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Minkowski and Hausdorff dimensions

In this chapter we will define theMinkowski and Hausdorff dimensions of a set

and will compute each in a few basic examples. We will then prove Billings-

ley’s Lemma and the Law of Large Numbers. These allow us to deal with

more sophisticated examples: sets defined in terms of digit frequencies, ran-

dom slices of the Sierpiński gasket, and intersections of random translates of

the middle thirds Cantor set with itself. Both Minkowski and Hausdorff di-

mensions measure how efficiently a set K can be covered by balls. Minkowski

dimension requires that the covering be by balls all of the same radius. This

makes it easy to compute, but it lacks certain desirable properties. In the def-

inition of Hausdorff dimension we will allow coverings by balls of different

radii. This gives a better behaved notion of dimension, but (as we shall see) it

is usually more difficult to compute.

1.1 Minkowski dimension

A subset K of a metric space is called totally bounded if for any ε > 0, it can

be covered by a finite number of balls of diameter ε . For Euclidean space, this

is the same as being a bounded set. For a totally bounded set K, let N(K,ε)

denote the minimal number of sets of diameter at most ε needed to cover K.

We define the upper Minkowski dimension as

dimM (K) = limsup
ε→0

logN(K,ε)

log1/ε
,

and the lower Minkowski dimension

dimM (K) = liminf
ε→0

logN(K,ε)

log1/ε
.
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2 Minkowski and Hausdorff dimensions

If the two values agree, the common value is simply called the Minkowski

dimension of K and denoted by dimM (K). When the Minkowski dimension

of a set K exists, the number of sets of diameter ε needed to cover K grows

like ε−dimM (K)+o(1) as ε → 0.

We get the same values of dimM (K) and dimM (K) if we replace N(K,ε)

by NB(K,ε), which is the number of closed balls of radius ε needed to cover

K. This is because NB(K,ε) ≤ N(K,ε) ≤ N(K,ε/2) (any set is contained in a

ball of at most twice the diameter and any ball of radius ε/2 has diameter at

most ε; strict inequality could hold in a metric space). For subsets of Euclidean

space we can also count the number of axis-parallel squares of side length ε

needed to cover K, or the number of such squares taken from a grid. Both pos-

sibilities give the same values for upper and lower Minkowski dimension, and

for this reason Minkowski dimension is sometimes called the box counting

dimension. It is also easy to see that a bounded set A and its closure A satisfy

dimM (A) = dimM (A) and dimM (A) = dimM (A).

If X is a set and x,y ∈ X implies |x− y| ≥ ε , we say X is ε-separated. Let

Nsep(K,ε) be the number of elements in a maximal ε-separated subset X of

K. Clearly, any set of diameter ε/2 can contain at most one point of an ε-

separated set X , so Nsep(K,ε) ≤ N(K,ε/2). On the other hand, every point of

K is within ε of a maximal ε-separated subset X (otherwise add that point to

X). Thus N(K,ε) ≤ Nsep(K,ε). Therefore replacing N(K,ε) by Nsep(K,ε) in

the definition of upper and lower Minkowski dimension gives the same values

(and it is often easier to give a lower bound in terms of separated sets).

Example 1.1.1 Suppose that K is a finite set. Then N(K,ε) is bounded and

dimM (K) exists and equals 0.

Example 1.1.2 Suppose K = [0,1]. Then at least 1/ε intervals of length ε are

needed to coverK and clearly ε−1+1 suffice. Thus dimM (K) exists and equals

1. Similarly, any bounded set in Rd with interior has Minkowski dimension d.

Example 1.1.3 Let C be the usual middle thirds Cantor set obtained as fol-

lows. Let C0 = [0,1] and define C1 = [0, 1
3
]∪ [ 2

3
,1] ⊂ C0 by removing the

central interval of length 1
3
. In general, Cn is a union of 2n intervals of length

3−n and Cn+1 is obtained by removing the central third of each. This gives a
decreasing nested sequence of compact sets whose intersection is the desired

set C.

The construction gives a covering of C that uses 2n intervals of length 3−n.
Thus for 3−n ≤ ε < 3−n+1 we have

N(C,ε)≤ 2n,
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1.1 Minkowski dimension 3

Figure 1.1.1 The Cantor middle thirds construction.

and hence

dimM (C)≤ log2

log3
.

Conversely, the centers of the nth generation intervals form a 3−n-separated set
of size 2n, so Nsep(C,3

−n)≥ 2n. Thus

dimM (C)≥ log2

log3
= log3 2.

Therefore the Minkowski dimension exists and equals this common value. If

at each stage we remove the middle α (0< α < 1) we get a Cantor set Cα with

Minkowski dimension log2/(log2+ log 1
1−α ).

