

GLOBAL DEFORESTATION

Forests cover 41 billion hectares or 31% of the global land surface, yet 8,000 years ago they covered nearly 50% of the global land surface. While the rate of deforestation has decreased since the 1990s, the current rate is still 13 million hectares per year, and this has widespread environmental impacts. For example, forest cover loss affects the hydrological functioning of watersheds, biogeochemical cycling and the availability of nutrients, carbon dioxide sequestration, and climate change. The adverse impacts of deforestation are recognized as a serious issue by governments globally.

Global Deforestation provides a concise but comprehensive examination of the variety of ways in which deforestation modifies environmental processes, as well as the societal implications of these changes. The book stresses how forest ecosystems may be prone to nearly irreversible degradation. To prevent the loss of important biophysical and socio-economic functions, forests need to be adequately managed and protected against the increasing demand for agricultural land and forest resources. The book:

- describes the spatial extent of forests, including methods used to detect forest cover and its current and historical changes, leading to an understanding of the past and present drivers of deforestation;
- presents a theoretical background to understand the impacts of deforestation on biodiversity, hydrological functioning, biogeochemical cycling, and climate;
- bridges the physical and biological sciences with the social sciences by examining economic impacts and socioeconomic drivers of deforestation;
- reviews the rich body of literature on deforestation and synthesizes information across disciplines, allowing
 readers to learn about deforestation on an interdisciplinary level without having to consult multiple texts
 and journal articles.

This book will appeal to anyone in search of a comprehensive yet concise reference on deforestation, including graduate and undergraduate students, researchers and policymakers in environmental science, ecology, forestry, hydrology, geography, biogeochemistry, plant science, ecohydrology, and environmental economics.

Christiane Runyan is a lecturer in Hydrology and Water Resources in the Advanced Academic Program of the Zanvyl Krieger School of Arts and Sciences at Johns Hopkins University. Her research examines how deforestation affects the dynamics of hydrological and biogeochemical processes, and includes modeling the control that vegetation has on the soil's physical and biogeochemical conditions.

Paolo D'Odorico is Ernest H. Ern Professor of Environmental Sciences at the University of Virginia. His research focuses on the role of hydrological processes in the functioning of terrestrial ecosystems and societies. He was awarded the Sustainability Science Award from the Ecological Society of America in 2009, and he was made a Fellow of the John Simon Guggenheim Memorial Foundation in 2011. He edited *Dryland Ecohydrology* (2006, Springer), co-authored *Noise-Induced Phenomena in the Environmental Sciences* (2011, Cambridge University Press), and *Elements of Physical Hydrology, Second Edition* (2014, Johns Hopkins University Press).

GLOBAL DEFORESTATION

CHRISTIANE RUNYAN

Johns Hopkins University

PAOLO D'ODORICO

University of Virginia

CAMBRIDGEUNIVERSITY PRESS

32 Avenue of the Americas, New York NY 10013

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

 $www. cambridge.org \\ Information on this title: www. cambridge.org/9781107135260$

© Christiane Runyan and Paolo D'Odorico 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Names: Runyan, Christiane, 1982–, author. | D'Odorico, Paolo, 1969– author.

Title: Global deforestation / Christiane Runyan, Johns Hopkins University,
Paolo D'Odorico, University of Virginia.

Description: New York, NY: Cambridge University Press, 2016. |
Includes bibliographical references and index.

Identifiers: LCCN 2015042438 | ISBN 9781107135260 (hardback)
Subjects: LCSH: Deforestation.

Classification: LCC SD418.R86 2016 | DDC 634.9–dc23
LC record available at http://lccn.loc.gov/2015042438

