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1 Introduction

We start with some terminology.

• A Markov decision process (MDP) is obtained by controlling the transition probabil-

ities of a Markov chain as it evolves over time.

• A hidden Markov model (HMM) is a noisily observed Markov chain.

• A partially observed Markov decision process (POMDP) is obtained by controlling

the transition probabilities and/or observation probabilities of an HMM.

These relationships are illustrated in Figure 1.1.

A POMDP specializes to an MDP if the observations are noiseless and equal to the

state of the Markov chain. A POMDP specializes to an HMM if the control is removed.

Finally, an HMM specializes to a Markov chain if the observations are noiseless and

equal to the state of the Markov chain.

The remainder of this introductory chapter is organized as follows:

• §1.1 to §1.4 contain a brief outline of the four parts of the book.

• §1.5 outlines some applications of controlled sensing and POMDPs.

1.1 Part I: Stochastic models and Bayesian filtering

Part I of this book contains an introductory treatment of Bayesian filtering, also called

optimal filtering. Figure 1.2 illustrates the setup. A sensor provides noisy observations

yk of the evolving state xk of a Markov stochastic system, where k denotes discrete time.

The Markov system, together with the noisy sensor, constitutes a partially observed

Markov model (also called a stochastic state space model or hidden Markov model1).

The aim is to estimate the state xk at each time instant k given the observations y1, . . . , yk.

Part I of the book deals with optimal filtering. The optimal filter computes the

posterior distribution πk of the state at time k via the recursive algorithm

πk = T(πk−1, yk) (1.1)

1 In this book, the term “hidden Markov model” is used for the special case when xk is a finite state Markov

chain that is observed via noisy observations yk .
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Figure 1.1 Terminology of HMMs, MDPs and POMDPs.
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Figure 1.2 Part I deals with hidden Markov models and Bayesian filtering for state estimation. The

framework is classical statistical signal processing.

where the operator T denotes Bayes’ formula. Once the posterior πk is evaluated, the

optimal estimate (in the minimum mean square sense) of the state xk given the noisy

observations y1, . . . , yk can be computed by integration.

Part I of the book deals with the properties of the filtering recursion (1.1). The aim is

to provide in a concise manner, material essential for POMDPs.

Chapters 2 and 3 cover classical topics including state space models, the Kalman filter,

hidden Markov model filter and suboptimal filtering algorithms such as the particle filter.

Chapter 4 discusses how the Bayesian filters can be used to devise numerical algo-

rithms (general purpose optimization algorithms and also expectation maximization

algorithms) for maximum likelihood parameter estimation.

Chapter 5 discusses multi-agent filtering over a social network – social learning and

data incest models are formulated; such models arise in applications such as online

reputation systems and polling systems.

The material in Part I is classical (to a statistical signal processing audience).

However, some nontraditional topics are discussed, including filtering of reciprocal pro-

cesses; geometric ergodicity of the HMM filter; forward only filters for the expectation

maximization algorithm; multi-agent filtering for social learning and data incest. Also,

Appendix B discusses continuous-time HMM filters, Markov modulated Poisson filters,

and their numerical implementation.

1.2 Part II: POMDPs: models and algorithms

Statistical signal processing (Part I) deals with extracting signals from noisy measure-

ments. In Parts II, III and IV of the book, motivated by physical, communication and

www.cambridge.org/9781107134607
www.cambridge.org


Cambridge University Press
978-1-107-13460-7 — Partially Observed Markov Decision Processes
Vikram Krishnamurthy 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Part II: POMDPs: models and algorithms 3

Stochastic
System

(Markov)

Noisy
Sensor

Bayesian
Filter

POMDP Controller
(Decision-Maker)

state

xk yk

observation belief

πk

action

uk

Hidden Markov Model

Figure 1.3 Schematic of partially observed Markov decision process (POMDP). Part II deals with

algorithms and applications of POMDPs where the stochastic system (Markov Chain) and the

sensor are controlled. Part III deals with determining the structure of a POMDP to ensure that the

optimal action taken is a monotone function of the belief; this can result in numerically efficient

algorithms to compute the optimal action (policy). Part IV deals with POMDPs when the

stochastic system and sensor model are not known.

social constraints, we address the deeper issue of how to dynamically schedule and

optimize signal processing resources to extract signals from noisy measurements. Such

problems are formulated as POMDPs. Figure 1.3 displays the schematic setup.