Example 1.1.4 Consider K = {0}∪{1, 1
2
, 1
3
, 1
4
, . . .}. Observe that

1

n− 1 −
1

n
=

1

n(n− 1) >
1

n2
.

So, for ε > 0, if we choose n so that (n+ 1)−2 < ε ≤ n−2, then n≤ ε−1/2 and
n distinct intervals of length ε are needed to cover the points 1, 1

2
, . . . , 1

n
. The

interval [0, 1
n+1 ] can be covered by n+ 1 additional intervals of length ε . Thus

ε−1/2 ≤ N(K,ε) ≤ 2ε−1/2+ 1.

Hence dimM (K) = 1/2.

This example illustrates a drawback of Minkowski dimension: finite sets

have dimension zero, but countable sets can have positive dimension. In par-

ticular, it is not true that dimM (
�

nEn) = supn dimM (En), a useful property

for a dimension to have. In the next section, we will introduce Hausdorff di-

mension, which does have this property (Exercise 1.6). In the next chapter,

we will introduce packing dimension, which is a version of upper Minkowski

dimension forced to have this property.
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4 Minkowski and Hausdorff dimensions

1.2 Hausdorff dimension and the Mass Distribution

Principle

Given any set K in a metric space, we define the α-dimensional Hausdorff

content as

H
α

∞ (K) = inf
"

∑
i

|Ui|α : K ⊂
"

i

Ui

"

,

where {Ui} is a countable cover of K by any sets and |E| denotes the diameter
of a set E.

Definition 1.2.1 The Hausdorff dimension of K is defined to be

dim(K) = inf{α :H α
∞ (K) = 0}.

More generally we define

H
α

ε (K) = inf
"

∑
i

|Ui|α : K ⊂
"

i

Ui, |Ui|< ε
"

,

where eachUi is now required to have diameter less than ε . Theα-dimensional

Hausdorff measure of K is defined as

H
α(K) = lim

ε→0
H

α
ε (K).

This is an outer measure; an outer measure on a non-empty set X is a function

µ∗ from the family of subsets of X to [0,∞] that satisfies

• µ∗( /0) = 0,
• µ∗(A)≤ µ∗(B) if A⊂ B,

• µ∗(
�∞
j=1A j)≤ ∑∞

j=1 µ∗(A j).

For background on real analysis see Folland (1999). The α-dimensional Haus-

dorff measure is even a Borel measure in Rd ; see Theorem 1.2.4 below. When

α = d ∈ N, then H α is a constant multiple of Ld , d-dimensional Lebesgue

measure.

If we admit only open sets in the covers of K, then the value of H α
ε (K)

does not change. This is also true if we only use closed sets or only use convex

sets. Using only balls might increaseH α
ε by at most a factor of 2α , since any

set K is contained in a ball of at most twice the diameter. Still, the values for

whichH α(K) = 0 are the same whether we allow covers by arbitrary sets or

only covers by balls.

Definition 1.2.2 Let µ ∗ be an outer measure on X . A set K in X is µ ∗ -
measurable, if for Every set A⊂ X we have

H
α(A) = µ∗(A∩K)+ µ∗(A∩Kc).
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1.2 Hausdorff dimension and the Mass Distribution Principle 5

Definition 1.2.3 Let (Ω,d) be a metric space. An outer measure µ on Ω is

called ametric outer measure if dist(A,B)> 0 =⇒ µ(A∪B) = µ(A)+µ(B),

where A and B are two subsets of Ω.

Since Hausdorff measureH α is clearly a metric outer measure, the follow-

ing theorem shows that all Borel sets are H α -measurable. This implies that

H α is a Borel measure (see Folland (1999)).

Theorem 1.2.4 Let µ be a metric outer measure. Then all Borel sets are

µ-measurable.

Proof It suffices to show any closed set K is µ-measurable, since the measur-

able sets form a σ -algebra. So, let K be a closed set. We must show for any set

A⊂ Ω with µ(A)< ∞,

µ(A)≥ µ(A∩K)+ µ(A∩Kc). (1.2.1)

Let B0 = /0 and for n≥ 1 define Bn = {x ∈ A : dist(x,K)> 1
n
}, so that

∞
"

n=1

Bn = A∩Kc

(since K is closed). Since µ is a metric outer measure and Bn ⊂ A\K,

µ(A)≥ µ [(A∩K)∪Bn] = µ(A∩K)+ µ(Bn). (1.2.2)

For all m ∈ N, the sets Dn = Bn \Bn−1 satisfy

m

∑
j=1

µ(D2 j) = µ

�

m
"

j=1

D2 j

�

≤ µ(A),∀m,

since if x ∈ Bn, and y ∈ Dn+2, then

dist(x,y)≥ dist(x,K)− dist(y,K) ≥ 1

n
− 1

n+ 1
.

