durations of recall, 198
saturation, 728
structure of, 806
of a writer poorly structured, 413
task performance
changing as a result of thinking aloud, 196
initial, 217
methods of generating models for, 197
task practice, 218, 222
“task specificity,” of expertise, 67
task-relevant knowledge, capabilities of, 62
task-relevant training, correlation with performance, 538
task-specific knowledge, 89
task-specific methods, 86
taste
components of, 238
identifying, 238
tax advisor, accompanying a tax preparation program, 98
taxi drivers. See also cab-drivers
brain effects, 245
finding a particular destination, 244
licensed practiced for 35 hours every week, 245
more experienced generating a larger number of possible routes, 66
studies of expertise, 402
taxonomic knowledge, representing, 99
taxonomy, of teacher knowledge, 441
teacher effectiveness, measures of, 438
teacher-learning programs, 448
teacher-level variance, in student learning outcomes, 439
teachers. See also expert teachers
able to integrate the skills of teaching with concepts and knowledge, 442
as actors with a specific agenda, 432
allowing to monitor and provide feedback on thinking, 207
American, helping to increase student discussion in mathematics lessons, 439
analyses of classroom video clips, 448
assessing a given individual’s current performance, 763
assessing current level of performance, 755
assigning individualized practice tasks with immediate feedback, 756
becoming experts, 443–448
coming and going, 444
creating learning opportunities for students, 440
designing practice activities, 755
education of, improving teaching, 448
effect on student outcomes, 440
effects on students’ learning using random assignment, 438
experienced shifting attention among multiple views, 443
as expert in one environment but not in another, 434
expertise connecting to student outcomes, 437
getting students engaged with studying content, 432
having knowledge, skill, and judgment, 448
improving the expertise of, 444
managing content and students, 432
teachers (cont.)

meeting regularly in groups, 446
monitoring the students’ attained practice goals, 756
not seeing their own skill as needing to be improved, 445
producing strongest gains on achievement tests, 432
producing student gains on standardized state tests, 438
professional development, 448
requiring the cooperation of students, 431
responsive to individual students and attentive to the class as a whole, 443
skills and standards, 65
societal expectations for, 109
support by exceptional, 13
versus teaching as the focus of improvement, 445
time spent in performance, 445
viewing video clips of authentic classroom episodes, 441
walking through example problems, 434

