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Approach to Transport Phenomena

“A good grasp of transport phenomena is essential for understanding many

processes in engineering, agriculture, meteorology, physiology, biology, ana-

lytical chemistry, materials science, pharmacy, and other areas. Transport

phenomena is a well-developed and eminently useful branch of physics that

pervades many areas of applied science. [. . . ] The subject of transport phe-

nomena includes three closely related topics: fluid dynamics, heat transfer,

and mass transfer. Fluid dynamics involves the transport of momentum, heat

transfer deals with the transport of energy, and mass transfer is concerned

with the transport of mass of various chemical species.” Let’s approach the

field of transport phenomena by trying to appreciate and elaborate this in-

troductory quote on the importance and ubiquity of transport phenomena

in science and engineering from the pioneering textbook of Bird, Stewart

and Lightfoot.1 Let’s look at the topic of transport phenomena from various

perspectives.

1.1 The First Three Minutes

We wake up in the morning, switch on the light, and take a shower. Our

day usually begins with the flow of electric energy and water to our house.

We immediately find ourselves right in the middle of transport phenomena.

What a luxury.

Let’s add a little drama by scaling things up. Consider (i) crude oil

pipelines and (ii) high-voltage electric power transmission lines. (i) For

example, the Druzhba2 pipeline built in the early 1960s carries crude oil

from the Russian heartland all the way to Germany (some 4 000 km). Some

200 000 m3 of crude oil per day are pumped through steel tubes with a

1 See p. 1 of Bird, Stewart & Lightfoot, Transport Phenomena (Wiley, 2001).
2 Druzhba is the Russian word for friendship.
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2 Approach to Transport Phenomena

diameter of up to one meter, which implies a characteristic speed of 3 m/s.

Every three days one could fill a supertanker. Pumping stations are typi-

cally required every 100 km (give or take a factor of two). (ii) Electric energy

transmission in overhead power lines takes place above 100 kV. For proper

load balancing and to satisfy the demand of a flourishing electricity trading

market, electric energy is transported over large distances. The largest power

grid, with a total power generation of 667 gigawatts, is the Synchronous Grid

of Continental Europe, which serves 400 million customers in 24 countries.3

The length scale associated with these impressive transport challenges is

of the order of the size of countries or continents. The same length scale

is also involved in long-term weather forecasts or the prediction of climate

changes, where large-scale transport in the atmosphere and oceans matters.

Very clearly, our life depends on transport phenomena; not just in the

sense of convenience considered so far, but also in the sense of biological func-

tions. We depend on the never-ceasing flow of blood and oxygen through our

body, and drugs need to be targeted to the appropriate places in our body.

On the level of cells, ions need to be transported, often against concentra-

tion gradients, which requires energy from a chemical reaction. Also muscle

contraction relies on transport phenomena. These biological functions are

associated with transport phenomena on a molecular length scale.

Let’s add even more drama to the story. Let’s not think about the first

three minutes of our day or the first three minutes of this course on transport

phenomena, but about the first three minutes of the Universe. Even the

origin of the Universe is largely dominated by the transport of mass and

energy in the presence of violent reactions between particles.4

The ubiquity and importance of transport phenomena should be clear

from these few obvious examples. Moreover, a thorough understanding

of transport phenomena is of self-evident economic and environmental

importance.

Exercise 1.1 Transport of Crude Oil and Money

The Trans-Alaska Pipeline (see Figure 1.1) built in the 1970s carries crude oil

from Prudhoe Bay to Valdez, Alaska, a distance of roughly 1300 km. Typically,

100 000m3 of crude oil per day are pumped through steel tubes with a diameter of

more than one meter. According to the current market price of crude oil, usually

given in dollars per barrel, what is the value of the crude oil passing through the

Trans-Alaska Pipeline in one day?

3 According to en.wikipedia.org/wiki/Synchronous grid of Continental Europe.
4 Weinberg, The First Three Minutes (Basic Books, 1977).
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1.2 Complex Systems 3

Figure 1.1 The Trans-Alaska Pipeline starts at Pump Station 1 in
Prudhoe Bay. (Figure from www.clui.org/ludb/site/alaska-pipeline-
origin.)

1.2 Complex Systems

In spite of their striking importance, the transport phenomena discussed in

the preceding section are of a rather basic type, at least, as they have been

presented. In modern applications, we usually deal with far more complex

systems. A few examples should suffice to illustrate this point and to indicate

some important implications for this course.

What happens with crude oil after it has been transported? It enters a

chemical plant where it is processed and refined into more useful products.

