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1 Preliminaries

1.1 Complex Numbers

The complex numbers C consist of pairs of real numbers: {(x, y) : x, y * R}. The complex

number (x, y) can be represented geometrically as a point in the plane R
2, or viewed as a vector

whose tip has coordinates (x, y) and whose tail has coordinates (0, 0). The complex number

(x, y) can be identified with another pair of real numbers (r, θ ), called the polar coordinate

representation. The line from (0, 0) to (x, y) has length r and forms an angle θ with the positive

x axis. The angle is measured by using the distance along the corresponding arc of the circle

of radius 1 (centered at (0, 0)). By similarity, the length of the subtended arc on the circle of

radius r is rθ . See Figure 1.1.

Conversion between these two representations is given by

x = r cos θ , y = r sin θ

and

r =

�

x2 + y2, tan θ =
y

x
.

Care must be taken to find θ from the last equality since many angles can have the same tan-

gent. However, consideration of the quadrant containing (x, y) will give a unique θ * [0, 2π ),

provided r > 0 (we do not define θ when r = 0).

Addition of complex numbers is defined coordinatewise:

(a, b) + (c, d) = (a + c, b + d),

and can be visualized by vector addition. See Figure 1.2.

Multiplication is given by

(a, b) · (c, d) = (ac 2 bd, bc + ad)

and can be visualized as follows. The points (0, 0), (1, 0), (a, b) form a triangle. Construct a

similar triangle with corresponding points (0, 0), (c, d), (x, y). Then it is an exercise in high-

θ
rθr

1x

y
(x, y)

Figure 1.1 Cartesian and polar representations of complex numbers.
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4 Preliminaries

(a, b)

(c, d)

(a + c, b + d)

Figure 1.2 Addition.

(1, 0)(0, 0)

(c, d)
(a, b)

(a, b) · (c, d)

Figure 1.3 Multiplication.

school geometry to show that (x, y) = (a, b) · (c, d). By similarity, the length of the product is

the product of the lengths and polar coordinate angles are added. See Figure 1.3.

The real number t is identified with the complex number (t, 0). With this identification,

complex addition and multiplication are extensions of the usual addition and multiplication of

real numbers. For conciseness, when t is real, t(x, y) means (t, 0) · (x, y) = (tx, ty). The additive

identity is 0 = (0, 0) and 2(x, y) = (2x, 2y). The multiplicative identity is 1 = (1, 0) and

the multiplicative inverse of (x, y) is (x/(x2 + y2), 2y/(x2 + y2)). It is a tedious exercise to

check that the commutative and associative laws of addition and multiplication hold, as does

the distributive law.

The notation for complex numbers becomes much easier if we use a single letter instead

of a pair. It is traditional, at least among mathematicians, to use the letter i to denote the

complex number (0, 1). If z is the complex number given by (x, y), then, because (x, y) =

x(1, 0) + y(0, 1), we can write z = x + yi. If z = x + iy, then the real part of z is

Rez = x and the imaginary part is Imz = y. Note that i · i = 21. We can now just use

the usual algebraic rules for manipulating complex numbers together with the simplification

i2 = 21. For example, z/w means multiplication of z by the multiplicative inverse of w.

To find the real and imaginary parts of the quotient, we use the analog of “rationalizing the

denominator”:

x + iy

a + ib
=

(x + iy)(a 2 ib)

(a + ib)(a 2 ib)
=

xa 2 i2yb + iya 2 ixb

a2 + b2

=
xa + yb

a2 + b2
+

ya 2 xb

a2 + b2
i.

Here is some additional notation: if z = x+ iy is given in polar coordinates by the pair (r, θ )

then

|z| = r =

�

x2 + y2

is called the modulus or absolute value of z. Note that |z| is the distance from the complex

number z to the origin 0. The angle θ is called the argument of z and is written

θ = arg z.
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1.1 Complex Numbers 5

The most common convention is that 2π < arg z f π , where positive angles are measured

counter-clockwise and negative angles are measured clockwise. The complex conjugate of z

is given by

z = x 2 iy.

The complex conjugate is the reflection of z about the real line R.

It is an easy exercise to show the following:

|zw| = |z||w|,

|cz| = c|z| if c > 0,

z/|z| has absolute value 1,

zz = |z|2,

Rez = (z + z)/2,

Imz = (z 2 z)/(2i),

z + w = z + w,

zw = z · w,

z = z,

|z| = |z|,

arg zw = arg z + arg w modulo 2π ,

arg z = 2 arg z = 2π 2 arg z modulo 2π .