teaching

analysis as the key to developing expertise, 447–448
as a complex socio-cultural system, 448
as a complex system of interacting elements, 431
constrained by a number of variables, 433
as contextual, 438
creating conditions for deliberate practice, 445–446
as cultural activity, 434–435
definition of, 432–433
differences across countries, 434
enacted as knowledge dissemination, 36
for ethics, 780
expert, as a highly contextualized endeavor, 440
expertise and expert performance in, 431–448
expertise existing within a cultural matrix, 439
expertise in, 436–439
factors co-determining the results of, 434
helping students achieve the learning goals valued by society, 433
improving in two distinct ways, 444
including planning and reflection before and after the lesson, 433
initial approaches, 338
involving adaptive expertise, 436
methods based on demonstration and imitation, 558
more like dinnertime conversation than flying an airplane, 435
more like driving to work than like shooting a rocket to the moon, 445
nature of, 432–433
not an individual endeavor, 431
often observed only by students, 436
practicing the skills of, 442
presenting a challenge for models of expertise, 448
requiring constant adjustment, 438
researching the effects of on learning, 440
of science, 33
structure of, 444
as a system, 433–434
ubiquity of, 432
in the United States compared with teaching in high achieving countries, 434
as “working in relationships,” 432
teaching routines
aim of improving, 448
implementing non-optimal, 436
teaching strategies
based on an assumption of a general skill as ineffective, 337
generation of alternative, 447
team(s). See also expert teams; virtual teams
activities of, 508
aspects necessary for ensuring high performance, 522
cohesion of, 520
commitment of, 518
communicating effectively as critical, 723
described, 507
deviations of novice considered as errors, 510
effectiveness of, 508–509
expert performance of, 747–748
of experts, 506, 507
goals of, 509, 522
helping behavior, 510
identity of, 518
innovation as a function of team composition, 516
interviews, 168
involving remote collaboration, 458
literature of, 507
mediators, 510
new ventures founded by, 391
performance of, 508
scaffolds as coordinating mechanisms in temporary groups, 510
working in a natural situation, 461
team adaptability
defined, 510
described, 521
as the driving factor of team adaptation, 510
team adaptation, 510–511
conceptualizing as a process, 521
critical for understanding how expert teams operate, 510
enabling team members to acquire expertise through learning, 511
literature of, 521
model of, 510
as a nomological network, 510
as an outcome, 521
as a process, 511, 521
promoting successful, 511
role of as a mediator between team learning and team performance, 511
team affect research, 508
“team based” skills, 506
team behaviors, cognition, and affective states, 509
team cognition. See also cognition
current work in, 403
encompassing a collective team awareness, 508
models for, 168
studies on, 458
team composition, 515–516
aspects of, 521
described, 515
having different definitions and conceptualizations, 521
literature of, 515
maximizing team processes and performance outcomes for space crew teams, 516
as a predictor of team creativity, 516
of two different types of thinking styles, 515
team coordination
decreased with virtuality, 518
training and measuring, 465
team design processes, 378
team leaders
clarifying team member roles, 174
evidencing skill in identifying key causes, 297
team leadership, 514–515. See also leadership; shared leadership
defined, 514
new avenues for researching, 509
setting apart an expert team from other teams, 514
uncovering the underpinnings of, 514
team members
engaging in learning processes via evaluating past instances of performance, 511
knowledge, 459
lacking a shared visual field and access to non-verbal cues, 459
letting others in on their reasoning, 459
preference for working on multiple tasks at once, 513
relying on shared team knowledge, 508
technology as, 465
team mental models, more related to team processes, 513
team model, for knowledge elicitation, 168
team or organizational unit, knowledge elicitation challenging for, 168
team practice
best discriminator after the age of 12 years, 656
effect on performance, 758
team process and function, experts at, 507
team sports
coaches compensating for a weakness in one player, 666
identifying game situations where a given player needs to make a quick decision, 705
patterns formed by the relative locations of players, 681
requiring athletes to make fast decisions and execute rapid responses, 206
team tacit knowledge, measures of, 776
team training, 522
team virtuality, 516, 521
team-centered communication, mitigating errors through, 459
team-level rewards, implementation of, 522
technology
becoming ubiquitous in NDM environments, 466
expert performance differing based on type of, 366–367
NDM and, 465
training for new, 367
technology design, for NDM, 466–467
technology displays, improving experienced pilots’ situation awareness, 367
technology-centric design disciplines, ignoring human cognition, 171
technology-push design strategy, driven by a political agenda, 172
TED system, for the Army’s M1 Abrams tank turbine engine, 96
telegrapher, ten years of experience required to become a professional, 11
Index of Subjects

telegraphy, performance plateaus, 194, 752
telephone help desks, 96
television, language used on, 646
television programs and movies, vocabulary required to watch, 637

template theory
 direct implementation of, 605
 explaining results found on blindfold chess, 606
 showing high-level, schematic structures (templates) evolving from perceptual chunks, 600

temporal accuracy, maximal, 566
temporal discrimination thresholds, 567
temporal occlusion, 247, 661, 679
temporal plane, 559
temporal precision, 562

temporal relationship, between key elements, 684
temporal TMS, 513

10,000 hours of practice, required for expertise in violinists, 625
“10-year rule,” 425–426. See also decade of practice holding for creative domains, 820
 for musicians and composers, 540
 qualifications and complications regarding, 318
 seeming to hold for professional writers, 425

tennis
 anticipation activated areas responsible for perception of body movements, 246
 anticipation task, simulation based, 664
 more activation in experts’ AON when predicting where different shots would land, 247
 an opponent’s serve often exceeding 130 mph, 660
 think-aloud protocols during the changing of sides, 226

tennis players
 anticipating what the opponent will do next, 660
 anticipating where the ball is going to land, 234
 performance not improving after decades of weekly playing, 752

tension view, arguing that expertise works against creativity, 813
tensor based morphometry (TBM), 559
Tentative Ask, 400
Terminal Radar Approach Control task, 219
test
 of running speed, 214
 yielding reliable results, 214

testing paradigms, 589
 as the tail wagging the dog, 9

test-retest method, 214
test-retest procedures, 214

test-retest reliability, 263
Texas Hold’em (poker), playing against a computer, 203

text(s)
 comprehension as a linear relationship with percentage of vocabulary known, 635
 professional revision of, 423
 reading a wide range of authentic, 637
 relating to what a reader already knows and stimulating new thinking, 416
 reviewing, 414
 understood by a second language user knowing the most frequent 2,000 words only, 638

text production
 emotional and motivational factors involved in, 420
 not occurring in a linear sequence, 415
 processes of, 414

 text representation, developing, 423
text-based simulations, 338
Thales, 134
Theo (British Springer Spaniel), 50
theorems, proving, 60, 87, 89

theoretical accounts, of expert performance in older age, 839–840
theoretical concepts, describing the two sets of respective preconditions, 106

