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Introduction and Constitutive
Equations For Linearly Elastic
Materials

Plates are structural elements given by a flat surface with a given thickness h. The flat

surface is the middle surface of the plate; the upper and lower surfaces delimiting the

plate are at distance h/2 from the middle surface. The thickness is small compared with

the in-plane dimensions and can be either constant or variable. Thin plates are very stiff

for in-plane loads, but they are quite flexible in bending. Many applications of plates,

made of extremely different materials, can be found in engineering. For example, very

thin circular plates are used in computer hard disk drives; rectangular and trapezoidal

plates can be found in the wing skin, horizontal tail surfaces, flaps and vertical fins of

aircraft; cantilever rectangular plates are used as nano-resonators for drug detection; and

clamped circular thin nano-plates in graphene are tested to be used as nano-devices for

pressure measurement.

On the other hand, shells present a curved middle surface. These structures are

abundantly present in nature. In fact, because of the curvature of the middle surface,

shells are very stiff for both in-plane and bending loads; therefore, they can span over

large areas by using a minimum amount of material. In the human bodies, arteries and

the tympanic membrane are shells.

Shells are largely used in engineering; some shell structures are impressive and

beautiful. Shell structural elements are largely present in spacecraft, aeronautics and

sport cars, where the use of composite materials is becoming very significant (see

Figure 1). Functionally graded materials also have potential for applications in space

and nuclear engineering.

One of the main targets in the design of shell structural elements is to make the

thickness as small as possible to spare material and to make the structure light. The

analysis of shells has difficulty related to the curvature, which is also the reason for

the carrying load capacity of these structures. In fact, a change of the curvature can give

a totally different strength. Moreover, because of the optimal distribution of material,

shells collapse for buckling much before the failure strength of the material is reached.

For their thin nature, they can present large displacements, with respect to the shell

thickness, associated to small strains before collapse. This is the rationale for using a

nonlinear shell and plate theory for studying shell stability.

Shells are often subjected to dynamic loads that cause vibrations; vibration ampli-

tudes of the order of the shell thickness can be easily reached in many applications.

Therefore, a nonlinear shell theory should be applied. However, the most challenging

shells and plates to study are those made of soft biological materials. In fact, due to the

very large deformations, the presence of reinforcing fibers specifically oriented, and the
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physically nonlinear characteristics of their material, their study is complex (see

Figure 2). Biological materials can be considered hyperelastic for static loads and

viscoelastic in dynamics.

The book is organized in 14 chapters. Chapter 1 discusses classical nonlinear theories

for rectangular and circular plates, circular cylindrical and spherical shells. Classical

shell theories for doubly curved shallow shells and for shells of arbitrary shape are

discussed in Chapter 2 together with an exact description of the pressure load. Compos-

ite and functionally graded materials are introduced in Chapter 3 with advanced non-

linear shell theories that include shear deformation, rotary inertia and thermal loads.

Chapter 4 deals with an advanced shell theory that takes into account the thickness

deformation. This is significant in case of large deformations, as those observed for soft

materials. The first four chapters are self-contained with the full development of the

theories under clear hypotheses and limitations. They present material that is usually

spread in several articles and books with different approaches and symbols. The shell

theories are expressed in lines-of-curvature coordinates, which is the form suitable for

applications and computer implementation. In some cases, improved formulations,

suitable for thick shells and large rotations, have been developed.

Hyperelastic materials, which are absolutely necessary to model soft biological

tissues as the human skin, ligaments or arteries, are treated in Chapter 5. The nonlinear

Figure 1 Boeing 787, the first commercial airplane made mostly of composite materials (image

from www.boeing.com – courtesy of Boeing).

Figure 2 Layers of an artery (image from www.full-health.com).
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dynamics, stability, bifurcation analysis and modern computational tools are introduced

in Chapter 6. The Galerkin method and the energy approach that leads to the Lagrange

equations of motion are introduced here. Chapter 7 addresses damping, linear and

nonlinear viscoelasticity. Advanced nonlinear damping models are introduced based

on the theory of viscoelasticity.

Chapter 7 closes the most general part of the book, with the following seven chapters

addressing specific problems and applications.

Linear and nonlinear vibrations of rectangular plates with different boundary condi-

tions are studied in Chapter 8. Both isotropic and laminated composite materials are

treated. Plates in functionally graded materials are instead investigated in Chapter 9.