The statement modulo 2π means that the difference between the left- and right-hand sides of

the equality is an integer multiple of 2π .

The identity a + (z 2 a) = z expressed in vector form shows that z 2 a is (a translate of) the

vector from a to z. Thus |z 2 a| is the length of the complex number z 2 a but it is also equal

to the distance from a to z. The circle centered at a with radius r is given by {z : |z 2 a| = r}

and the disk centered at a of radius r is given by {z : |z 2 a| < r}. The open disks are the basic

open sets generating the standard topology on C. We will use D to denote the unit disk,

D = {z : |z| < 1},

and use ∂D to denote the unit circle,

∂D = {z : |z| = 1}.

Complex numbers were around for at least 250 years before good applications were found;

Cardano discussed them in his book Ars Magna (1545). Beginning in the 1800s, and continu-

ing today, there has been an explosive growth in their usage. Now complex numbers are very

important in the application of mathematics to engineering and physics.

It is a historical fiction that solutions to quadratic equations forced us to take complex

numbers seriously. How to solve x2 = mx + c has been known for 2000 years and can be

visualized as the points of intersection of the standard parabola y = x2 and the line y = mx+c.

As the line is shifted up or down by changing c, it is easy to see there are two, one or no

(real) solutions. The solution to the cubic equation is where complex numbers really became

important. A cubic equation can be put in the standard form
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6 Preliminaries

x3 = 3px + 2q

by scaling and translating. The solutions can be visualized as the intersection of the standard

cubic y = x3 and the line y = 3px + 2q. Every line meets the cubic, so there will always be a

solution. By formal manipulations, Cardano showed that a solution is given by

x = (q +

�

q2 2 p3)
1
3 + (q 2

�

q2 2 p3)
1
3 .

Bombelli pointed out 30 years later that if p = 5 and q = 2, then x = 4 is a solution, but

q22p3 < 0 so the above solution does not make sense. His “wild thought” was to use complex

numbers to understand the solution

x = (2 + 11i)
1
3 + (2 2 11i)

1
3 .

He found that (2 ± i)3 = 2 ± 11i, and so the above solution actually equals 4. In other words,

complex numbers were used to find a real solution. This is not just an oddity of Cardano’s

formula, because, for some cubics, complex numbers must be used in any rational formula

involving radicals by a theorem of O. Hölder [15]. See Exercises 1.9 and 1.10 for solutions of

cubic and quartic equations.

1.2 Estimates

Here are some elementary estimates which the reader should check:

2 |z| f Rez f |z|,

2 |z| f Imz f |z|

and

|z| f |Rez| + |Imz|.

Perhaps the most useful inequality in analysis is the triangle inequality.

Theorem 1.1 (triangle inequality)

|z + w| f |z| + |w|

and

|z + w| g ||z| 2 |w|| .

The associated picture perhaps makes this result geometrically clear. See Figure 1.4. Analy-

sis is used to give a more rigorous proof of the triangle inequality (and it is good practice with

the notation we have introduced).

z

wz+w

Figure 1.4 Triangle inequality.
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1.2 Estimates 7

Proof

|z + w|2 = (z + w)(z + w)

= zz + wz + zw + ww

= |z|2 + 2Re(wz) + |w|2

f |z|2 + 2|w||z| + |w|2

= (|z| + |w|)2.

To obtain the second part of the triangle inequality we use

|z| = |z + w + (2w)| f |z + w| + | 2 w| = |z + w| + |w|.

By subtracting |w|,

|z| 2 |w| f |z + w|,

and switching z and w,

|w| 2 |z| f |z + w|,

so that

||z| 2 |w|| f |z + w|.

These estimates can be used to prove that {zn} converges if and only if both {Rezn} and

{Imzn} converge. The series
�

an is said to converge if the sequence of partial sums

Sm =

m
�

n=1

an

converges, and the series converges absolutely if
�

|an| converges. A series is said to diverge

if it does not converge. Absolute convergence implies convergence because Cauchy sequences

converge. We sometimes write
�

|an| < > to denote absolute convergence because the

partial sums are increasing. It also follows that
�

an is absolutely convergent if and only if

both
�

Rean and
�

Iman are absolutely convergent. By comparing the nth partial sum and

the (n 2 1)st partial sum, if
�

an converges then an ³ 0. The converse statement is false, for

example if an = 1/n.

Another useful estimate is the Cauchy–Schwarz inequality.

Theorem 1.2 (Cauchy–Schwarz inequality)

!

!

!

!

!

!

n
�

j=1

ajbj

!

!

!

!

!