tennis
 anticipation activated areas responsible for perception of body movements, 246
 anticipation task, simulation based, 664
 more activation in experts’ AON when predicting where different shots would land, 247
 an opponent’s serve often exceeding 130 mph, 660
 think-aloud protocols during the changing of sides, 226

tennis players
 anticipating what the opponent will do next, 660
 anticipating where the ball is going to land, 234
 performance not improving after decades of weekly playing, 752

tension view, arguing that expertise works against creativity, 813
tensor based morphometry (TBM), 559
Tentative Ask, 400
Terminal Radar Approach Control task, 219
test
 of running speed, 214
 yielding reliable results, 214

testing paradigms, 589
 as the tail wagging the dog, 9

test-retest method, 214
test-retest procedures, 214

test-retest reliability, 263
Texas Hold’em (poker), playing against a computer, 203

text(s)
 comprehension as a linear relationship with percentage of vocabulary known, 635
 professional revision of, 423
 reading a wide range of authentic, 637
 relating to what a reader already knows and stimulating new thinking, 416
 reviewing, 414
 understood by a second language user knowing the most frequent 2,000 words only, 638

text production
 emotional and motivational factors involved in, 420
 not occurring in a linear sequence, 415
 processes of, 414

 text representation, developing, 423
text-based simulations, 338
Thales, 134
Theo (British Springer Spaniel), 50
theorems, proving, 60, 87, 89
theoretical accounts, of expert performance in older age, 839–840
theoretical concepts, describing the two sets of respective preconditions, 106

tennis
 anticipation activated areas responsible for perception of body movements, 246
 anticipation task, simulation based, 664
 more activation in experts’ AON when predicting where different shots would land, 247
 an opponent’s serve often exceeding 130 mph, 660
 think-aloud protocols during the changing of sides, 226

tennis players
 anticipating what the opponent will do next, 660
 anticipating where the ball is going to land, 234
 performance not improving after decades of weekly playing, 752

tension view, arguing that expertise works against creativity, 813
tensor based morphometry (TBM), 559
Tentative Ask, 400
Terminal Radar Approach Control task, 219
test
 of running speed, 214
 yielding reliable results, 214

testing paradigms, 589
 as the tail wagging the dog, 9

test-retest method, 214
test-retest procedures, 214

test-retest reliability, 263
Texas Hold’em (poker), playing against a computer, 203

text(s)
 comprehension as a linear relationship with percentage of vocabulary known, 635
 professional revision of, 423
 reading a wide range of authentic, 637
 relating to what a reader already knows and stimulating new thinking, 416
 reviewing, 414
 understood by a second language user knowing the most frequent 2,000 words only, 638

text production
 emotional and motivational factors involved in, 420
 not occurring in a linear sequence, 415
 processes of, 414

 text representation, developing, 423
text-based simulations, 338
Thales, 134
Theo (British Springer Spaniel), 50
theorems, proving, 60, 87, 89
theoretical accounts, of expert performance in older age, 839–840
theoretical concepts, describing the two sets of respective preconditions, 106

Index of Subjects

Thinking, Fast and Slow (Kahneman), 85

thinking aloud. See also “think aloud”

common alternative to, 205
giving overt expression to sub-vocal verbalizations, 194

performance of versus individuals who completed the same tasks silently, 196

when choosing the next chess move, 602

thinking outside of the box, 832

thinking styles, in a team, 515

time thinking, blunders from decreasing, 603

third age (until age 70), 849

Third International Mathematics and Science Study (TIMSS) video studies, 434, 439

Third International Maths and Science Survey (TIMSS), 627

thought(s)
basis for, 35
capturing expert with protocol analysis, 192–207
giving verbal expression, 196

reoccurring with the same stimulus, 193

reporting in sequence, 198

technical problems in articulating theories and models of, 60

verbal expression of, 193, 198

thought processes, assessing during performance, 198

threat relations, identifying between chess pieces, 242

Three Dimensions of Expertise, 28

three-dimensional form and space, conveying the illusion of, 584
tic-tac-toe, no such thing as expert performance, 45
time classroom teaching constrained by, 433

creating by the anticipatory encoding of movement pattern information, 681–684
dedicated to practice alone reduced for professional musicians, 761
time analysis, indicating work-rate, 258

Time Budgets, Diaries and Analyses of Concurrent Practice Activities (Deakin, Côté, and Harvey), 257
time constraints, 335
time lags, associated with technology, 516
time motion analysis, 258

time motion studies, 296
time periods, in profiles of elite performers, 265
time pressure

minimal impact on accuracy, 347

within groups impacting complex cognition and behavior, 467
time structures, analysis of, 554
time windows, early in event sequences, 679
time-varying covariates, 281
timing, of writing, 421

