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Boson Fock space

You don’t know who he was? Half the particles in the universe obey
him!

(Reply by a physics professor when a student asked who Bose was.)

We start by introducing the elementary boson Fock space together with
its canonically associated creation and annihilation operators on a space of
square-summable sequences, and in the more general setting of Hilbert spaces.
The boson Fock space is a simple and fundamental quantum model which will
be used in preliminary calculations of Gaussian moments on the boson Fock
space, based on the commutation and duality relations satisfied by the creation
and annihilation operators. Those calculations will also serve as a motivation
for the general framework of the subsequent chapters.

1.1 Annihilation and creation operators

Consider the space of square-summable sequences

�2 := �(C) =
{

f : N → C :
∞∑

k=0

|f (k)|2 < ∞
}

with the inner product

〈f , g〉�2 :=
∞∑

k=0

f (k)g(k), f , g ∈ �2,

and orthonormal basis (en)n∈N given by the Kronecker symbols

en(k) := δk,n =
{

1 k = n,
0 k �= n,

k, n ∈ N.
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2 Boson Fock space

Definition 1.1.1 Let σ > 0. The annihilation and creation operators are the
linear operators a− and a+ implemented on �2 by letting

a+en := σ
√

n + 1 en+1, a−en := σ
√

n en−1, n ∈ N.

Note that the above definition means that a−e0 = 0.
The sequence space �2 endowed with the annihilation and creation operators

a− and a+ is called the boson (or bosonic) Fock space. In the physical
interpretation of the boson Fock space, the vector en represents a physical
n-particle state. The term “boson” refers to the Bose–Einstein statistics and in
particular to the possibility for n particles to share the same state en, and Fock
spaces are generally used to model the quantum states of identical particles in
variable number.

As a consequence of Definition 1.1.1 the number operator a◦ defined as
a◦ := a+a− has eigenvalues given by

a◦en = a+a−en = σ 2√na+en−1 = nσ 2en, n ∈ N. (1.1)

Noting the relation

a−a+en = σ
√

n + 1a−en+1 = σ 2(n + 1)en,

in addition to (1.1), we deduce the next proposition.

Proposition 1.1.2 We have the commutation relation

[a+, a−]en = σ 2en, n ∈ N.

Quantum physics provides a natural framework for the use of the non-commu-
tative operators a− and a+, by connecting them with the statistical intuition
of probability. Indeed, the notion of physical measurement is noncommutative
in nature; think, e.g., of measuring the depth of a pool vs. measuring water
temperature: each measurement will perturb the next one in a certain way, thus
naturally inducing noncommutativity. In addition, noncommutativity gives rise
to the impossibility of making measurements with infinite precision, and the
physical interpretation of quantum mechanics is essentially probabilistic as a
given particle only has a probability density of being in a given state/location.
In the sequel we take σ = 1.

Given f = (f (n))n∈N and g = (g(n))n∈N written as

f =
∞∑

n=0

f (n)en and g =
∞∑

n=0

g(n)en,

we have

a+f =
∞∑

n=0

f (n)a+en =
∞∑

n=0

f (n)
√

n + 1 en+1 =
∞∑

n=1

f (n − 1)
√

n en
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1.1 Annihilation and creation operators 3

and

a−f =
∞∑

n=0

f (n)a−en =
∞∑

n=1

f (n)
√

n en−1 =
∞∑

n=0

f (n + 1)
√

n + 1 en,

hence we have

(a+f )(n) = √
nf (n − 1), and (a−f )(n) = √

n + 1f (n + 1). (1.2)

This shows the following duality relation between a− and a+.

Proposition 1.1.3 For all f , g ∈ �2 with finite support in N we have

〈a−f , g〉�2 = 〈f , a+g〉�2 .

Proof : By (1.2) we have

〈a−f , g〉�2 =
∞∑

n=0

(a−f )(n)g(n)

=
∞∑

n=0

√
n + 1 f (n + 1)g(n)

=
∞∑

n=1

√
n f (n)g(n − 1)

=
∞∑

n=1

f (n)(a+g)(n)

= 〈f , a+g〉�2 .