Part II of the book deals with the formulation, algorithms and applications of

POMDPs. As in the filtering problem, at each time k, a decision-maker has access to the

noisy observations yk of the state xk of a Markov process. Given these noisy observa-

tions, the aim is to control the trajectory of the state and observation process by choosing

actions uk at each time k. The decision-maker knows ahead of time that if it chooses

action uk when the system is in state xk, then a cost c(xk, uk) will be incurred at time k.

(Of course, the decision-maker does not know state xk at time k but can estimate the cost

based on the observations yk.) The goal of the decision-maker is to choose the sequence

of actions u0, . . . , uN−1 to minimize the expected cumulative cost E{
∑N

k=0 c(xk, uk)},

where E denotes mathematical expectation.

It will be shown in Part II that the optimal action uk at each time k is determined

by a policy (strategy) as uk = μ∗
k (πk) where the optimal policy μ∗

k satisfies Bellman’s

stochastic dynamic programming equation:

μ∗
k (π ) = argmin

u
Qk(π , u), Jk(π ) = min

u
Qk(π , u),

Qk(π , u) =
∑

x

c(x, u)π (x) +
∑

y

Jk+1 (T(π , y, u))σ (π , y, u). (1.2)

Here T is the optimal filter (1.1) used in Part I, and σ is a normalization term for the

filter. Also π is the posterior computed via the optimal filter (1.1) and is called the belief

state.

Part II of the book deals with algorithms for solving Bellman’s equation (1.2) along

with several applications in controlled sensing.

Chapter 6 is a concise presentation of stochastic dynamic programming for fully

observed finite-state MDPs.
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4 Introduction

Chapter 7 starts our formal presentation of POMDPs. The POMDP model and

stochastic dynamic programming recursion (1.2) are formulated in terms of the belief

state computed by the Bayesian filter discussed in Part I. Several algorithms for solving

POMDPs over a finite horizon are then presented. Optimal search theory for a moving

target is used as an illustrative example of a POMDP.

Chapter 8 deals with the formulation and applications of POMDPs in controlled

sensing. Several examples are discussed, including linear quadratic state and measure-

ment control with applications in radar control, sensor scheduling for POMDPs with

nonlinear costs and social learning.

1.3 Part III: POMDPs: structural results

In general, solving Bellman’s dynamic programming equation (1.2) for a POMDP is

computationally intractable. Part III of the book shows that by introducing assump-

tions on the POMDP model, important structural properties of the optimal policy can be

determined without brute-force computations. These structural properties can then be

exploited to compute the optimal policy.

The main idea behind Part III is to give conditions on the POMDP model so that

the optimal policy μ∗
k (π ) is monotone2 in belief π . In simple terms, μ∗

k (π ) is shown to

be increasing in belief π (in terms of a suitable stocahastic ordering) by showing that

Qk(π , u) in Bellman’s equation (1.2) is submodular. The main result is:

Qk(π , u + 1) − Qk(π , u) ↓ π
︸ ︷︷ ︸

submodular

=⇒ μ∗
k (π ) ↑ π .

︸ ︷︷ ︸

increasing policy

(1.3)

Obtaining conditions for Qk(π , u) to be submodular involves powerful ideas in stochas-

tic dominance and lattice programming.

Once the optimal policy of a POMDP is shown to be monotone, this structure can be

exploited to devise efficient algorithms. Figure 1.4 illustrates an increasing optimal pol-

icy μ∗
k (π ) in the belief π with two actions uk ∈ {1, 2}. Note that any increasing function

which takes on two possible values has to be a step function. So computing μ∗
k (π ) boils

down to determining the single belief π∗
1 at which the step function jumps. Comput-

ing (estimating) π∗
1 can be substantially easier than directly solving Bellman’s equation

(1.2) for μ∗
k (π ) for all beliefs π , especially when μ∗

k (π ) has no special structure.

Part III consists of six chapters (Chapters 9 to 14).

Chapter 9 gives sufficient conditions for a MDP to have a monotone (increasing) opti-

mal policy. The explicit dependence of the MDPs optimal cumulative cost on transition

probability is also discussed.

In order to give conditions for the optimal policy of a POMDP to be monotone, one

first needs to show monotonicity of the underlying hidden Markov model filter. To this

end, Chapter 10 discusses the monotonicity of Bayesian (hidden Markov model) filters.

2 By monotone, we mean either increasing for all π or decreasing for all π . “Increasing” is used here in the

weak sense; it means “non-decreasing”. Similarly for decreasing.
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1.4 Part IV: Stochastic approximation and reinforcement learning 5
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Figure 1.4 Example of optimal policy μ∗(π ) that is monotone (increasing) in the belief π . The policy is a

step function and completely characterized by the threshold state π∗
1

.