Chapter 10 addresses rectangular plates in rubber and biological materials. Linear and

nonlinear vibrations of simply supported circular cylindrical shells in isotropic and

laminated composite materials are studied in Chapter 11. Nonlinear vibrations of

circular cylindrical shells with different boundary conditions are addressed in Chap-

ter 12. The specific problem of the response of the human aorta subjected to static and

dynamic blood pressure is the subject of Chapter 13, where the effect of residual

stresses is taken into account. Nonlinear vibrations of doubly curved shells with

rectangular base, including spherical and hyperbolic paraboloidal shells, are investi-

gated in Chapter 14. Both classical and first-order shear deformation theories are used to

study nonlinear vibrations of laminated composite shells. Static buckling, including the

effect of geometric imperfections is also addressed. The static buckling and nonlinear

vibrations of circular cylindrical shells under axial loads are investigated in Chapter 15,

with particular attention to geometric imperfections and period-doubling dynamic

bifurcations.

I.1 Constitutive Equations for Linearly Elastic Materials

The constitutive equations characterize the individual material and its reaction to

applied loads. In this section, the constitutive equations for linearly elastic material

are introduced, where linear means that the material undergoes small deformations. In a

subsequent chapter (Chapter 5), more complicated constitutive equations for nonlinear

materials are introduced, and they are particularly suitable for large strains, which

characterize soft materials.

A homogeneous solid has material properties that are the same throughout the body.

A heterogeneous body has properties that are a function of the position. An anisotropic

body has material properties that are different in different directions at the same point.

An isotropic solid has the same properties in any direction at any point. An anisotropic

or isotropic material can be homogeneous or heterogeneous.

A solid is said to be perfectly elastic when it returns to its original shape after

removing the loads that caused the deformation, and there is a one-to-one correspond-

ence between the state of stress and the state of strain. This excludes creep – i.e., strain

at constant stress and stress relaxation at constant strain. In this chapter, it is assumed

that the material is perfectly elastic.

3I.1 Equations for linearly elastic materials
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The constitutive equations for linear elasticity in three dimensions are

σij ¼
X

3

k¼1

X

3

l¼1

Cijkl εkl, (I.1)

where σij and εkl are the components of the second-order stress and strain tensors,

respectively. Here the first subscript indicates the plane orthogonal to that axis on which

the stress or strain acts, and the second subscript indicates the direction. Instead, Cijkl are

the 81 components of the fourth-order elasticity modulus tensor. Due to the symmetry,

only 36 constants are independent.

In case of isotropic linearly elastic materials, it is obtained that

σij ¼ λδij
X

3

k¼1

εkk þ 2μεij, (I.2)

in which λ and μ are the two Lamé elastic constants and δij is the Kronecker delta. The

relationship with the shear modulus G, Young’s modulus E, Poisson’s ratio ν and bulk

modulus κ are

G ¼ μ, E ¼
G 3λþ 2Gð Þ

λþ G
, ν ¼

λ

2 λþ Gð Þ
, κ ¼ λþ

2

3
μ (I.3a–d)

I.1.1 3-D Constitutive Equations for a Layer within a Laminated Shell

The generalized Hooke’s law relates the six components of stress to the six components

of strain (see Figure 3) as Reddy (2007) provides
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, (I.4)

where σxx, σyy and σzz are the orthogonal normal stresses in x, y and z direction,

respectively, τyz, τxz and τxy are the shear stresses acting on the planes orthogonal to y,

x, and x, respectively, and in direction z, z and y, respectively, and the superscript (k)

Figure 3 Stress components.
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refers to the kth layer within a laminate. This generic material needs 36 coefficients cij to

be described.

Under the assumption that exists a potential function W = W(εij), named the strain

energy density function, whose derivative with respect to a strain component gives the

corresponding stress component – i.e., σij ¼ ∂W=∂εij – the 6 � 6 matrix C on the left-

hand side of equation (I.4) becomes symmetric. If the strain energy density function

exists, then the material is termed hyperelastic and the number of independent coeffi-

cients in the matrix C is reduced to 21.

In case of orthotropic material –i.e., when the material presents three mutually

orthogonal symmetry planes – the three-dimensional stresses and strains in the material

principal coordinates (x, y, z) in the kth layer of a laminated shell are linked by the

relationship
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(I.5)

where Ex, Ey and Ez are the Young’s moduli in x, y and z direction, respectively, and

Gxy, Gxz and Gyz are the shear moduli in x–y, x–z and y–z directions, respectively; νij are

the Poisson’s ratios.