We also define the position and momentum operators

Q := a− + a+ and P := i(a+ − a−),

which satisfy the commutation relation

[P, Q] = PQ − QP = −2Id.

To summarise the results of this section, the Hilbert space H = �2 with
inner product 〈·, ·〉�2 has been equipped with two operators a− and a+, called
annihilation and creation operators and acting on the elements of H such that

a) a− and a+ are dual of each other in the sense that

〈a−u, v〉�2 = 〈u, a+v〉�2 ,
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4 Boson Fock space

and this relation will also be written as (a+)∗ = a−, with respect to the
inner product 〈·, ·〉�2 .

b) the operators a− and a+ satisfy the commutation relation

[a+, a−] = a+a− − a−a+ = σ 2Id,

where Id is the identity operator.

1.2 Lie algebras on the boson Fock space

In this section we characterise the Lie algebras made of linear mappings

Y : �2 �−→ �2,

written on the orthonormal basis (en)n∈N of the boson Fock space �2 as

Yen = γnen+1 + εnen + ηnen−1, n ∈ N, (1.3)

where γn, εn, ηn ∈ C, with η0 = 0 and γn �= 0, n ∈ N. We assume that Y is
Hermitian, i.e., Y∗ = Y , or equivalently

γ̄n = ηn+1 and εn ∈ R, n ∈ N.

For example, the position and moment operators

Q := a− + a+ and P := i(a+ − a−)

can be written as

Qen = a−en + a+en = √
nen−1 +

√
n + 1en+1,

i.e., γn = √
n + 1, εn = 0, and ηn = √

n, while

Pen = i(a+en − a−en) = i
√

n + 1en+1 − i
√

nen−1,

i.e., γn = i
√

n + 1, εn = 0, and ηn = −i
√

n.
In the sequel we consider the sequence (Pn)n∈N of polynomials given by

Pn(Y) :=
n∑

k=0

αk,nYk, n ∈ N.

Proposition 1.2.1 The condition

en = Pn(Y)e0, n ∈ N, (1.4)

defines a unique sequence (Pn)n∈N of polynomials that satisfy the three-term
recurrence relation

xPn(x) = γnPn+1(x)+ εnPn(x)+ ηnPn−1(x), n ∈ N, (1.5)
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1.2 Lie algebras on the boson Fock space 5

from which the sequence (Pn)n∈N can be uniquely determined based on the
initial condition P−1 = 0, P1 = 1.

Proof : The relation (1.3) and the condition (1.4) show-that

YPn(Y)e0 = γnPn+1(Y)e0 + εnPn(Y)e0 + ηnPn−1(Y)e0

= γnen+1 + εnen + ηnen−1,

which implies the recurrence relation (1.5).

For example, the monomial Yn satisfies

〈en, Yne0〉�2 = γ0 · · · γn−1, n ∈ N,

hence since γn �= 0, n ∈ N, we have in particular

1 = 〈en, en〉�2

= 〈en, Pn(Y)e0〉�2

=
n∑

k=0

αk,n〈en, Yke0〉�2

= αn,n〈en, Yne0〉�2

= αn,nγ1 · · · γn, n ∈ N.

In the case where Y = Q is the position operator, imposing the relation

en = Pn(Q)e0, n ∈ N,

i.e., (1.4), shows that

QPn(Q)e0 = √
n + 1Pn+1(Q)e0 +√

nPn−1(Q)e0,

hence the three-term recurrence relation (1.5) reads

xPn(x) =
√

n + 1Pn+1(x)+√
nPn−1(x),

for n ∈ N, with initial condition P−1 = 0, P1 = 1, hence (Pn)n∈N is the family
of normalised Hermite polynomials, cf. Section 12.1.