Timmer, Marianne, 277
tissue, removed during radical prostatectomy surgery, 346

TMS. See transcranial magnetic stimulation (TMS)

“To Err Is Human” (Kohn, Corrigan, and Donaldson), 331–332
tonality, material structured according to rules of, 541
tongue, 556
tools

becoming extensions of persons, 772

building testable models, 86

complexity of increased with the expansion of brain size, 45

humans using, 772

including enhanced representational systems, 465

making more effective, 41

sharing uncertainty or ambiguity, 465

use acquired accomplishing a desired goal, 772

used by professionals, 133

used by writers, 421
top-down and bottom-up views, integrating, 587
top-down approach, designers deviating from, 383
top-down explanations, 584–586
top-down goal-driven process, 717
top-down methods, facilitating appropriate visual selection, 587
top-down position, closely associated with art historian E. H. Gombrich, 584
top-down processing
describing, 580

operating in tandem with bottom-up processing, 717

visual expertise engaging, 236
top-down results, summary of, 586
top-down strategies, resolving perceptual ambiguities, 587
topographical skill, of taxi drivers, 244
tournament chess performance captured in a controlled environment, 701
closely associated with performance on selecting-the-best-move task, 698
tournament play, effect not statistically significant after taking deliberate practice time into account for chess, 608