Similarly ∑m
j=1 µ(D2 j−1)≤ µ(A). So ∑∞

j=1 µ(D j)< ∞. The inequality

µ(Bn)≤ µ(A∩Kc)≤ µ(Bn)+
∞

∑
j=n+1

µ(D j)

implies that µ(Bn)→ µ(A∩Kc) as n→ ∞. Thus letting n→ ∞ in (1.2.2) gives

(1.2.1).

www.cambridge.org/9781107134119
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-13411-9 — Fractals in Probability and Analysis
Christopher J. Bishop, Yuval Peres
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Minkowski and Hausdorff dimensions

The construction of Hausdorff measure can be made a little more general by

considering a positive, increasing function ϕ on [0,∞) with ϕ(0) = 0. This is

called a gauge function and we may associate to it the Hausdorff content

H
ϕ

∞ (K) = inf
"

∑
i

ϕ(|Ui|) : K ⊂
"

i

Ui

"

;

then H
ϕ

ε (K), and H ϕ(K) = limε→0H
ϕ

ε (K) are defined as before. The case

ϕ(t) = tα is just the case considered above. We will not use other gauge func-

tions in the first few chapters, but they are important in many applications, e.g.,

see Exercise 1.59 and the Notes for Chapter 6.

Lemma 1.2.5 If H α(K)< ∞ then H β (K) = 0 for any β > α .

Proof It follows from the definition ofH α
ε that

H
β

ε (K)≤ εβ−α
H

α
ε (K),

which gives the desired result as ε → 0.

Thus if we think ofH α(K) as a function of α , the graph ofH α(K) versus

α shows that there is a critical value of α where H α(K) jumps from ∞ to

0. This critical value is equal to the Hausdorff dimension of the set. More

generally we have:

Proposition 1.2.6 For every metric space E we have

H
α(E) = 0 ⇔ H

α
∞ (E) = 0

and therefore

dimE = inf{α : H
α(E) = 0}= inf{α : H

α(E)< ∞}
= sup{α : H

α(E)> 0}= sup{α : H
α(E) = ∞} .

Proof Since H α(E) ≥ H α
∞ (E), it suffices to prove “⇐”. If H α

∞ (E) = 0,

then for every δ > 0 there is a covering of E by sets {E k} with ∑∞
k=1 |Ek|α < δ .

These sets have diameter less than δ 1/α , hence H α
δ 1/α (E) < δ . Letting δ ↓ 0

yieldsH α(E) = 0, proving the claimed equivalence. The equivalence readily

implies that dimE = inf{α : H α(E) = 0}= sup{α : H α(E)> 0}. The other
conclusions follow from Lemma 1.2.5.

The following relationship to Minkowski dimension is clear

dim(K)≤ dimM (K)≤ dimM (K). (1.2.3)
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1.2 Hausdorff dimension and the Mass Distribution Principle 7

Indeed, if Bi = B(xi,ε/2) are N(K,ε) balls of radius ε/2 and centers xi in K

that cover K, then consider the sum

Sε =
N(K,ε)

∑
i=1

|Bi|α = N(K,ε)εα = εα−Rε ,

where Rε = logN(K,ε)
log(1/ε)

. If α > liminfε→0Rε = dimM (K) then infε>0 Sε = 0.

Strict inequalities in (1.2.3) are possible.

Example 1.2.7 Example 1.1.4 showed that K = {0}�

n{ 1n} has Minkowski
dimension 1

2
. However, any countable set has Hausdorff dimension 0, for if we

enumerate the points {x1,x2, . . .} and cover the nth point by a ball of diameter
δn = ε2−n we can make ∑n δ α

n as small as we wish for any α > 0. Thus K is

a compact set for which the Minkowski dimension exists, but is different from

the Hausdorff dimension.

Lemma 1.2.8 (Mass Distribution Principle) If E supports a strictly positive

Borel measure µ that satisfies

µ(B(x,r)) ≤Crα ,

for some constant 0<C<∞ and for every ball B(x,r), thenH α(E)≥H α
∞ (E)

≥ µ(E)/C. In particular, dim(E)≥ α .

Proof Let {Ui} be a cover of E. For {ri}, where ri > |Ui|, we look at the
following cover: choose x i in each Ui, and take open balls B(xi,ri). By as-

sumption,

µ(Ui)≤ µ(B(xi,ri))≤Cri
α .

We deduce that µ(Ui)≤C|Ui|α , whence

∑
i

|Ui|α ≥ ∑
i

µ(Ui)

C
≥ µ(E)

C
.

ThusH α(E)≥ H α
∞ (E)≥ µ(E)/C.