This monotonicity of the optimal filter is used to construct reduced complexity filtering

algorithms that provably lower- and upper-bound the optimal filter.

Chapters 11 to 14 give conditions on the POMDP model for the dynamic program-

ming recursion to have a monotone solution. Chapter 11 discusses conditions for the

value function in dynamic programming to be monotone. This is used to characterize

the structure of two-state POMDPs and POMDP multi-armed bandits.

Chapter 12 gives conditions under which stopping time POMDPs have monotone

optimal policies. As examples, Chapter 13 covers quickest change detection, con-

trolled social learning and a variety of other applications. The structural results provide

a unifying theme and insight to what might otherwise simply be a collection of

examples.

Finally, Chapter 14 gives conditions under which the optimal policy of a general

POMDP can be lower- and upper-bounded by judiciously chosen myopic policies.

Bounds on the sensitivity of the optimal cumulative cost of POMDPs to the parameters

are also discussed.

1.4 Part IV: Stochastic approximation and reinforcement learning

A major assumption in Parts I, II and III of the book is that the model of the stochastic

system and noisy sensor is completely specified and known ahead of time. When this

assumption does not hold, one needs to devise alternative methods. Part IV deals with

stochastic gradient algorithms for estimating reasonable (locally optimal) strategies for

POMDPs.

Suppose a decision-maker can observe the noisy response yk of a controlled stochastic

system to any action uk that it chooses. Let Ik = {u0, y1, . . . , uk−1, yk} denote the history

of actions and observed responses up to time k. The decision-maker chooses its action

as uk = μθ (Ik) where μθ denote a parametrized policy (parametrized by a vector θ ).

Then, to optimize its choice of actions, the decision-maker needs to compute the optimal

parameter θ∗ which minimizes the expected cost criterion E{C(θ , Ik)}. The decision-

maker uses the following stochastic gradient algorithm to estimate θ∗:

θk+1 = θk − ǫ ∇θ C(θk, Ik), k = 0, 1, . . . . (1.4)

www.cambridge.org/9781107134607
www.cambridge.org


Cambridge University Press
978-1-107-13460-7 — Partially Observed Markov Decision Processes
Vikram Krishnamurthy 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

Here ∇θC(θk, Ik) denotes the gradient (or estimate of gradient) of the instantaneous cost

with respect to the parameter θ and ǫ denotes a small positive step size. Algorithms such

as (1.4) lie within the class of reinforcement learning methods since the past experience

Ik is used to adapt the parameter θk which in turn determines the actions; intuitively a

good choice of θ would result in good performance which in turn reinforces this choice.

Part IV deals with such stochastic gradient algorithms, including how to compute the

gradient estimate and analyze the resulting algorithm.

Chapter 15 describes simulation-based gradient estimation methods that form the

basis for gradient-based reinforcement learning. Chapter 16 deals with Q-learning and

policy gradient algorithms for reinforcement learning. Chapter 17 presents stochastic

approximation algorithms for estimating the parameters and states of a hidden Markov

model (which can be used for adaptive control of a POMDP) and discrete policy search

algorithms and mean field dynamics of large scale Markov chains that arise in social

networks.

Remark

The three main equations described above, namely the filtering recursion (1.1), Bell-

man’s dynamic programming equation (1.2), and the stochastic gradient algorithm (1.4),

are ubiquitous in electrical engineering. Most algorithms in statistical signal processing

and control boil down to these. The submodularity equation (1.3) is the basis for analysis

of the optimal policy structure.

1.5 Examples of controlled (active) sensing

This section outlines some applications of controlled sensing formulated as a POMDP.

Controlled sensing also known as “sensor adaptive signal processing” or “active

sensing” is a special case of a POMDP where the decision-maker (controller) controls

the observation noise distribution but not the dynamics of the stochastic system. The

setup is as in Figure 1.3 with the link between the controller and stochastic system

omitted.

In controlled sensing, the decision-maker controls the observation noise distribution

by switching between various sensors or sensing modes. An accurate sensor yields less

noisy measurements but is expensive to use. An inaccurate sensor yields more noisy

measurements but is cheap to use. How should the decision-maker decide at each time

which sensor or sensing mode to use? Equivalently, how can a sensor be made “smart”

to adapt its behavior to its environment in real time? Such an active sensor uses feedback

control. As shown in Figure 1.3, the estimates of the signal are fed to a controller/sched-

uler that decides the sensor should adapt so as to obtain improved measurements; or

alternatively minimize a measurement cost. Design and analysis of such closed loop

systems which deploy stochastic control is nontrivial. The estimates from the signal pro-

cessing algorithm are uncertain (they are posterior probability distribution functions). So

controlled sensing requires decision making under uncertainty.