Tower of Hanoi, 155, 195

Tower of London, solving, 607

TRACON (Terminal Radar Approach Control), complexity of, 218

trade guilds, in medieval times, 127

trade-offs, of beginning teachers, 443

Trail-Making B, 848

train engineers, specializing on specific geographic areas, 358

trainability, 52

trained motor patterns, 558
trainees
minimizing the number of washing out of a training program, 223
presented with realistic scenarios, 460
reviewing rankings and rationale provided by operational experts, 185
training. See also individualized training; musical training; perceptual training
ability to anticipate, 687–689
accuracy of information, 263
before the age of 7 years resulting in changes in white-matter connectivity, 562
in causal analysis, 297
designed for particular performers by teachers and coaches, 14
effects of different types of, 281
effects of on memory for briefly presented chess positions, 698
for expertise, 459–460
factors distinguishing experts from non-experts as the result of, 257
hazard perception, 364–365
hours per week, 281
individualizing in college, 757
intense necessary for modifying joints, 754
interventions, 782
late onset of as a triggering factor, 566
leverage point for as a cognitive one, 368
logs, 259
NDM-based, 459–460
necessary for musical expertise, 552
needed to direct workers’ attention to critical information, 175
needed to reach high levels of performance in any domain, 10
older adults requiring specific types of, 846
outcomes improving with expert teams, 522
outside the current comfort range of the learner, 445
for pilots as rigorous, 726
power to mitigate age effects, 842
practice techniques among chess players, 607
proposing types of, 77
teaching novice squash players the cues used by experts, 688
types of, mediating improved performance for years and decades, 754–757
using a challenging scenario with several decision points, 185
years of intense required to become an internationally acclaimed performer, 751
training activities
other types of, 757–759
specialized, 75
training and experience, after a limited period of, 752
training and practice activities, describing different, 755
training environments, practicing to attain specific changes, 75
training group
engaging in thoughtful analysis, 657
increased mental effort during practice, 657
training methods
for acquiring complex cognitive mechanisms, 77
in chess, 606
training programs
for judges of case studies, 294
“leveling” individual differences in performance, 217
training/practice, importance of in skill development, 257
trait(s)
associated with learning the most, 216
associated with particular challenges, 516
defined, 213
families of, 221
operating synergistically, 226
required for expertise, 45
trait complexes, 226–228
facilitative in the development of knowledge about different domains, 229
at the heart of Ackerman’s investment theory of adult intellectual development, 227
predicting educational and occupational opportunities, 228
as useful predictors of individual differences in domain knowledge, 227
trait determinants, of expert level performance, 221
trait predictors
of expertise, 221–225
of initial task performance, 221
trait quality, 44
“traits” approach, personality variables researched as part of, 390
trajectories of developed performance, recording for individuals, 751
Transactional Ask, 399
transactive memory
groups forming, 141
notion of “shared” related to, 459
transactive memory systems (TSM), 518
defined, 512
evaluated via a self-report measure, 512
literature on shared cognition, 521
transcranial magnetic stimulation (TMS), 512–513, 567, 568
“transdisciplinarity,” 138
transfer. See also near transfer of expertise, 820, 822, 823–828
of knowledge, 35, 37, 540, 813, 831
local, 821
low-level, 669
in older adults, 848
of training, 228, 460
transfer learning, work on, 89
transfer quotient, promoting skill transfer, 668
transfer-of-expertise analysis, 823
transformational leadership, at the team level, 520
transformations, between cognitive states, 178
translating, sub-process of, 414
translation, of languages, 704
transnational sociology, 129
transparent decision aids, 495
transparent systems, 84
transportation
in the first edition of the Cambridge Handbook, 358
moving people from one point of this planet to another, 356
offering complex embeddings of cognitive and non-cognitive factors, 357
some aspects becoming automatic, 358
value of experience in, 356
transportation domain, expertise in, 356–368
trauma teams, investigation of expert, 510
treadmills, building, 749
treatment methods, for musician’s dystonia, 568
“a tree must bend while it is young,” 563
trial-and-error techniques, for design modification, 384
triangulation, confirming case observations, 292
trialblazes, 266
triggering event, 678
triggering factors, for MDs, 564
triple helix, as the first model of DNA, 823
trumpet players, inhalation and expiration pressures in, 542
trust
among members of virtual teams, 518
role in cross cultural teams, 510
by team members, 508
“truth,” 136, 137
“truth machine,” peer review as, 138
Turing Test, 27
TV and movies, watching, 647
TV shows, pitching on, 399
two-dimensional array of neurons in M1, coding for three-dimensional movement in space, 556
“Theory 1 domains,” establishing a causal connection between proficiency at specific activities, 400
Type 1 processes
evidence linking to exemplars as strong, 336
as an impediment to the quest to become an elite performer, 334
reflecting direct unconscious retrieval of prior exemplars (hypotheses), 336
relying on retrieval of specific exemplars, 337
shortcuts or “heuristics” used by, 333
Type 2 domains, prediction of individual or aggregate human activity, 400
Type 2 processes
analytical knowledge consisting of different knowledge representations, 337
computational processing in memory, 336
constraining to increase errors, 335
relation between errors and, 336
requiring working memory, 335
Type 2 (System 2) reasoning, 333
typicality, sense of, 455
typing