ISBN 978-1-107-13526-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Pr	reface	<i>page</i> ix
1. In	troduction: Patterns and Drivers	1
1.1	Definitions and Classifications of Forest Ecosystems	1
	1.1.1 Biogeography of Forest Ecosystems	3
1.2	2 Spatial and Temporal Trends in Forest Cover Change	10
	1.2.1 Current (1990–Present) Spatial and Temporal Trends in Deforestation	10
	1.2.2 Historical Spatial and Temporal Trends in Deforestation	13
	1.2.3 Historical Patterns of Global Deforestation	14
	1.2.4 Reforestation/Afforestation	21
1.3	Historical, Current, and Future Drivers of Deforestation	23
	1.3.1 Agricultural Production	23
	1.3.2 Logging	24
	1.3.3 Shifting Cultivation	25
	1.3.4 Biofuels	26
1.4	Projected Geographic Changes in Deforestation	26
1.5	Remote Sensing Methods Used to Quantify and Map Deforestation	33
	1.5.1 Optical Remote Sensing	34
	1.5.2 Radar	35
	1.5.3 Laser (i.e., LiDAR)	37
1.6	6 Concluding Comments	38
2. Hy	ydrological and Climatic Impacts	39
2.1	Introduction	39
2.2	2 Precipitation and Forest Canopies	42
	2.2.1 Canopy and Litter Interception	42
	2.2.2 Canopy Condensation and Occult Precipitation	43
2.3	3 Infiltration and Runoff Generation	45
2.4	Effects of Deforestation on the Hydrologic Response	47
	2.4.1 Effects on Flood Dynamics at the Event Timescale	47
	2.4.2 Effects on Water Yields	47

V

vi		Contents	
		2.4.3 Effect on Snowmelt	50
		2.4.4 Effect of Fire	50
	2.5	Forest Effects on Groundwater	52
		Effect of Deforestation on Wetlands	52
		Evaporation and Transpiration	54
		2.7.1 The Effect of Climate Change on Evapotranspiration	
		from Landmasses	58
	2.8	Effect of Forest Vegetation on Precipitation	59
		2.8.1 Effect of Deforestation on Precipitation Recycling	60
		2.8.2 Impact on Surface Energy Balance and Boundary Layer Dynamics	61
		2.8.3 Effect of Forest Vegetation on Cloud Microphysics	62
		2.8.4 The Effect of Mesoscale Circulations Induced by	
		"Small-Scale" Canopy Gaps	63
	2.9	Effect of Forest Vegetation on Microclimate	63
	2.10	Effects of Deforestation on Large-Scale Climate	68
	2.11	Summary	69
3.	Biog	geochemical Impacts	71
	3.1	Carbon Cycle	71
		3.1.1 Carbon Cycle in Undisturbed Forests	71
		3.1.2 Global Estimates of C Pools, Emissions, and Uptake	
		in Terrestrial Ecosystems	76
		3.1.3 Changes in the Carbon Cycle as a Result of Deforestation	78
	3.2	Nitrogen Cycle	85
		3.2.1 Nitrogen Cycle in Undisturbed Forests	85
		3.2.2 Location of N-Limited Forests	88
		3.2.3 Change in the N Cycle Following Deforestation	90
	3.3	Phosphorus Cycle	93
		3.3.1 Phosphorus Cycling in Undisturbed Forests	93
		3.3.2 Location of P-Limited Forests	96
		3.3.3 P Losses after Deforestation	99
		Conclusion	101
4.	Irrev	ersibility and Ecosystem Impacts	103
	4.1	Background on Irreversibility and Bistability in Deforested Ecosystems	103
	4.2	Feedbacks That Modify Resource Availability	106
		4.2.1 Precipitation-Vegetation	106
		4.2.2 Canopy Deposition	113
		4.2.3 Soil Moisture	117
		4.2.4 Water Table	118
		4.2.5 Permafrost	121
		4.2.6 Nutrient Cycling	125
	4.3	Feedbacks That Modify the Disturbance Regime	129
		4.3.1 Landslides	129
		4 3 2 Fire	132

