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Basic notions and steady flows

In this chapter, we define the subject, derive the equations of motion and

describe their fundamental symmetries. We start from hydrostatics where all

forces are normal. We then try to consider flows this way as well, neglecting

friction. This allows us to understand some features of inertia, most impor-

tantly induced mass, but the overall result is a failure to describe a fluid flow

past a body. We are then forced to introduce friction and learn how it interacts

with inertia, producing real flows. We briefly consider an Aristotelean world

where friction dominates. In an opposite limit, we discover that the world with

a little friction is very much different from the world with no friction at all.

1.1 Definitions and basic equations

Here we define the notions of fluids and their continuous motion. These

definitions are induced by empirically established facts rather than deduced

from a set of axioms.

1.1.1 Definitions

We deal with continuous media where matter may be treated as homogeneous

in structure down to the smallest portions. The term fluid embraces both

liquids and gases and relates to the fact that even though any fluid may resist

deformations, that resistance cannot prevent deformation from happening.

This is because the resisting force vanishes with the rate of deformation.

With patience, anything can be deformed. Therefore, whether one treats the

matter as a fluid or a solid depends on the time available for observation.

As the prophetess Deborah sang, “The mountains flowed before the Lord”
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2 1 Basic notions and steady flows

(Judges 5:5). The ratio of the relaxation time to the observation time is called

the Deborah number.1 The smaller the number the more fluid the material.

A fluid can be in mechanical equilibrium only if all the mutual forces

between two adjacent parts are normal to the common surface. That experi-

mental observation is the basis of hydrostatics. If one applies a force parallel

(tangential) to the common surface then the fluid layer on one side of the

surface starts sliding over the layer on the other side. Such sliding motion

will lead to a friction between layers. For example, if you cease to stir tea

in a glass it could come to rest only because of such tangential forces, i.e.

friction. Indeed, if the mutual action between the portions on the same radius

was wholly normal, i.e. radial, then the conservation of angular momentum

about the rotation axis would cause the fluid to rotate forever.

Since tangential forces are absent at rest or for a uniform flow, it is natural

to consider first the flows where such forces are small and can be neglected.

Therefore, a natural first step out of hydrostatics into hydrodynamics is to

restrict ourselves to purely normal forces, assuming small velocity gradients

(whether such a step makes sense at all and how long such approximation

may last remains to be seen). Moreover, the intensity of a normal force

per unit area does not depend on the direction in a fluid (Pascal’s law, see

Exercise 1.1). We thus characterize the internal force (or stress) in a fluid

by a single scalar function p(r, t) called pressure, which is the force per

unit area. From the viewpoint of the internal state of the matter, pressure is

a macroscopic (thermodynamic) variable. Microscopically, we assume every

portion of the fluid to be in thermal equilibrium. In this case, the internal state

of the fluid is described completely by two variables, so one needs a second

thermodynamical quantity. We shall usually use the density ρ(r, t), in addition

to the pressure.

What analytic properties of the velocity field v(r, t) do we need to presume?

We suppose the velocity to be finite and a continuous function of r. In addition,

we suppose the first spatial derivatives to be everywhere finite. That makes

the motion continuous, i.e. trajectories of the fluid particles do not cross. The

equation for the distance δr between two close fluid particles is dδr/dt=δv so,

mathematically speaking, the finiteness of ∇v is the Lipschitz condition for this

equation to have a unique solution (a simple example of nonunique solutions

for non-Lipschitz equation is dx/dt = |x|1−α with two solutions, x(t)=(αt)1/α

and x(t)=0, starting from zero for α>0). For a continuous motion, any surface

moving with the fluid completely separates matter on the two sides of it. We

don’t yet know when exactly the continuity assumption is consistent with

the equations of the fluid motion. Whether velocity derivatives may turn into

infinity after a finite time is a subject of active research for an incompressible
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1.1 Definitions and basic equations 3

viscous fluid (and a subject of a one-million-dollar Clay prize). We shall see

that a compressible inviscid flow generally develops discontinuities, called

shocks.