advance coordination of fingers in, 837
attaining acceptable performance, 752
evidence for plateaus, 752
increases in speed and, 758
as procedural knowledge, 773
typing speed, 224, 758
typists
having more gray matter, 248
increasing typing speed, 758
older expert, 844
ubiquitous expertises, 24, 28
UK National Health Service, 171–172
unacceptable word sequences, in
Type 1 processes
understanding (cont.)
more focus on at higher levels of expertise, 726
of what is perceived, 720
“unexpected discoveries,” during the design process, 379
unguided learning, placing higher cognitive demands on
novice learners, 798
unguided problem-solving, vs. worked examples, 797–798
Union Carbine disaster in Bhopal, 22
unit structure, 99
units of analysis, 294, 314
universal control system, cerebellum serving as, 557
“universitas magistrorum et scholarium,” 135
universities
accumulating and explaining knowledge, 6
described, 135–136
leadership simulation, 297, 300
student demand for entrepreneurship classes in, 391
University of Missouri, School of Journalism running a
daily city newspaper, 425
University of Paris, 6
university teachers, specialised role of, 136
unobtrusive measures, providing incorrect information
about the team’s functioning, 519
“unprincipled” behavior, not equating “opportunistic”
with, 384
“unreasonable” place, world as, 818
unshared information, 140
unstructured pattern, in basketball, 682
unsystematic effort, 168
upper anterior cingulate gyrus, 240
U-relation, between age and level of performance, 272
US intelligence community, following the 9/11 tragedy, 172
US Internal Revenue Service, recognizing dog expertise, 50
US Olympic basketball team, in 1992, 506
US president, performance of contingent on prior
experiences, 315
usability of knowledge, alternative proposal about, 71
usability testing of software, 207
“usable” knowledge for teaching, measure of, 441
use, knowledge of, 643–644
U-shaped relation, in data with younger workers, 838
utility analysis, of judgment accuracy, 453
“utility of effort,” 225
vaccines, controversies over, 22
vacuum pumps, not efficient enough, 829
valid outcomes, for patients requiring long-term
follow-ups, 203
validity
concept of, 215
of data, 263–264
implicit in experimental research, 229
of judges’ appraisals, 294
of procedures, 294
referring to whether a property measures what it sets out
to measure, 215
of verbalized information while thinking aloud, 197–198
“value add” models, of student achievement, 432
value judgments, affected by irrelevant variations, 487
values, assessing, 486
variable definitions, in historiometric inquiries, 314–315
variable environments, placing strains on organisms, 41
variable type aspect, of team composition, 521
variables
accounting for firm survival, 393
correlated to an individual’s current level of
performance, 271
selecting to include in a longitudinal study, 285
sets of, for classical music composers, 319
underlying performance, 275
variance, partitioning, 217
variance structure, establishing, 281
variance truncation, 314
Vedic priest, 244
vehicle control skills, 734
vehicle operators. See also drivers
adapting to the new age of technology, 367
experienced more likely to respond to a situation
change, 360
experienced requiring greater training, 367
gaze patterns of experienced and less-experienced, 360
learning to self-regulate behavior, 357
ventral premotor cortex, expert dancers activation of, 246
ventral tegmental area, 554
venture capitalists, 399
venture formation, 392
venture investors, 391
Venturi, Robert, 375
venturing, success in, 391
Venturing (name of imaginary product), 406
venturing instrument, 405–408
verbal ability, of professional writers, 416–417
verbal explanations of technical diagrams, 798
verbal interaction, during communication tasks, 785
verbal overshadowing, effects of, 197
verbal protocol analysis, 60
verbal protocols, masters using larger structures than
chunks, 600
verbal reports
collected during near and far task decision scenarios, 664
on export thought processes, 193–195
generating more detailed, 194
made by “experts” versus novices, 291
methodologies, 206, 538
methods and instructions used to elicit, 195
monitoring experts’ performance, 12
procedures, 196
protocols for probing conscious strategies, 680
regarding mental calculators, 704
suggested an increase in higher-order cognitive processes, 662
of thinking, 193
verbal working memory, demands on from planning novel ideas, 416
verbalizations corresponding to vocalizing “inner speech,” 195
of intermediate sums, 197
levels of, 195
of one’s experiences, 780
of thoughts, 196, 207
verbalized information during silent thinking, 195
validity of, 197–198
veridical appearance of an object, perceiving, 581
vernacular (folk) musicians, 536
vertex types, prevalence in a variety of languages, 157
vertical lines, perceived as longer than horizontal lines, 581
VFR landings, 361
vibrating stimuli, worsening musician’s dystonia, 568
video cameras
helmet-mounted, 465
using with NDM, 465
video clips, in soccer, 662
video-based training, requiring perceptual judgments, 689
videos and detailed records, collecting for particular patients, 203
videotaped lessons, collected from teachers’ classrooms, 438
videotapes, of eighth-grade mathematics and science lessons, 434
vigilance and monitoring deficiencies, 728
vignettes, depicting practical problems, 776
violin, technical demands of the left fingering hand, 564
violinists accomplished having accumulated more practice, 755
categorized into groups based on level of attainment, 654
cramp, 563
from different degree programs, 537
eyearn rotation of, 542
left hand more frequently involved, 564
tending to be practice fanatics, 537
time practicing alone as the most relevant activity, 755
“virtual patients,” 332
virtual reality simulator, conducting missions in, 730
virtual team leaders, 518
visual perception. See also perception as an aid to developing good number skills, 619
discipline-specific ways of altering, 154
evidence regarding low-level or sweeping changes to, 160