Definition 1.2.2 By a probability law of Y in the fundamental state e0 we will
mean a probability measure μ on R such that∫

R

xnμ(dx) = 〈e0, Yne0〉�2 , n ∈ N,

which is also called the spectral measure of Y evaluated in the state Y �→
〈e0, Y e0〉�2 .
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6 Boson Fock space

In this setting the moment generating function defined as

t �−→ 〈e0, etYe0〉�2

will be used to determine the probability law μ of Y in the state e0.
We note that in this case the polynomials Pn(x) are orthogonal with respect

to μ(dx), since∫ ∞

−∞
Pn(x)Pm(x)μ(dx) = 〈e0, Pn(Y)Pm(Y)e0〉�2

= 〈Pn(Y)e0, Pm(Y)e0〉�2

= 〈en, em〉�2

= δn,m, n, m ∈ N.

1.3 Fock space over a Hilbert space

More generally, the boson Fock space also admits a construction upon any real
separable Hilbert space h with complexification hC, and in this more general
framework it will simply be called the Fock space.

The basic structure and operators of the Fock space over h are similar to
those of the simple boson Fock space, however it allows for more degrees
of freedom. The boson Fock space �2 defined earlier corresponds to the
symmetric Fock space over the one-dimensional real Hilbert space h = R.
We will use the conjugation operator

: hC → hC

on the complexification

hC := h⊕ ih = {h1 + ih2 : h1, h2 ∈ h},
of h, defined by letting

h1 + ih2 := h1 − ih2, h1, h2 ∈ h.

This conjugate operation satisfies〈
h, k

〉
hC

= 〈h, k〉hC
= 〈k, h〉hC

, h, k ∈ hC.

The elements of h are characterised by the property h = h, and we will call
them real. The next definition uses the notion of the symmetric tensor product
“◦” in Hilbert spaces.
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1.3 Fock space over a Hilbert space 7

Definition 1.3.1 The symmetric Fock space over hC is defined by the direct
sum

�s(h) =
⊕
n∈N

h◦n
C

.

We denote by � := 1 + 0 + · · · the vacuum vector in �s(h). The symmetric
Fock space is isomorphic to the complexification of the Wiener space L2(�)

associated to h in Section 9.2.
The exponential vectors

E(f ) :=
∞∑

n=0

f⊗n

√
n! , f ∈ hC,

are total in �s(h), and their scalar product in �s(h) is given by

〈E(k1), E(k2)〉hC
= e〈k1,k2〉hC .

1.3.1 Creation and annihilation operators on �s(h)

The annihilation, creation, position, and momentum operators a−(h), a+(h),
Q(h), P(h), h ∈ h, can be defined as unbounded and closed operators on the
Fock space over h, see, e.g., [17, 79, 87]. The creation and annihilation oper-
ators a+(h) and a−(h) are mutually adjoint, and the position and momentum
operators

Q(h) = a−(h)+ a+(h) and P(h) = i
(
a−(h)− a+(h)

)
are self-adjoint if h∈ h is real. The commutation relations of creation, annihi-
lation, position, and momentum are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a(h), a+(k)] = 〈h, k〉hC
,

[a(h), a(k)] = [a+(h), a+(k)] = 0,

[Q(h), Q(k)] = [P(h), P(k)] = 0,

[P(h), Q(k)] = 2i〈h, k〉hC
.

The operators a−(h), a+(h), Q(h), P(h) are unbounded, but their domains
contain the exponential vectors E(f ), f ∈ hC. We will need to compose them
with bounded operators on �s(h), and in order to do so we will adopt the
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8 Boson Fock space

following convention. Let

L
(
E(hC),�s(h)

)
=
{

B ∈ Lin
(
span(E(hC)),�s(h)

)
: ∃B∗ ∈ Lin

(
span(E(hC)),�s(h)

)
such that

〈
E(f ), BE(g)

〉
hC

= 〈
B∗E(f ), E(g)

〉
hC

for all f , g ∈ hC

}
,

denote the space of linear operators that are defined on the exponential
vectors and that have an “adjoint” that is also defined on the exponential
vectors. Obviously the operators a−(h), a+(h), Q(h), P(h), U(h1, h2) belong to
L
(
E(hC),�s(h)