1.1.2 Equations of motion for an ideal fluid

The Euler equation. The force acting on any fluid volume is equal to the

pressure integral over the surface: −∮

pdf. The surface area element df is a

vector directed as outward normal:

df

Let us transform the surface integral into the volume one: −∮

pdf =

−∫

∇pdV . The force acting on a unit volume is thus −∇p. That would

be wrong, however, to assume that this force is the time derivative of the

momentum ρv of this volume. To write the second law of Newton, we need

to single out a fixed body of fluid. An infinitesimal such body is called fluid

particle and it always contains the same mass, which we assume unity. Then

the force per unit mass, ∇p/ρ , must be equal to the acceleration dv/dt:

dv

dt
=−∇p

ρ
.

The acceleration dv/dt is not the rate of change of the fluid velocity at a fixed

point in space but the rate of change of the velocity of a given fluid particle as

it moves about in space. One uses the chain rule of differentiation to express

this (substantial or material) derivative in terms of quantities referring to points

fixed in space. During the time dt the fluid particle changes its velocity by dv

(which is composed of two parts, temporal and spatial):

dv=dt
∂v

∂ t
+(dr ·∇)v=dt

∂v

∂ t
+dx

∂v

∂x
+dy

∂v

∂y
+dz

∂v

∂ z
. (1.1)

It is the change in the fixed point plus the difference at two points dr apart,

where dr = vdt is the distance moved by the fluid particle during dt due to

inertia. Dividing (1.1) by dt we obtain the substantial derivative as a local

derivative plus a convective derivative:

dv

dt
=

∂v

∂ t
+(v ·∇)v .

We see that even when the flow is steady, ∂v/∂ t=0, the acceleration is nonzero

as long as (v ·∇)v �=0, that is if the velocity field changes in space along itself.
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4 1 Basic notions and steady flows

p p

v

Figure 1.1 The radial pressure gradient is normal to circular surfaces and cannot

change the moment of momentum of the fluid inside or outside the surface; it

changes the direction of velocity v but not its modulus.

Any function F(r(t), t), like fluid temperature, varies for a moving particle in

the same way, according to the chain rule of differentiation:

dF

dt
=

∂F

∂ t
+(v ·∇)F .

Writing now the second law of Newton for a unit mass of a fluid, we come

to the equation derived by Euler (Berlin 1757; Petersburg 1759):

∂v

∂ t
+(v ·∇)v=−∇p

ρ
. (1.2)

Before Euler, the acceleration of a fluid had been considered as due to the

difference of the pressure exerted by the enclosing walls. Euler introduced

the pressure field inside the fluid. For example, for the steadily rotating fluid

shown in Figure 1.1, the acceleration vector (v · ∇)v has a nonzero radial

component v2/r. The radial acceleration times the density gives the radial

pressure gradient: dp/dr=ρv2/r.

We can also add an external body force per unit mass (for gravity f=g):

∂v

∂ t
+(v ·∇)v=−∇p

ρ
+ f. (1.3)

The term (v ·∇)v describes inertia and makes (1.3) nonlinear.

Continuity equation. This expresses conservation of mass. If Q is the volume

of a moving element then dρQ/dt =0, that is

Q
dρ

dt
+ρ

dQ

dt
=0. (1.4)

The volume change can be expressed via v(r, t).
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1.1 Definitions and basic equations 5

Q

δx

δy

A B

The horizontal velocity of the point B relative to the point A is δx∂vx/∂x.

After the time interval dt, the length of the edge AB is δx(1+ dt∂vx/∂x).

Overall, after dt, one has the volume change

dQ=dtδxδyδz

(

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z

)

=dt Qdivv=dt
dQ

dt
.

Substituting that into (1.4) and canceling (arbitrary) Q we obtain the continuity

equation

dρ

dt
+ρdivv=

∂ρ

∂ t
+(v ·∇)ρ +ρdivv=

∂ρ

∂ t
+div(ρv)=0 . (1.5)

The last equation is almost obvious since for any fixed volume of space the

decrease of the total mass inside, −∫

(∂ρ/∂ t) dV , is equal to the flux
∮

ρv·df=
∫

div(ρv)dV .