We now highlight some examples in controlled sensing covered in this book.
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1.5 Examples of controlled (active) sensing 7

Example 1: Adaptive radars

Adaptive multifunction radars are capable of switching between various measurement

modes, e.g. radar transmit waveforms, beam pointing directions, etc. so that the track-

ing system is able to tell the radar which mode to use at the next measurement epoch.

Instead of the operator continually changing the radar from mode to mode depending on

the environment, the aim is to construct feedback control algorithms that dynamically

adapt where the radar radiates its pulses to achieve the command operator objec-

tives. This results in radars that autonomously switch beams, transmitted waveforms,

target dwell and re-visit times. §8.4 and §12.7 deal with simplified examples of radar

control.

Example 2: Social learning and data incest

A social sensor (human-based sensor) denotes an agent that provides information about

its environment (state of nature) to a social network. Examples of such social sensors

include Twitter posts, Facebook status updates, and ratings on online reputation systems

like Yelp and TripAdvisor. Social sensors present unique challenges from a statistical

estimation point of view since they interact with and influence other social sensors. Also,

due to privacy concerns, they reveal their decisions (ratings, recommendations, votes)

which can be viewed as a low resolution (quantized) function of their raw measurements.

In Chapter 5, the formalism of social learning [29, 56, 84] will be used for model-

ing the interaction and dynamics of social sensors. The setup is fundamentally different

from classical signal processing in which sensors use noisy observations to compute

estimates – in social learning agents use noisy observations together with decisions

made by previous agents, to estimate the underlying state of nature. Also, in online rep-

utation systems such as Yelp or TripAdvisor which maintain logs of votes (actions) by

agents, social learning takes place with information exchange over a graph. Data incest

(misinformation propagation) occurs due to unintentional reuse of identical actions in

the formation of public belief in social learning; the information gathered by each agent

is mistakenly considered to be independent. This results in overconfidence and bias in

estimates of the state. How can automated protocols be designed to prevent data incest

and thereby maintain a fair online reputation system?

Example 3: Quickest detection and optimal sampling

Suppose a decision-maker records measurements of a finite-state Markov chain cor-

rupted by noise. The goal is to decide when the Markov chain hits a specific target state.

The decision-maker can choose from a finite set of sampling intervals to pick the next

time to look at the Markov chain. The aim is to optimize an objective comprising false

alarm, delay cost and cumulative measurement sampling cost. Making more frequent

measurements yields accurate estimates but incurs a higher measurement cost. Making

an erroneous decision too soon incurs a false alarm penalty. Waiting too long to declare

the target state incurs a delay penalty. What is the optimal sequential strategy for the

decision-maker? It is shown in §13.5 that the optimal sampling problem results in a

POMDP that has a monotone optimal strategy in the belief state.
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8 Introduction

Example 4: Interaction of local and global decision-makers

In a multi-agent network, how can agents use their noisy observations and decisions

made by previous agents to estimate an underlying randomly evolving state? How do

decisions made by previous agents affect decisions made by subsequent agents? In

§13.4, these questions will be formulated as a multi-agent sequential detection problem

involving social learning. Individual agents record noisy observations of an underlying

state process, and perform social learning to estimate the underlying state. They make

local decisions about whether a change has occurred that optimizes their individual util-

ities. Agents then broadcast their local decisions to subsequent agents. As these local

decisions accumulate over time, a global decision-maker needs to decide (based on these

local decisions) whether or not to declare a change has occurred. How can the global

decision-maker achieve such change detection to minimize a cost function comprised

of false alarm rate and delay penalty? The local and global decision-makers interact,

since the local decisions determine the posterior distribution of subsequent agents which

determines the global decision (stop or continue) which determines subsequent local

decisions. We also discuss how a monopolist should optimally price their product when

agents perform social learning.

Other applications of POMDPs

POMDPs are used in numerous other domains. Some applications include:

• Optimal search: see §7.7.

• Quickest detection and other sequential detection problems: see Chapter 12.

• Dialog systems: see [350] and references therein.

• Robot navigation and planning: see [194] and references therein.

• Cognitive radio dynamic spectrum sensing: see [353] and references therein.

Website repositories

Code for POMDP solvers is freely downloadable from:

• www.pomdp.org

• bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

www.cambridge.org/9781107134607
www.cambridge.org