We note that upper bounds for Hausdorff dimension usually come from find-

ing explicit coverings of the set, but lower bounds are proven by constructing

an appropriate measure supported on the set. Later in this chapter we will gen-

eralize the Mass Distribution Principle by provingBillingsley’s Lemma (Theo-

rem 1.4.1) and will generalize it even further in later chapters. As a special case

of the Mass Distribution Principle, note that if A ⊆ R
d has positive Lebesgue

d-measure then dim(A) = d.
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8 Minkowski and Hausdorff dimensions

Example 1.2.9 Consider the Cantor set E obtained by replacing the unit

square in the plane by four congruent sub-squares of side length α < 1/2 and

continuing similarly. See Figure 1.2.1. We can cover the set by 4 n squares of

diameter
√
2 ·αn. Thus

dimM (E)≤ lim
n→∞

log4n

− log(
√
2αn)

=
log4

− logα
.

On the other hand, it is also easy to check that at least 4n sets of diameter αn

are needed, so

dimM (E)≥ log4

− logα
.

Thus the Minkowski dimension of this set equals β =− log4/ logα .

Figure 1.2.1 Four generations of a Cantor set.

We automatically get dim(E) ≤ β and we will prove the equality using

Lemma 1.2.8. Let µ be the probability measure defined on E that gives each

nth generation square the same mass (namely 4−n). We claim that

µ(B(x,r))≤Crβ ,

for all disks and some 0 <C < ∞. To prove this, suppose B= B(x,r) is some

disk hitting E and choose n so that α n+1 ≤ r< αn. Then B can hit at most 4 of

the nth generation squares and so, since α β = 1/4,

µ(B∩E)≤ 4 ·4−n = 4αnβ ≤ 16rβ .

Example 1.2.10 Another simple set for which the two dimensions agree and

are easy to compute is the von Koch snowflake. To construct this we start with

an equilateral triangle. At each stage we add to each edge an equilateral triangle

pointing outward of side length 1/3 the size of the current edges and centered

on the edge. See Figure 1.2.2 for the first four iterations of this process. The

boundary of this region is a curve with dimension log4/ log3 (see Theorem

2.2.2). We can also think of this as a replacement construction, in which at
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1.3 Sets defined by digit restrictions 9

each stage, a line segment is replaced by an appropriately scaled copy of a

polygonal curve.

Figure 1.2.2 Four generations of the von Koch snowflake.

Even for some relatively simple sets the Hausdorff dimension is still un-

known. Consider the Weierstrass function (Figure 1.2.3)

fα ,b(x) =
∞

∑
n=1

b−nα cos(bnx),

where b> 1 is real and 0< α < 1. It is conjectured that the Hausdorff dimen-

sion of its graph is 2−α , and this has been proven when b is an integer; see

the discussion in Example 5.1.7. On the other hand, some sets that are more

difficult to define, such as the graph of Brownian motion (Figure 1.2.4), will

turn out to have easier dimensions to compute (3/2 by Theorem 6.4.3).

Figure 1.2.3 The Weierstrass function with b = 2, α = 1/2. This graph has
Minkowski dimension 3/2 and is conjectured to have the same Hausdorff dimen-
sion.

1.3 Sets defined by digit restrictions

In this section we will consider some more complicated sets for which the

Minkowski dimension is easy to compute, but the Hausdorff dimension is not

www.cambridge.org/9781107134119
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-13411-9 — Fractals in Probability and Analysis
Christopher J. Bishop, Yuval Peres
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Minkowski and Hausdorff dimensions

Figure 1.2.4 1-dimensional Brownian motion. This graph has dimension 3/2 al-

most surely.

so obvious, and will be left to later sections. These subsets of [0,1] will be

defined by restricting which digits can occur at a certain position of a num-

ber’s b-ary expansion. In a later section we will consider sets defined by the

asymptotic distribution of the digits. We start by adapting Hausdorff measures

to b-adic grids.

Let b≥ 2 be an integer and consider b-adic expansions of real numbers, i.e.,
to each sequence {xn} ∈ {0,1, . . . ,b− 1}N we associate the real number

x=
∞

∑
n=1

xnb
−n ∈ [0,1].

b-adic expansions give rise to Cantor sets by restricting the digits we are al-

lowed to use. For example, if we set b= 3 and require xn ∈ {0,2} for all n we
get the middle thirds Cantor set C.

For each integer n let In(x) denote the unique half-open interval of the form

[ k−1
bn

, k
bn
) containing x. Such intervals are called b-adic intervals of generation

n (dyadic if b= 2).

It has been observed (by Frostman (1935) and Besicovitch (1952)) that we

can restrict the infimum in the definition of Hausdorff measure to coverings

of the set that involve only b-adic intervals and only change the value by a

bounded factor. The advantage of dealing with these intervals is that they are

nested, i.e., two such intervals either are disjoint or one is contained in the

other. In particular, any covering by b-adic intervals always contains a subcover

by disjoint intervals (just take the maximal intervals). Furthermore, the b-adic

intervals can be given the structure of a tree, an observation that we will use

extensively in later chapters.
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