Entropy equation. We now have four equations (1.3, 1.5) for five quan-

tities p,ρ ,vx,vy,vz, so we need one extra equation. In deriving (1.3, 1.5)

we have taken no account of energy dissipation, thus neglecting internal

friction (viscosity) and heat exchange. A fluid without viscosity and thermal

conductivity is called ideal. The motion of an ideal fluid is adiabatic, that is

the entropy of any fluid particle remains constant: ds/dt = 0, where s is the

entropy per unit mass. We can turn this equation into a continuity equation for

the entropy density in space

∂ (ρs)

∂ t
+div(ρsv)=0 . (1.6)

Since entropy is a function of pressure and density then (1.6) is the needed

extra relation between velocity, pressure and density. Different media differ by

the form of the function s(P,ρ).

Boundary conditions. At the boundaries of the fluid, the continuity equation

(1.5) is replaced by the boundary conditions:

(1) On a fixed boundary, vn =0;

(2) On a moving boundary between two immiscible fluids, p1 = p2 and

vn1 = vn2.

www.cambridge.org/9781107129566
www.cambridge.org


Cambridge University Press
978-1-107-12956-6 — Fluid Mechanics
Gregory Falkovich 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1 Basic notions and steady flows

These are particular cases of the general surface condition. Let F(r, t)= 0 be

the equation of the bounding surface. An absence of any fluid flow across the

surface requires

dF

dt
=

∂F

∂ t
+(v ·∇)F =0 ,

which means, as we now know, the zero rate of F variation for a fluid particle.

For a stationary boundary, ∂F/∂ t =0 and v⊥∇F ⇒vn =0.

1.1.3 Hydrostatics

A necessary and sufficient condition for fluid to be in a mechanical equilibrium

follows from (1.3):

∇p=ρf . (1.7)

Not every distribution of ρ(r) could be in equilibrium since ρ(r)f(r) is not

necessarily a gradient. If the force is potential, f=−∇φ , then taking the curl

of (1.7) we get

∇ρ ×∇φ =0.

This means that the gradients of ρ and φ are parallel and their level surfaces

coincide in equilibrium. The best-known example is gravity with φ = gz and

∂ p/∂ z=−ρg. For an incompressible fluid, it gives

p(z)= p(0)−ρgz.

For an ideal gas under a homogeneous temperature, which has p = ρT/m,

one gets

dp

dz
=− pgm

T
⇒ p(z)= p(0)exp(−mgz/T ).

For air at 0◦C, T/mg≃ 8 km. The Earth’s atmosphere is described by neither

a linear nor an exponential law because of an inhomogeneous temperature

(Figure 1.2). Assuming a linear temperature decay, T (z)=T0−αz, one obtains

a better approximation:

dp

dz
=−ρg=− pmg

T0−αz
,

p(z)= p(0)(1−αz/T0)
mg/α ,

which can be used not far from the surface with α ≃6.5◦C km−1.

Under gravity, density depends only on the distance from the Earth center

(or locally on the vertical coordinate z) in a mechanical equilibrium. According
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1.1 Definitions and basic equations 7

Real atmosphere
Incompressible

(linear)

Isothermal

(exponential)

z

p

Figure 1.2 Pressure–height dependence for an incompressible fluid (broken line),

isothermal gas (dotted line) and a real atmosphere (solid line).

to dp/dz =−ρg, the pressure also depends only on z. Pressure and density

determine temperature, which must then also be independent of the horizontal

coordinates. Different temperatures at the same height, in particular nonuni-

form temperature of the Earth surface, necessarily produce fluid motion, which

is why winds blow in the atmosphere and currents flow in the ocean. Another

source of atmospheric flows is thermal convection due to a negative vertical

temperature gradient. Let us derive the stability criterion for a fluid with a

vertical profile T (z). If a fluid element is shifted up adiabatically from z by

dz, it keeps its entropy s(z) but acquires the pressure p′= p(z+dz) so its new

density is ρ(s, p′). For stability, this density must exceed the density of the

displaced air at the height z+ dz, which has the same pressure but different

entropy s′ = s(z+ dz). The condition for stability of the stratification is as

follows:

ρ(p′,s)>ρ(p′,s′) ⇒
(

∂ρ

∂ s

)

p

ds

dz
<0 .