The transverse isotropy assumption with respect to planes orthogonal to the x axis –

i.e., assuming fibers in the direction parallel to axis x – is then introduced so that Ey = Ez,

Gxy = Gxz, νxy = νxz, νyx = νzx and νyz = νzy. Then only 9 independent coefficients are used

in the matrix C. It can be observed that in the case of Poisson’s ratios all equal to 0.5

(incompressible material), the matrix on the right-hand side of equation (I.5) becomes

singular and cannot be inverted. In fact, for incompressible material, the strains εxx, εyy

and εzz are not independent but linked by a relationship. In other cases, inverting

equation (I.5) and keeping into account the assumption of transverse isotropy, the

stress–strain relations for the kth orthotropic lamina of the shell in the material principal

coordinates (x, y, z) are obtained (Reddy 2007)
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, (I.6)

and the coefficients cij are given by

c11¼
Ex 1�νyz
� �

1�νyz�2νxyνyx
� � , c12¼c21¼c13¼c31¼

νxyEy

1�νyz�2νxyνyx
� �¼

νyxEx

1�νyz�2νxyνyx
� � ,

(I.7a,b)
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c22¼c33¼
1�νxyνyx
� �

Ey

1þνyz
� �

1�νyz�2νxyνyx
� � , c23¼c32¼

νyzþνxyνyx
� �

Ey

1þνyz
� �

1�νyz�2νxyνyx
� � ,

(I.7c,d)

νijEj¼νjiEi: (I.7e)

In particular, equation (I.6) gives

σzz ¼
νxyEy

1� νyz � 2νxyνyx
� � εxx þ

νyz þ νxyνyx
� �

Ey

1þ νyz
� �

1� νyz � 2νxyνyx
� � εyy

þ
1� νxyνyx
� �

Ey

1þ νyz
� �

1� νyz � 2νxyνyx
� � εzz: (I.8)

I.1.2 Constitutive Equations in Case of Negligible Transverse Normal Stress

It is assumed that the transverse normal stress σzz ¼ 0; i.e., it is negligible. In general, it

is verified that σzz is small compared to the transverse shear stresses τxz and τyz, except

near the shell edges, so that the hypothesis is a good approximation of the actual

behaviour of moderately thick shells and plates. The stresses and strains in this case,

in the material principal coordinates, in the kth layer of a laminated shell are linked by

the relationship (Reddy 2007)

εxx
εyy
γyz
γxz
γxy

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼

1=Ex �ν21=Ey 0 0 0

�ν12=Ex 1=Ey 0 0 0

0 0 1=Gyz 0 0

0 0 0 1=Gxz 0

0 0 0 0 1=Gxy

2

6

6

6

6

4

3

7

7

7

7

5

kð Þ
σxx
σyy
τyz
τxz
τxy

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

kð Þ

, (I.9)

which can be inverted to give the stress–strain relations
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, (I.10)

and the coefficients cij are given for a lamina by

c11 ¼
Ex

1� νxyνyx
, c12 ¼ c21 ¼

Eyνxy

1� νxyνyx
, c22 ¼

Ey

1� νxyνyx
, νijEj ¼ νjiEi :

(I.11a–d)

Equations (I.11a–d) are obtained (1) under the transverse isotropy assumption with

respect to planes orthogonal to the x axis – i.e., assuming fibers in the direction parallel

to axis x, so that Ey = Ez, Gxy = Gxz and νxy = νxz – and (2) solving the constitutive

equations for εzz as function of εxx and εyy and then eliminating it.
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I.1.3 Constitutive Equations in Case of Plane Stress (Classical Theories of

Plates and Shells)

In the case of plain stress, σ3 ¼ τ13 ¼ τ23 ¼ 0, and equation (I.10) can be simplified into
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, (I.12)

and the coefficients cij are given for a lamina by

c11 ¼
Ex

1� νxyνyx
, c12 ¼ c21 ¼

Eyνxy

1� νxyνyx
, c22 ¼

Ey

1� νxyνyx
, νxyEy ¼ νyxEx:

(I.13a–d)

Equations (I.13a–d) are obtained under the transverse isotropy assumption with respect

to planes orthogonal to the x axis. This formulation of the constitutive equations is used

in conjunction with the classical theories of plates and shells.