In such an oil refinery, we encounter transport in a huge number of pipes car-

rying various streams of different fluids between chemical processing units,

such as distillation towers and cracking units, where separation processes

and chemical reactions are taking place during the flow. Among the com-

ponents separated in an oil refinery are the feedstocks for the syntheses of

various kinds of polymers, or plastics. Finally, very complex flow situations

of highly viscoelastic fluids occur in polymer processing operations, such as

injection molding or film blowing. There is a really long way to go for crude

oil.

In meteorology, atmospheric flow phenomena on a wide range of length

scales are affected by a number of other systems and phenomena, such as

ocean circulations. Nontrivial boundary conditions play an important role
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4 Approach to Transport Phenomena

and phase transitions (evaporation, condensation, melting) are ubiquitous

phenomena, the occurrence of which may be of particular interest.

We have already seen that transport processes in biological systems occur

on very different length scales ranging from the meter scale of our body to

the 1–100µm scale of cells. These transport phenomena are coupled to many

further biophysical and biochemical processes over a large range of length

scales.

The briefly sketched complexity of many transport phenomena of interest

has some immediate implications. Once we have understood the basic struc-

ture of balance equations and the constitutive assumptions for the fluxes oc-

curring in these equations, we are faced with a number of serious challenges.

How do we obtain all the material properties, such as transport coefficients,

occurring in these equations? How do we actually solve rather large sets of

coupled equations? How do we formulate physically meaningful boundary

conditions, and how do we get the additional material information possibly

contained in them? In this course we build up increasing knowledge about

these questions and consider increasingly complex applications.

The experimental measurement of material properties related to transport

is a challenging topic. In Chapter 7, we describe the most basic ideas for

measuring transport coefficients, such as viscosity, thermal conductivity, and

diffusivity. Microbead rheology provides another alternative to investigate

momentum transport, as discussed in Chapter 25. By developing the theory

of dynamic light scattering in Chapter 26, we obtain an alternative tool

for measuring transport coefficients. Thorough foundations for discussing

boundary conditions and expressing the physics happening at boundaries

and interfaces are laid in Chapters 13–15.

Statistical mechanics offers an alternative theoretical path to obtain ma-

terial properties, which allows the development of basic ideas for the kinetic

theories of gases (Chapter 21) and polymeric liquids (Chapter 22). Further

applications of methods for bridging scales include porous media (Chap-

ter 23) as well as molecular motors and ion pumps (Chapter 24).

Once we have the equations, the boundary conditions, and all the re-

quired material information, we need to solve the equations. We typically

deal with nonlinear and often coupled partial differential equations. Finite

element and finite difference methods are important tools to solve such equa-

tions, and can be implemented using several commercial software packages.

In some cases, the lattice Boltzmann method offers an interesting alterna-

tive (inspired by the kinetic theory of gases, but going far beyond it). To

solve some illustrative problems with very simple simulation programs, we

introduce Brownian dynamics at an early stage (Chapter 3).
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1.3 Classical Field Theories 5

1.3 Classical Field Theories

Transport implies the flow of certain quantities in space, and it takes time.

For example, mass can move from point to point in space. To describe this

transport of mass, it is convenient to assign a mass density to every point in

space so that we end up with mass density fields that change in space and

time. Similarly, momentum and energy density fields arise naturally, and

velocity and temperature fields may be convenient alternatives. In modeling

transport phenomena, we are interested in the time-evolution equations for

such hydrodynamic fields, that is, we actually deal with classical field theo-

ries. The most well-known field equations of transport theory are the Navier–

Stokes–Fourier equations of hydrodynamics (to be developed in Chapters 5

and 6 and briefly summarized in Section 7.1), which provide the basic and

quite universal description of the flow of mass, momentum, and energy. As a

consequence of convection, these field equations are nonlinear in the hydro-

dynamic fields and hence exhibit a very rich behavior of solutions, including

turbulence. Complex fluids, often referred to as soft matter, require even

more complicated field theories, typically with additional fields describing

the local structure of the complex fluid (Chapter 12).

All field theories are idealizations and must be expected to lead to dif-

ficulties when variations from point to point are taken too literally. Below

a certain length scale, the atomic nature of matter must affect the validity

of field theories. For a gas under normal conditions, the mean free path of

the gas atoms or molecules between collisions is of the order of 0.1µm so

that nonlocality effects must be taken into account below this length scale.