Entropy usually increases under expansion, (∂ρ/∂ s)p <0, and for stability we

must require ds/dz> 0. Entropy depends on p,T which both decay with the

height. Entropy decreases with cooling yet increases when P decreases. To see

which effect wins we compute:

ds

dz
=

(

∂ s

∂T

)

p

dT

dz
+

(

∂ s

∂ p

)

T

dp

dz
=

cp

T

dT

dz
+

(

∂V

∂T

)

p

g

V
>0. (1.8)

Here we used specific volume V = 1/ρ . For an ideal gas the coefficient of the

thermal expansion gives (∂V/∂T )p =V/T and we end up with

g

cp

>−dT

dz
. (1.9)
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8 1 Basic notions and steady flows

Indeed, stability requires that the gain in potential energy gdz must exceed

the decrease in thermal energy cpdT . For the Earth’s atmosphere, cp ∼
103J/kg−1K−1 and the convection threshold is 10◦ Ckm−1. The average

gradient is 6.5◦ Ckm−1, that is, the entropy decreases with the height and

the atmosphere is globally stable. However, local gradients vary very much

depending on ground albedo, evaporation, etc., so that the atmosphere is often

locally unstable with respect to thermal convection. The human body always

excites convection in room-temperature air.2

Temperature decays with height only in the troposphere that is until about

−50◦ C at 10–12 km, it is then constant up to about 35 km so that the pressure

decays exponentially, eventually it grows in the stratosphere until about 0◦ C

at 50 km. Looking down from the plane flying above 10 km one often sees flat

cloud top, particularly so-called anvil clouds, which is exactly where unstable

air stratification below turns into stable above.

The convection stability argument applied to an incompressible fluid rotat-

ing with the angular velocity Ω(r) gives the Rayleigh’s stability criterion,

d(r2Ω)2/dr>0, which states that the angular momentum of the fluid L=r2|Ω|
must increase with the distance r from the rotation axis.3 Indeed, if a fluid

element is shifted from r to r′ it keeps its angular momentum L(r), so that the

local pressure gradient dp/dr=ρr′Ω2(r′) must overcome the centrifugal force

ρr′(L2r4/r′4).

1.1.4 Isentropic motion

The simplest motion corresponds to constant s and allows for a substantial

simplification of the Euler equation. Indeed, it would be convenient to repre-

sent ∇p/ρ as a gradient of some function. For this end, we need a function

that depends on p,s, so that at s = const. its differential is expressed solely

via dp. There exists the thermodynamic potential called enthalpy, defined

as W = E + pV per unit mass (E is the internal energy of the fluid). For

our purposes, it is enough to remember from thermodynamics the single

relation dE = T ds− pdV so that dW = T ds+V dp (one can also show that

W = ∂ (Eρ)/∂ρ). Since s= const. for an isentropic motion and V =ρ−1 for a

unit mass, dW =dp/ρ and, without body forces one has

∂v

∂ t
+(v ·∇)v=−∇W. (1.10)

Such a gradient form will be used extensively for obtaining conservation laws,

integral relations, etc. For example, we can use the vector identity A× (∇×
B)=A ·(∇B)−(A ·∇)B) to represent
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1.1 Definitions and basic equations 9

(v ·∇)v=∇v2/2−v×(∇×v) ,

and get

∂v

∂ t
=v×(∇×v)−∇(W +v2/2). (1.11)

The first term on the right-hand side is perpendicular to the velocity. To

project (1.11) along the velocity and get rid of this term, we define a streamline

as a line whose tangent is everywhere parallel to the instantaneous velocity.

The streamlines are then determined by the relations

dx

vx

=
dy

vy

=
dz

vz

.