organizing to facilitate identification, 160
visual perceptual abilities, 619
“visual pivots,” 661
visual realism, 577
visual representations
binding terms into objects, 156
modified format with additional, 800
visual scan patterns, in helicopter overland navigation, 361
visual scenes, construction of, 154
visual search, facilitating, 159
visual selection and decision making, critical for realistic depiction, 585
visual system, inferring the actual structure of objects and scenes, 581
visual tasks, implementing, 152
visual tokens, ideas as, 380
visual word form area, 156, 157
visual working memory, 622
visual-information pick-up, 660–662
visually accurate rendering, 577
visually engaged art experts, testing, 589
visuo-spatial features, perceiving in sketches, 379
visuo-spatial images, generation of, 241
visuo-spatial interfering tasks, negatively affecting problem-solving performance, 606
vocabulary
behaving in terms of frequency, 637
breadth of, 639
knowledge of, fundamental to all language use, 634
mastery of, 640
mid-frequent, 638
necessary to use English at the basic end of the proficiency continuum, 638
as one aspect of comprehension, 637
vocabulary depth, 639
as a complex construct, 643
conceptualized in relation to individual words, 640
reliable and comprehensive measures of lacking, 648
understanding, 640
vocabulary knowledge
components of, 648
contributor to success in language performance, 634
depth of, 639–640
as a good predictor of general proficiency in a second language, 634
involving both breadth and depth, 639
network view of, 641
Vocabulary Levels Test, 636
Vocabulary Profile, 636
vocabulary size
 correlating positively with judgments of writing effectiveness, 417
larger suggesting a high level of language exposure and learning experience, 639
for LS, 637–639
Vocabulary.com application, 648
vocational interest themes, 225
voxel based morphometry (VBM), 235, 559
Wagner, Richard K., 772
waiters
exceptional memory for dinner orders, 200
keeping in mind precise orders for up to 20 people, 623
The Waste Land (Eliot), 425
water, not compressible, 829
Watson, John B., 193, 194
ways of being, 36, 37
“we know more than we can tell,” explaining why, 455
“weak and strong methods,” in AI, 61
weak areas alone, practice in, 807
weak executive functioning, 816
weak methods, 61
weakly activated ideas, becoming sensitive to, 816
weather conditions, skilled performer adjusting performance to changed, 73
weather forecasters, 183, 722
weather map comprehension, visual salience and, 153
Web, technology for traversing, 93
Weber, Max, 137
weekly training activities, increasing or changing, 754
Weighing pros/cons of alternatives, in RAWFS, 457
weight, associated with a rule, 91
weight classes, dogs sorted into, 51
weight-pulling, sport of, 51
Welsh laws of Hywel Dda, 50
Wernicke’s area, 415, 554
“Western art music tradition,” 536
the “what,” of The Ask, 398
“what-if” type thinking, 726
white matter, differing between different instrumentalists, 561
white matter density, increasing as a consequence of musical training, 553
white matter microstructures, 559
white matter tracts, 560
white-matter organization, in early- and late-trained musicians, 561
the “who,” of The Ask differing, 398
Who is Musical? (Billroth), 535
whole-case approaches, 338,
Wikipedia entries, employed in case studies, 293
wildland firefighters, 456
Wilkins, A. F., invention of radar, 828–829
William of Ockham, 135
Williams sisters, in tennis, 625
Wiltshire, Stephen, 579
wine expertise, 238
wine tasters, 238,
“wing warping,” 827, 828
wisdom, 779
within-person processes, allowing for the investigation of, 404
women, displaying a lower chess-specific self-esteem, 608
woods, Frederick, 312
woodwind players, both hands equally likely to be affected by dystonia, 564
word(s)
ability to use strongly related, 641
following formulaic patterns, 643
interconnections between, 641
knowing involving the mastery of nine aspects, 640
learning many in a limited amount of time, 640
small number of occurring very frequently, 637
word acquisition, proposed stages of, 640
word association knowledge, 642
word choice, diversity in, 417
word combinations, learning, 635
word families, 634, 637
word forms, processing regions for, 157
word images, sequences of, 414
word knowledge
components of, 641–642, 648
conceptualization of, 640
dimensions of, 639
word level, of a text, 415
word meaning, knowing the boundaries of, 642
word pairs, 219
word parts, 640, 642
wordlists, memorizing, 640
work. See also professional work
anthropological studies of, 166
changing nature of, 100
declared and cognitively steered by specific interpersonal
work settings, 132
expert, as an activation of expertise in context, 141
institutionalization of expert, 143
reallocating into more efficient work packages, 174
supporting, 172
work activities
aligning with learning processes, 113
compared to deliberate practice, 424
development of occupational expertise through, 113–116
engaging in novel generative of new learning, 114
learning and, 114–115
providing access to knowledge, 118
routine providing learning experiences, 115
work design documents, employed in case studies, 293
Work Domain Analysis, 175
work environments
engineering, 420
predominated by non-routine tasks, 781
work experiences, supporting the development of occupational expertise, 116–121
work narrative, mapped onto a Decision Ladder, 179
work plans, as a basis for analysis, 302
work products
analysis of, 302
employed in case studies, 293
observations of, 304
using as a basis for case studies, 302
work schedule, adhering to, 420
work sessions, length of, 422
work settings
affording occupational experiences, 108
objective performance criteria in, 167
work strategies, appraised for scientists, 301
Work Task Analysis, 178–181
work task trajectories, 180
work tasks, 178
worked example effect, 798
worked example-problem pairs, 807
worked examples
vs. unguided problem-solving, 797–798, 801
workers
coming to perceive their learning as being unappreciated, 122