!

f

»

¿

n
�

j=1

|aj|
2

À

£

1
2
»

¿

n
�

j=1

|bj|
2

À

£

1
2

.

If v and w are vectors in C
n, the Cauchy–Schwarz inequality says that |#v, w#| f ||v||||w||,

where the left-hand side is the absolute value of the inner product and the right-hand side is

the product of the lengths of the vectors.
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8 Preliminaries

Proof The square of the right-hand side minus the square of the left-hand side in the

Cauchy–Schwarz inequality can be written as

n
�

i=1

n
�

j=1

�

|aj|
2|bi|

2 2 ajbjaibi

�

.

We can add another copy of this quantity, switching the index i and the index j to obtain

=
1

2

n
�

i=1

n
�

j=1

�

|aj|
2|bi|

2 + |ai|
2|bj|

2 2 ajbjaibi 2 aibiajbj

�

.

Using the identity |A 2 B|2 = |A|2 + |B|2 2 AB 2 AB, with A = ajbi and B = aibj, we obtain

=
1

2

n
�

i=1

n
�

j=1

|ajbi 2 aibj|
2.

The above proof also gives the error

1

2

n
�

j=1

n
�

i=1

|ajbi 2 aibj|
2,

and so equality occurs if and only if aj = cbj for all j and some (complex) constant c, or

bj = 0 for all j.

The reader can use Riemann integration to deduce the following, which is also called the

Cauchy–Schwarz inequality. For a complex-valued function f defined on a real interval [a, b],

we define
� b

a
f dx c

� b

a
Ref dx + i

� b

a
Imf dx.

Corollary 1.3 If f and g are continuous complex-valued functions defined on [a, b] ¢ R

then
!

!

!

!

" b

a

f (t)g(t)dt

!

!

!

!

f

"" b

a

| f (t)|2dt

"

1
2
"" b

a

|g(t)|2dt

"

1
2

.

This corollary can also be proved directly by expanding

" b

a

" b

a

| f (x)g(y) 2 f (y)g(x)|2dxdy (1.1)

in a similar way, giving a proof for square integrable functions f , g. Moreover, the error term

is half of the integral (1.1) and equality occurs if and only if f = cg, for some constant c, or g

is identically zero.

1.3 Stereographic Projection

A component of Riemann’s point of view of functions as mappings is that > is like any other

complex number. But we cannot extend the definition of complex numbers to include > and

still have the usual laws of arithmetic hold. However, there is another “picture” of complex

www.cambridge.org/9781107134829
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1.3 Stereographic Projection 9

(x,y,0)

(x1,x2,x3)
N=(0,0,1)

Figure 1.5 Stereographic projection.

numbers that can help us visualize this idea. The picture is called stereographic projection.

We identify the complex numbers with the plane {(x, y, 0) : x, y * R} in R
3. If z = x + iy, let

z7 be the unique point on the unit sphere in R
3 which also lies on the line from the north pole

(0, 0, 1) to (x, y, 0). Thus

z7 = (x1, x2, x3) = (0, 0, 1) + t[(x, y, 0) 2 (0, 0, 1)].

See Figure 1.5.

Then

|z7| =

�

(tx)2 + (ty)2 + (1 2 t)2 = 1,

which gives

t =
2

x2 + y2 + 1
,

where 0 < t f 2, and

z7 =

"

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 2 1

x2 + y2 + 1

"

.

The reader is invited to find z = x + iy from z7 = (x1, x2, x3). The sphere is sometimes called

the Riemann sphere and is denoted S
2. We can extend stereographic projection π : C ³ S

2

to the extended plane C
7 = C*{>} by defining π (>) = (0, 0, 1). We give C

7 the topology

inherited from S
2. It is an explicit one-point compactification of the complex plane. The north

pole corresponds to “>.”

Theorem 1.4 Under stereographic projection, circles and straight lines in C correspond

precisely to circles on S
2.

Proof Every circle on the sphere is given by the intersection of a plane with the sphere, and

conversely the intersection of a plane with a sphere is a circle or a point. See Exercise 1.6. If

a plane is given by

Ax1 + Bx2 + Cx3 = D,

and if (x1, x2, x3) corresponds to (x, y, 0) under stereographic projection, then

A

"

2x

x2 + y2 + 1

"

+ B

"

2y

x2 + y2 + 1

"

+ C

"

x2 + y2 2 1

x2 + y2 + 1

"

= D. (1.2)
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10 Preliminaries

Equivalently,

(C 2 D)(x2 + y2) + 2Ax + 2By = C + D. (1.3)

If C = D, then this is the equation of a line, and all lines can be written this way. If C �= D,

then, by completing the square, we get the equation of a circle, and all circles can be put in

this form.