Note that for time-dependent flows streamlines are different from particle

trajectories: tangents to streamlines give velocities at a given time while

tangents to trajectories give velocities at subsequent times. One records

streamlines experimentally by seeding fluids with light-scattering particles;

each particle produces a short trace on a short-exposure photograph, and the

length and orientation of the trace indicates the magnitude and direction of

the velocity. Streamlines can intersect only at a point of zero velocity called

the stagnation point.

Let us now consider a steady flow, assuming ∂v/∂ t = 0, and take the

component of (1.11) along the velocity at a point:

∂

∂ l
(W +v2/2)=0 . (1.12)

We see that W +v2/2=E+ p/ρ+v2/2 is constant along any given streamline,

but may be different for different streamlines (Bernoulli 1738). Bernoulli

theorem, of course, is a particular case of energy conservation. The change

of the total energy density is not zero along the streamline but is equal to

P2/ρ2 −P1/ρ1 which is the work done. This is the reason W rather E enters

the conservation law, as also discussed after (1.18). Alternatively, one may say

that W is a potential energy of a fluid particle, see (1.41) below. In a gravity

field,

W +gz+v2/2= const. (1.13)

Without much exaggeration, one can say that most fluid-mechanics estimates

use (1.12) or (1.13). Let us consider several applications of this useful relation.

Imagine that our spaceship suffered a meteorite attack that left holes in the

walls of the cabin and the tank with liquid fuel. We need to estimate how

fast we lose air from the cabin and fuel from the tank. Since there is vacuum
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10 1 Basic notions and steady flows

outside, we can neglect thermal exchange and consider both flows isentropic.

Liquid could be treated as incompressible, its internal energy E is then constant

without any external force. Bernoulli theorem then gives the limiting velocity

with which such a liquid escapes from a large reservoir into vacuum:

v=
√

2p0/ρ .

For water (ρ =103 kgm−3) at atmospheric pressure (p0 =105 Nm−2) one gets

v=
√

200≈14ms−1.

For a gas, pressure drop must be accompanied by density change. The

adiabatic law, p/p0 =(ρ/ρ0)
γ , gives the enthalpy as:

W =

∫

dp

ρ
=

γ p

(γ −1)ρ
.

The limiting velocity for the escape into vacuum can again be found from

Bernoulli theorem:

γ p0

(γ −1)ρ
=

v2

2
⇒ v=

√

2γ p0

(γ −1)ρ
,

The velocity is
√

γ/(γ −1) times larger than for an incompressible fluid which

corresponds to the limit γ ≫1. The gas flows faster because the internal energy

of the gas decreases as it flows, thus increasing the kinetic energy. We conclude

that a meteorite-damaged spaceship loses the air from the cabin faster than the

liquid fuel from the tank. We shall see later that (∂P/∂ρ)s=γP/ρ is the sound

velocity squared, c2, so that v= c
√

2/(γ −1). For an ideal gas with n internal

degrees of freedom, W =E + p/ρ = nT/2m+T/m so that γ =(2+n)/n. For

bi-atomic molecules n = 5 (3 translations and 2 rotations) at not very high

temperature, when vibrations are not excited.

Another frequent occurrence is efflux from a small orifice under the action

of gravity. Supposing the external pressure to be the same at the horizontal

surface and at the orifice, we apply the Bernoulli relation to the streamline

which originates at the upper surface with almost zero velocity and exits with

velocity v=
√

2gh (Torricelli 1643). The Torricelli formula is not of much use

practically to calculate the rate of discharge, which in reality is not equal to

the orifice area times
√

2gh, the fact known to wine merchants long before

physicists. Indeed, streamlines converge from all sides toward the orifice so

that the jet continues to converge for a while after coming out (Figure 1.3).

Moreover, the converging motion makes the pressure in the interior of the jet

somewhat greater than that at the surface (as is clear from the curvature of

streamlines) so that the velocity in the interior is somewhat less than
√

2gh.

The experiment shows that contraction ceases and the jet becomes cylindrical
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