defining expertise on the basis of abilities, capacities or skills, 167
at different levels of experience following different trajectories, 180
effective, 166
engagement in both routine and non-routine proble-
m-solving tasks as generative of new learning, 114
experienced, 166, 176
identifying as experts, 167
motivating to engage in deliberate practice, 175
professional not needing supervisors, 132
relying on a mix of formal, informal, and affective
cognitive processes, 166
workers/employees, certification of, 132
working animals, sharing similarities with human experts, 54
working memory, 620–624. See also short-term memory (STM)
ability not predicting SA scores in experienced pilots, 725
accessing knowledge structures in long-term memory, 797
activating explicit knowledge, 803
age-related changes, 838
assessments of, 493
as a bottleneck, 717
capacity and retrieval, 719
composing placing severe demands on, 417
cues in for retrieving information in long-term episodic memory, 622
determining which knowledge held in long-term memory is used to determine action, 797
extensively studied in other domains, 706
individual differences in the measures of, 707
influence of on sight reading performance, 707
limitations of, 414, 805
limitations on calculation, 620
limited capacity of, 622, 796
load, 155, 793
during mental calculation, 703–704
not a limiting factor in creative decision making, 706
novices severely hampered by, 719
in other domains of expertise, 706–707
positive relationship with Level 3SA, 725
representation of game situations, 706
research demonstrating expanded during addition of numbers, 704
role on SA, 725
“sharply limited processing capacity” of used only by
Type 2 processes, 334
from short term to long term, 70–71
during simultaneous translation, 704–705
sports and, 705–706
storage, 71, 709
superior in experts, 696–709
superior performance supported by expanded, 699
support of chess playing, 703
Type 2 reasoning loading on, 333
types of used in calculation, 622
workload
creating a significant challenge for SA, 724
decreased dramatically despite the reduction in staff, 174
problems faced by inexperienced pilots, 730
sharing, increase in, 510
workplace
challenges of observation, 168
as the common turf for concurring occupations, 133
contributions to the development of occupational expertise, 109
mathematical skills in, 616
organization of experiences, 121
work-related learning, 121
world
in flux, 820
as an “unreasonable” place, 820
World Chess Federation, rating list published by, 609
“world” in NDM, 454
World Memory Championship (WMC), 700, 841
world records, improvements in many types of sports, 274
“a world without work,” speculation about, 100
world-class chess players. See also expert chess players
able to virtually reproduce all the pieces in the position, 697
discovering new moves superior to all the previously generated ones, 201
engaged in systematic search and planning, 702
recall performance by, 68
verbalized many good first moves, 201
world-class creative performance, age function of, 320
world-class expertise, tending to emerge from a distinctive family background, 317
world-class grandmasters, comparing the quality of play of in standard games and rapid games, 603
“Wraglers,” students of mathematics at Cambridge University, 618
wrestlers, 655
Wright, Frank Lloyd, 302, 825–826
Wright brothers
control system, 827–828
development of powered flight, 300
introduced the principle of balance, 300
wrist flexors, inhibition of, 567
writers. See also professional writers; various types of writers
best work emerging from flow states of absorption in the task, 421
career, 413
developing habitual ways of approaching work, 421
experienced generated twice as many words per burst, 416
of fiction, 425, 426
in flow focusing intensely on the task and loosening self-awareness, 421
forcing themselves to produce line after line, 421
looking like very busy switchboard operators, 417
needing coaching through feedback, 424
problems of, 414
producing a creative story with a prompt of three words, 416
restructuring ideas stored in long-term memory, 423
scheduling only a few hours per day for composing, 424
specializing in specific rhetorical context, 419
stages of development for, 422–424
writer’s block, 420, 421, 422
writing
belief in innate talent, 420
cognitive demands of, 414–416
development starting in early childhood, 422
emotional demands of constraining a writer, 420
evidence of practice in, 424
extended texts for publication, 413
fundamental, 414–415
of graduate students illustrating knowledge transforming, 423
as ill-structured and types of texts generated by professionals as varied, 413
intensive courses, 425
kinds of, 419
reluctant sessions, 421
skills, 425
writing expertise, 416–422
as domain dependent, 419
written characters, transcription of words into, 414
written composition, psychological model of, 414
written fluency, not catching up with speech until around the age of 12, 423
written form, of a word, 640
written languages, 157
written method, using the mental analogue of, 621
written production strategy, 423
written specialty examination, resulting in a lower patient mortality, 345
X-chromosome, genes located on, 564
X-rays
diagnosing, 70
learning to read, 344
from previous patients with known outcomes, 204
years in practice, as a surrogate for expertise, 345
years of experience
NDM studies relying on, 454
not conclusively predicting expertise, 167
young and older expert musicians, brain activity of, 841
Young Decision Making Competency assessment (Y-DMC), 486
youth athletes. See also athletes
performance improving with age, 272
selecting for the youth selection team, 281
study designs focusing on the complicated development of, 285
youth competitions, older athletes usually outperforming younger, 272
youth selections, for sports, 275
zeal, common characteristic for prodigies, 629
“Zeigarnik Effect,” 623
zero-sum game, 433
“zone of proximal development,” 398
Z-scores, analyses with, 279