So we will consider a line in C as just a special kind of “circle.”

The sphere S
2 inherits a topology from the usual topology on R

3 generated by the balls

in R
3.

Corollary 1.5 The topology on S
2 induces the standard topology on C via stereographic

projection, and moreover a basic neighborhood of > is of the form {z : |z| > r}.

For later use, we note that the chordal distance between two points on the sphere induces a

metric, called the chordal metric, on C which is given by

χ(z, w) = |z7 2 w7| =
2|z 2 w|

�

1 + |z|2
�

1 + |w|2
. (1.4)

This metric is bounded (by 2). See Exercise 1.5.

1.4 Exercises

A

1.1 Check that item 9 of the prerequisites holds for complex an,k. Check that items 13, 14

and 15 of the prerequisites hold for complex-valued functions defined on an interval

I ¢ R.

1.2 Check the details of the high-school geometry problem in the geometric version of

complex multiplication.

1.3 Prove the parallelogram equality:

|z + w|2 + |z 2 w|2 = 2(|z|2 + |w|2).

In geometric terms, the equality says that the sum of the squares of the lengths of the

diagonals of a parallelogram equals the sum of the squares of the lengths of the sides.

It is perhaps a bit easier to prove it using the complex notation of this chapter than to

prove it using high-school geometry.

1.4 Prove Corollary 1.3.

1.5 (a) Prove formula (1.4). An algebraic proof can be found in [1], p. 20. Alternatively,

use the law of cosines for the triangles with vertices N = (0, 0, 1), z, w and N, z7,

w7. Compute edge lengths of these two triangles using triangles that have N and

(0, 0, 0) as vertices.

(b) The chordal distance is bounded by 2, by the triangle inequality. Verify analytic-

ally that the formula for this distance given in the text is bounded by 2 using the
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1.4 Exercises 11

Cauchy–Schwarz inequality, and also by directly multiplying it out using complex

notation and one of the estimates at the start of Section 1.2.

1.6 Show that the intersection of a plane with the unit sphere in R
3 is a circle or a point

and conversely that every circle or point on the sphere is equal to the intersection of the

sphere with a plane. Hint: Rotate the plane and sphere so that the plane is parallel to the

(x, y, 0) plane.

1.7 (a) Suppose w is a non-zero complex number. Choose z so that |z| = |w|
1
2 and arg z =

1
2

arg w or arg z = 1
2

arg w + π . Show that z2 = w in both cases, and that these are

the only solutions to z2 = w.

(b) The quadratic formula gives two solutions to the equation az2 + bz + c = 0, when

a, b, c are complex numbers with a �= 0 because completing the square is a purely

algebraic manipulation of symbols, and there are two complex square roots of every

non-zero complex number by part (a). Check the details.

(c) If w is a non-zero complex number, find n solutions to zn = w using polar

coordinates.

B

1.8 Suppose that f is a continuous complex-valued function on a real interval [a, b]. Let

A =
1

b 2 a

" b

a

f (x)dx

be the average of f over the interval [a, b].

(a) Show that if | f (x)| f |A| for all x * [a, b], then f = A. Hint: Rotate f so that A > 0.

Then
� b

a
(A 2 Ref )dx/(b 2 a) = 0, and A 2 Ref is continuous and non-negative.

(b) Show that if |A| = (1/(b 2 a))
� b

a
| f (x)|dx, then arg f is constant modulo 2π on

{z : f (z) �= 0}.

1.9 Formally solve the cubic equation ax3 +bx2 +cx+d = 0, where x, a, b, c, d * C, a �= 0,

by the following reduction process:

(a) Set x = u + t and choose the constant t so that the coefficient of u2 is equal to zero.

(b) If the coefficient of u is also zero, then take a cube root to solve. If the coefficient

of u is non-zero, set u = kv and choose the constant k so that v3 = 3v + r, for some

constant r.

(c) Set v = z+1/z and obtain a quadratic equation for z3. The map z+1/z is important

for several reasons, including constructing what are called conformal maps. It will

be examined in more detail in Section 6.4.

(d) Use the quadratic formula to find two possible values for z3, and then take a cube

root to solve for z.

(e) In Section 2.2 we will show that the cubic equation has exactly three solutions,

counting multiplicity. But the process in this exercise appears to generate more solu-

tions, if we use two solutions to the quadratic and all three cube roots. Moreover,

there might be more than one valid choice for the constants used to reduce to a

simpler equation. Explain.
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