In the case of homogeneous and isotropic material, which is characterized by only

two coefficients, the Young modulus E and the Poisson’s ratio ν, the constitutive

equations can be simplified into
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, (I.14)

which gives

σxx ¼
E

1� ν2
εxx þ ν εyy
� �

, σyy ¼
E

1� ν2
εyy þ ν εxx
� �

, τxy ¼
E

2 1þ νð Þ
γxy:

(I.15)

In equation (I.14), the following condition for the shear modulus, valid for homoge-

neous and isotropic materials, has been used:

G ¼
E

2 1þ νð Þ
: (I.16)
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1 Classical Nonlinear Theories of
Elasticity of Plates and Shells

1.1 Introduction

It is well known that certain elastic bodies may undergo large displacements while the

strain at each point remains small. The classical theory of elasticity treats only

problems in which displacements and their derivatives are small. Therefore, to treat

such cases, it is necessary to introduce a theory of nonlinear elasticity with small

strains. If the strains are small, the deformation in the neighbourhood of each point can

be identified with a deformation to which the linear theory is applicable. This gives a

rationale for adopting Hooke’s stress–strain relations, and in the resulting nonlinear

theory, large parts of the classical theory are preserved (Stoker 1968). However, the

original and deformed configuration of a solid now cannot be assumed to be coincident,

and the strains and stresses can be evaluated in the original undeformed configuration

by using Lagrangian description, or in the deformed configuration by using Eulerian

description (Fung 1965).

In this chapter, the classical geometrically nonlinear theories for rectangular plates,

circular cylindrical shells, circular plates and spherical shells are derived, classical

theories being those that neglect the shear deformation. Results are obtained in Lagran-

gian description, the effect of geometric imperfections is considered and the formulation

of the elastic strain energy is also given. Classical theories for shells of any shape, as

well as theories including shear deformation, are addressed in Chapters 2 and 3.

1.1.1 Literature Review

A short overview of some theories for geometrically nonlinear shells and plates will

now be given. Some information is taken from the review by Amabili and Païdoussis

(2003) and a more recent review by Alijani and Amabili (2014).

In the classical linear theory of plates, there are two fundamental methods for the

solution of the problem. The first method was proposed by Cauchy (1828) and Poisson

(1829), the second by Kirchhoff (1850). The method of Cauchy and Poisson is based on

the expansion of displacements and stresses in the plate in power series of the distance z

from the middle surface. Disputes concerning the convergence of these series and about

the necessary boundary conditions made this method unpopular. Moreover, the method

proposed by Kirchhoff has the advantage of introducing physical meaning into the

theory of plates. Von Kármán (1910) extended this method to study finite deformation

of plates, taking into account nonlinear terms. The nonlinear dynamic case was studied

8
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by Chu and Herrmann (1956), who were the pioneers in studying nonlinear vibrations

of rectangular plates. In order to deal with thicker and laminated composite plates, the

Reissner-Mindlin theory of plates (first-order shear deformation theory) was introduced

to take into account transverse shear strains. Five variables are used in this theory to

describe the deformation: three displacements of the middle surface and two rotations.

The Reissner-Mindlin approach does not satisfy the transverse shear boundary condi-

tions at the top and bottom surfaces of the plate because a constant shear angle through

the thickness is assumed and plane sections remain plane after deformation. As a

consequence of this approximation, the Reissner-Mindlin theory of plates requires

shear correction factors for equilibrium considerations. For this reason, Reddy (1990)

has developed a nonlinear plate theory that includes cubic terms (in the distance from

the middle surface of the plate) in the in-plane displacement kinematics. This higher-

order shear deformation theory satisfies zero transverse shear stresses at the top and

bottom surfaces of the plate; up to cubic terms are retained in the expression of the

shear, giving a parabolic shear strain distribution through the thickness, resembling with

good approximation the results of three-dimensional elasticity. The same five variables

of the Reissner-Mindlin theory are used to describe the kinematics in this higher-order

shear deformation theory, but shear correction factors are not required.

Donnell (1934) established the nonlinear theory of circular cylindrical shells under

the simplifying shallow-shell hypothesis. Because of its relative simplicity and practical

accuracy, this theory has been widely used. The most frequently used form of Donnell’s

nonlinear shallow-shell theory (also referred to as Donnell-Mushtari-Vlasov theory)

introduces a stress function in order to combine the three equations of equilibrium

involving the shell displacements in the radial, circumferential and axial directions into

two equations involving only the radial displacement w and the stress function F. This

theory is accurate only for modes with: circumferential wavenumber n that are not small;

specifically, 1=n2 << 1 must be satisfied, so that n � 4 or 5 is required in order to have

fairly good accuracy. Donnell’s nonlinear shallow-shell equations are obtained by neg-

lecting the in-plane inertia, transverse shear deformation and rotary inertia, giving accur-

ate results only for very thin shells. The predominant nonlinear terms are retained, but

other secondary effects, such as the nonlinearities in curvature strains, are neglected;

specifically, the curvature changes are expressed by linear functions of w only.