)
. We will say that an expression of the form

n∑
j=1

XjBjYj,

with X1, . . . , Xn, Y1, . . . , Yn ∈ L
(
E(hC),�s(h)

)
and B1, . . . , Bn ∈ B

(
�s(h)

)
defines a bounded operator on �s(h), if there exists a bounded operator
M ∈ B

(
�s(h)

)
such that

〈
E(f ), ME(g)

〉
hC

=
n∑

j=1

〈
X∗

j E(f ), BjYjE(g)
〉
hC

holds for all f , g∈ hC. If it exists, this operator is unique because the exponen-
tial vectors are total in �s(h), and we will then write

M =
n∑

j=1

XjBjYj.

1.3.2 Weyl operators

The Weyl operators U(h1, h2) are defined by

U(h1, h2) = exp
(
iP(h1)+ iQ(h2)

) = exp
(
i
(
a−(h2 − ih1)+ a+(h2 − ih1)

))
,

and they satisfy

U(h1, h2)U(k1, k2) = exp i
(〈h2, k1〉hC

− 〈h1, k2〉hC

)
U(h1 + h2, k1 + k2).

Furthermore, we have U(h1, h2)
∗ =U(−h1,−h2) and U(h1, h2)

−1 =
U(−h1,−h2). We see that U(h1, h2) is unitary, if h1 and h2 are real. These
operators act on the vacuum state � = E(0) as
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1.3 Fock space over a Hilbert space 9

U(h1, h2)� = exp

(
−〈h1, h1〉hC

+ 〈h2, h2〉hC

2

)
E(h1 + ih2)

and on the exponential vectors E(f ) as

U(h1, h2)E(f )

= exp

(
−〈f , h1 + ih2〉hC

− 〈h1, h1〉hC
+ 〈h2, h2〉hC

2

)
E(f + h1 + ih2).

Exercises

Exercise 1.1 Moments of the normal distribution.

In this exercise we consider an example in which the noncommutativity
property of a− and a+ naturally gives rise to a fundamental example of
probability distribution, i.e., the normal distribution.

In addition to that we will assume the existence of a unit vector 1 ∈ h

(fundamental or empty state) such that a−1 = 0 and 〈1, 1〉h = 1. In particular,
this yields the rule

〈a+u, 1〉h = 〈u, a−1〉h = 0.

Based on this rule, check by an elementary computation that the first four
moments of the centered N (0, σ 2) can be recovered from 〈Qn1, 1〉h with
n = 1, 2, 3, 4.

In the following chapters this problem will be addressed in a systematic
way by considering other algebras and probability distributions as well as the
problem of joint distributions such as the distribution of the couple (P, Q).
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2

Real Lie algebras

Algebra is the offer made by the devil to the mathematician. The
devil says: “I will give you this powerful machine, it will answer any
question you like. All you need to do is give me your soul: give up
geometry and you will have this marvelous machine”.

(M. Atiyah, Collected works.)

In this chapter we collect the definition and properties of the real Lie
algebras that will be needed in the sequel. We consider in particular the
Heisenberg–Weyl Lie algebra hw, the oscillator Lie algebra osc, and the Lie
algebras sl2(R), so(2), and so(3) as particular cases. Those examples and their
relationships with classical probability distributions will be revisited in more
details in the subsequent chapters.

2.1 Real Lie algebras

Definition 2.1.1 A Lie algebra g over a field K is a K-vector space with a
linear map [·, ·] : g× g −→ g called Lie bracket that satisfies the following
two properties.

1. Anti-symmetry: for all X, Y ∈ g, we have

[X, Y] = −[Y , X].
2. Jacobi identity: for all X, Y , Z ∈ g, we have[

X, [Y , Z]]+ [
Y , [Z, X]]+ [

Z, [X, Y]] = 0.

For K = R, we call g a real Lie algebra, for K = C a complex Lie algebra.

Definition 2.1.2 Let g be a complex Lie algebra. An involution on g is a
conjugate linear map ∗ : g −→ g such that

10
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