If we consider volume elements of the size of a few nanometers, even for

liquids instead of gases, the number of atoms or molecules contained in such

a volume becomes so small that fluctuation effects need to be taken into

account. Modified hydrodynamic theories work down to amazingly small

length scales, but eventually field theories for continua need to be given up

and atoms or molecules and their interactions need to be considered explic-

itly. As even atoms consist of much smaller particles,5 these interactions

are not the fundamental ones, but typically van der Waals forces. The even

more surprising success of the hydrodynamic approach in extracting infor-

mation on the properties and dynamics of quark–gluon plasmas created in

relativistic heavy-ion collisions calls for explanation.6

5 The famous Rutherford experiment (published in 1911) revealed that an atom possesses a very
small positively charged nucleus with a diameter of the order of 10−14 m and, a century later,
the Large Hadron Collider in Geneva (officially inaugurated in 2008) allows us to probe the
structure of matter down to some 10−20 m.

6 Baier et al., Phys. Rev. C 73 (2006) 064903.
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6 Approach to Transport Phenomena

The above discussion of continuum field theories and length scales has

two important practical implications for our treatment of transport phenom-

ena. (i) There are further challenges for investigating transport phenomena,

namely those posed by nonlocality and fluctuation effects. To understand

these effects, we need to stretch the theory to its limits. (ii) All our equa-

tions for transport phenomena result from coarse graining and hence must

account for the emergence of irreversibility and dissipation. This observa-

tion has important consequences for the structure of “good” equations for

modeling transport phenomena. Nonequilibrium thermodynamics,7 ideally

supported by statistical mechanics, provides the proper setting for formu-

lating equations for coarse grained systems.

" Large-scale transport has a direct impact on our everyday life, e.g.

transport in pipelines, electric power grids . . .

" Transport is at the heart of many engineering tasks: chemical reactor

design, materials processing, aerodynamical optimization (airplanes,

vehicles) . . .

" Transport is at the heart of many problems in the natural sciences:

atmospheric sciences (climatology, meteorology), life sciences (blood

circulation, muscle contraction, ecosystems), cosmology (expansion of

the Universe, galaxy formation and evolution) . . .

" Transport often occurs in complex coupled systems involving a wide

range of length scales and a variety of dynamic material properties

and boundary conditions.

" As transport takes place in space and time, we deal with partial dif-

ferential equations for the evolution of coupled fields; the laws of

nonequilibrium thermodynamics set the structure of the field equa-

tions and necessitate fluctuation effects.

7 de Groot & Mazur, Non-Equilibrium Thermodynamics (Dover, 1984); Öttinger, Beyond Equi-
librium Thermodynamics (Wiley, 2005).
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The Diffusion Equation

One of the most famous equations in the field of transport phenomena is

the diffusion equation. Its wide-ranging importance is underlined by the fact

that, depending on the context, it is known by various names. In a proba-

bilistic interpretation, it is usually referred to as a Fokker–Planck equation,

which is a special type of Kolmogorov’s forward equation for memoryless

stochastic processes.1 In the context of Brownian motion, the name Smolu-

chowski equation is most appropriate. The variety of names nicely indicates

that this equation is not only useful for describing the transport phenomenon

of mass diffusion; we will actually encounter it many times, in particular,

also in the description of momentum and heat transport and in polymer

kinetic theory. In the present chapter, we introduce it to describe the flow of

probability. In doing so, we present the basic theme of transport phenomena,

including some important concepts, tools, and results.

2.1 A Partial Differential Equation

By a first glance at the Fokker–Planck or diffusion equation in one space

dimension,

∂p(t, x)

∂t
= 2

∂

∂x

"

A(t, x)p(t, x)
�

+
1

2

∂2

∂x2

"

D(t, x) p(t, x)
�

, (2.1)

one recognizes a second-order partial differential equation for the evolution

of some function p(t, x) of two real arguments involving coefficient functions

A(t, x) and D(t, x). Here we simply assume D(t, x) g 0, but later will show

that this follows from the second law of thermodynamics (see Exercise 2.4).

In many cases, the given coefficient functions A and D are independent

of their first argument, t. The goal of this chapter is to bring the reader

1 See, for example, Chapter 3 of Gardiner, Handbook of Stochastic Methods (Springer, 1990).
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8 The Diffusion Equation

from this superficial perspective to a deep understanding of the physical

meaning and implications of the diffusion equation (2.1). The reader shall

recognize the physical meaning of the coefficient functions A and D, and

will develop a feeling for the significance of the occurrence of first- and

second-order derivatives on the right-hand side of the evolution equation

(2.1). It is important to develop a sound physical understanding of such

second-order partial differential equations because they are at the heart of

transport phenomena.