Von Kármán and Tsien (1941) performed a seminal study on the stability of axially

loaded circular cylindrical shells, based on Donnell’s nonlinear shallow-shell theory. In

their book, Mushtari and Galimov (1957) presented nonlinear theories for moderate and

large deformations of thin elastic shells. The nonlinear theory of shallow shells is also

discussed in the book by Vorovich (1999), where the classical Russian studies, for

example due to Mushtari and Vlasov, are presented.

Sanders (1963) developed a more refined nonlinear theory of shells, expressed in

tensorial form. The same equations were obtained by Koiter (1966) around the same

period, leading to the designation of these equations as the Sanders-Koiter equations.

Later, this theory was reformulated in lines-of-curvature coordinates, that is, in a form

that can be more suitable for applications; see, for example, Budiansky (1968), where

only linear terms are given. According to the Sanders-Koiter theory, all three displace-

ments are used in the equations of motion. Changes in curvature and torsion are linear

91.1 Introduction
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according to both the Donnell and the Sanders-Koiter nonlinear theories (Yamaki

1984). The Sanders-Koiter theory gives accurate results for vibration amplitudes

significantly larger than the shell thickness for thin shells (Amabili 2003).

Details on the aforementioned nonlinear shell theories may be found in Yamaki

(1984) and Amabili (2003), with an introduction to another accurate theory called the

modified Flügge nonlinear theory of shells, also referred to as the Flügge-Lur’e-Byrne

nonlinear shell theory (Ginsberg 1973). The Flügge-Lur’e-Byrne theory is close to the

general large deflection theory of thin shells developed by Novozhilov (1953) and

differs only in terms for change in curvature and torsion.

Additional nonlinear shell theories were formulated by Naghdi and Nordgren (1963),

using the Kirchhoff hypotheses, and by Libai and Simmonds (1988).

In order to treat moderately thick laminated shells, the nonlinear first-order shear

deformation theory of shells was introduced by Reddy and Chandrashekhara (1985),

which is based on the linear first-order shear deformation theory introduced by Reddy

(1984). Five independent variables, three displacements and two rotations, are used to

describe the shell deformation. This theory may be regarded as the thick-shell version of

the Sanders theory for linear terms and of the Donnell nonlinear shell theory for

nonlinear terms. A linear higher-order shear deformation theory of shells has been

introduced by Reddy and Liu (1985); see also Reddy (2003). Dennis and Palazotto

have extended this theory to nonlinear deformations (1990); see also Soldatos (1992).

More refined geometrically nonlinear theories have been developed by Amabili and

Reddy (2010) and Amabili (2015).

Shell theories taking into account thickness deformation are important for very large

deformations of soft structures and allow to use three-dimensional constitutive equa-

tions. Some advanced shell theories that take shear and thickness deformation into

account are those of Carrera et al. (2011), Alijani and Amabili (2014), Payette and

Reddy (2014), Amabili (2015), and Gutiérrez Rivera et al. (2016).

The nonlinear mechanics of composite laminated shells has also been investigated by

many authors. Librescu (1987) developed refined nonlinear theories for anisotropic

laminated shells. Other theories applied to the dynamics of laminated shells have been

developed, for example, by Tsai and Palazotto (1991), Pai and Nayfeh (1994), Kobaya-

shi and Leissa (1995), Sansour et al. (1997), and Gummadi and Palazotto (1999).

Nonlinear electromechanics of piezoelectric laminated shallow spherical shells was

developed by Zhou and Tzou (2000).

1.2 Large Deflection of Rectangular Plates

1.2.1 Green’s and Almansi Strain Tensors for Finite Deformation

It is assumed that a continuous body changes its configuration under physical actions

and the change is continuous (no fractures are considered). A system of coordinates x1,

x2, x3 is chosen so that a point P of a body at a certain instant of time is described by the

coordinates xi (i = 1,2,3). At a later instant of time, the body has moved and deformed to

a new configuration; the point P has moved to Q with coordinates ai (i = 1,2,3) with
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