	Contents	VII
	4.3.3 Exposure to Freezing Events (Climate-Air-Temperature)	135
	4.3.4 Salinity	138
4.4	Noise Induced Transitions	142
4.5	Leading Indicators of State Shifts	143
4.6		144
5. Ecc	Economic Impacts and Drivers of Deforestation	
5.1	Background	145
5.2	Economic Uses of Forested Land	148
5.3	Factors Driving Deforestation	149
	5.3.1 Proximate Causes	149
	5.3.2 Underlying Causes	152
5.4	Modeling Frameworks to Examine Deforestation	163
	5.4.1 Microeconomic models	164
	5.4.2 Regional models	164
	5.4.3 Macroeconomic	164
5.5	Economic Effects of Deforestation	165
	5.5.1 Benefits	165
	5.5.2 Costs	166
5.6	E	
	Lands (i.e., REDD)	170
5.7	Conclusion	171
6. Syr	nthesis and Future Impacts of Deforestation	173
6.1	Benefits of Preserving Forests	173
6.2	Ecohydrological and Climate Impacts of Deforestation	174
6.3	Effect of Forest Loss on Biogeochemical Processes	174
6.4	Economic Impacts of Deforestation	176
6.5	Irreversible Changes Induced by Deforestation	177
6.6	·	178
	6.6.1 Role of Biodiversity in Ecosystem Processes	183
	6.6.2 Societal Impacts of Biodiversity Loss	184
	6.6.3 Strategies for Protecting Biodiversity	185
6.7	Impact of Deforestation on Human Health	186
6.8	Food Security as a Major Future Driver of Deforestation	187
	6.8.1 Reduce Food Losses	188
	6.8.2 Intensification versus Extensification	188
	6.8.3 Mitigating the Environmental Impacts of Intensification	189
	6.8.4 Crop Selection and Sequencing	191
	6.8.5 Location of Agricultural Expansion	192
6.9	Concluding Comments	193
Ref	ferences	195
Ind	lex	249
Col	lor Figures	255

Preface

Deforestation disrupts hydrological processes, climate, biogeochemical cycling, and socioenvironmental dynamics. It can lead to irreversible losses of biodiversity, natural capital, and rural livelihoods, while favoring an unsustainable use of natural resources and enhancing unbalanced relationships between private benefits and public losses associated with land clearance. Deforestation is a *disturbance* because it leads to biomass losses over timescales much shorter than those needed for forest regeneration. In some cases recovery is not possible because the disturbance induces a shift in forest ecosystems to a permanently deforested state by impacting the availability of resources and environmental conditions that are necessary for forest regeneration.

According to the 2010 Food and Agriculture Organization (FAO) Forest Resource Assessment, forests cover 41 billion hectares, or 31% of the global land surface, yet used to cover nearly 50% of the global land surface 8,000 years ago. While the current rate of deforestation has decreased since the 1990s from 16 million ha yr⁻¹ to 13 million ha yr⁻¹, it remains relatively high. Deforestation alters the coupled natural and human systems with important impacts on the potential for forests to regenerate. Understanding these impacts is also important in light of international programs that seek to provide financial incentives for reduced deforestation and have an estimated market potential of U.S. \$10 billion.

This book is motivated by the need for a comprehensive cross-disciplinary analysis of the existing literature on global deforestation. We review the geography of deforestation, analyze the major drivers and effects of forest loss, and examine theories as well as empirical evidence on how forests affect their natural environment. We stress how forest removal may cause the loss of important ecosystem functions, leading to a permanent and nearly irreversible shift to a treeless state. We investigate the biotic-abiotic feedbacks that determine the stability and resilience of forest ecosystems and analyze the socioeconomic processes underlying current patterns of deforestation. While doing so, we review a large number of recent studies on this body of literature and synthesize information across disciplines, thereby bridging the physical and biological sciences with the social sciences.

ix

x Preface

This analysis addresses a broad readership of ecologists, hydrologists, economists, biogeochemists, geographers, resource analysts, and policy makers whose work is related to deforestation. As such, it was written with the goals of readability and accessibility by both social and natural scientists. While providing a relatively thorough synthesis of research that is currently spread across a diverse and broad body of literature, this book is not intended to be a comprehensive treatise on deforestation; this is a fast-moving research field that produces new important contributions every day. It would not be possible to contain in this volume a complete analysis of this growing body of literature.

This book would have not been possible without the help, motivation, and support of our colleagues, families, and institutions. We are grateful to Deborah Lawrence (University of Virginia) for her unfailing support through years of continued collaboration and companionship. We are truly indebted to her for drawing us into this research field and inspiring this work. Christiane Runyan thanks her husband, Joshua, daughter, Georgiana and son, Waylon, for the support they have provided during the time it has taken to write this book. We are grateful to the University of Virginia, Department of Environmental Sciences, for providing the academic environment that stimulated our work. We also thank Michelle Faggert and Kailiang Yu of the University of Virginia for thier assistance with formatting and artwork. We acknowledge the support of the Vice President for Research Office at the University of Virginia and the National Social-Environmental Synthesis Center (SESYNC) of the University of Maryland.