2.2 Probability Flux, Drift, and Diffusion

To assign intuitive names to the unknown function p and the given coefficient

functions A and D in the diffusion equation (2.1), we consider diffusion

from the perspective of Brownian motion, that is, the motion of a large

particle in a surrounding fluid consisting of much smaller particles. The

historical prototype of that kind of system is pollen in water, for which

in 1828 the botanist Robert Brown (1773–1858) published his observation

of a very irregular and unpredictable motion of particles in the absence

of external forces (other researchers had observed this “Brownian motion”

more than a century before Brown, but he was the first to establish Brownian

motion as an important phenomenon and to investigate it in more detail2).

The origin of this motion was much later discovered to lie in the enormously

frequent collisions between the Brownian particle and the many surrounding

fluid particles which are in incessant thermal motion.

A Brownian particle moves on a stochastic trajectory that is continuous

but so irregular that its velocity cannot be defined (see Figure 2.1). The

mass density is concentrated in the time-dependent position of the Brownian

particle, and the mass flux is an even more singular object. On the other

hand, the probability density for the location of the Brownian particle is a

smooth function and there occurs a smooth flux of probability that leads to

a smearing and broadening of the distribution. In this chapter, we focus on

the evolution of the probability density, or on the flow of probability.

Marian Smoluchowski was the first to introduce a diffusion equation of

the form (2.1) to describe Brownian motion in 1906. In this context, one

interprets p(t, x) as the probability density for finding the Brownian particle

around the position x at time t. If we are interested in the probability of

finding the Brownian particle between fixed positions x1 and x2 (where we

2 An interesting survey of the history of Brownian motion can be found in §§2–4 of the monograph
Dynamical Theories of Brownian Motion by Edward Nelson (Princeton, 1967). The early
history of the stochastic description of Brownian motion has been reviewed by Subrahmanyan
Chandrasekhar in Rev. Mod. Phys. 15 (1943) 1.
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2.2 Probability Flux, Drift, and Diffusion 9

Figure 2.1 Trajectory of a Brownian particle.

assume x1 < x2), we have the evolution equation

d

dt

�

x2

x1

p(t, x)dx = 2

�

x2

x1

∂

∂x
J(t, x)dx = J(t, x1) 2 J(t, x2), (2.2)

with the quantity J(t, x) read off from the diffusion equation (2.1),

J(t, x) = A(t, x)p(t, x) 2
1

2

∂

∂x

"

D(t, x) p(t, x)
�

. (2.3)

We can thus interpret J(t, x1) as the influx and J(t, x2) as the outflux of

probability, as illustrated in Figure 2.2. More generally, J(t, x) is the prob-

ability flux at position x and time t. If the right-hand side of an evolution

equation for the density of some quantity is written in the derivative form,

the quantity behind the derivative is the corresponding flux. Proper sign

conventions need to be chosen; we here use a positive sign for a flux in

the direction of increasing x. It is natural to assume that the probability

density and flux vanish at infinity. According to (2.2), the total probability
�

p(t, x)dx = 1 is then conserved in time.

To learn more about the coefficient functions A and D, we define averages

of suitable functions f(x) performed with the probability density p(t, x),

�f�
t
=

�

∞

−∞

f(x)p(t, x)dx. (2.4)

Assuming that the function f(x) is sufficiently smooth (for example, that

it possesses piecewise continuous second-order derivatives), we obtain the

following evolution equation for averages from the diffusion equation (2.1)

after some integrations by parts and neglecting the probability density and
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10 The Diffusion Equation

Figure 2.2 In the time interval from t to t + ∆t, probability flows out of
the interval [x1, x2] (note that the flux J(t, x1) is negative).

flux at infinity,

d �f�
t

dt
=

�

A
df

dx

�

t

+
1

2

�

D
d2f

dx2

�

t

. (2.5)

Of particular interest are the moments �xn�
t
, where n is a positive integer.

If we use f(x) = x in (2.5), we find the following evolution equation for the

first moment or average position,

d �x�
t

dt
= �A�

t
. (2.6)

On average, the coefficient function A describes the velocity of the Brownian

particle, say due to the presence of a gravitational or some other external

field. This is a systematic, deterministic effect known as drift. The intuitive

concept of velocity is given by the rate of change of the position resulting

from the motion of a particle. Equation (2.6) expresses this idea on aver-

age. Equation (2.3) suggests a different concept of velocity in terms of the

probability flux: velocity = (non-diffusive) probability flux/probability den-

sity. This alternative concept leads to a velocity field without referring to

individual particle trajectories. If we consider f(x) = x2 in (2.5), we further

obtain

d
�

x2
�

t

dt
= 2 �Ax�

t
+ �D�

t
. (2.7)

Equation (2.7) is the key to interpreting D. Even in the absence of system-

atic drift effects (that is, for A = 0), the second moment
�

x2
�

t
increases with

the rate �D�
t
. We hence arrive at the interpretation of D as the diffusion
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