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Recurrence

Ergodic theory studies the behavior of dynamical systems with respect to
measures that remain invariant under time evolution. Indeed, it aims to describe
those properties that are valid for the trajectories of almost all initial states
of the system, that is, all but a subset that has zero weight for the invariant
measure. Our first task, in Section 1.1, will be to explain what we mean by
‘dynamical system’ and ‘invariant measure’.

The roots of the theory date back to the first half of the 19th century.
By 1838, the French mathematician Joseph Liouville observed that every
energy-preserving system in classical (Newtonian) mechanics admits a natural
invariant volume measure in the space of configurations. Just a bit later, in
1845, the great German mathematician Carl Friedrich Gauss pointed out that
the transformation

(0,1]→R, x �→ fractional part of
1

x
,

which has an important role in number theory, admits an invariant measure
equivalent to the Lebesgue measure (in the sense that the two have the same
zero measure sets). These are two of the examples of applications of ergodic
theory that we discuss in Section 1.3. Many others are introduced throughout
this book.

The first important result was found by the great French mathematician
Henri Poincaré by the end of the 19th century. Poincaré was particularly
interested in the motion of celestial bodies, such as planets and comets, which
is described by certain differential equations originating from Newton’s law of
universal gravitation. Starting from Liouville’s observation, Poincaré realized
that for almost every initial state of the system, that is, almost every value of
the initial position and velocity, the solution of the differential equation comes
back arbitrarily close to that initial state, unless it goes to infinity. Even more,
this recurrence property is not specific to (celestial) mechanics: it is shared by
any dynamical system that admits a finite invariant measure. That is the theme
of Section 1.2.
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2 Recurrence

The same theme reappears in Section 1.5, in a more elaborate context: there,
we deal with any finite number of dynamical systems commuting with each
other, and we seek simultaneous returns of the orbits of all those systems to the
neighborhood of the initial state. This kind of result has important applications
in combinatorics and number theory, as we will see.

The recurrence phenomenon is also behind the constructions that we present
in Section 1.4. The basic idea is to fix some positive measure subset of
the domain and to consider the first return to that subset. This first-return
transformation is often easier to analyze, and it may be used to shed much
light on the behavior of the original transformation.

1.1 Invariant measures

Let (M,B,μ) be a measure space and f : M → M be a measurable
transformation. We say that the measure μ is invariant under f if

μ(E)=μ(f−1(E)) for every measurable set E⊂M. (1.1.1)

We also say that μ is f -invariant, or that f preserves μ, to mean just the
same. Notice that the definition (1.1.1) makes sense, since the pre-image of
a measurable set under a measurable transformation is still a measurable set.
Heuristically, the definition means that the probability that a point picked “at
random” is in a given subset is equal to the probability that its image is in that
subset.

It is possible, and convenient, to extend this definition to other types of
dynamical systems, beyond transformations. We are especially interested in
flows, that is, families of transformations f t : M→M, with t ∈R, satisfying the
following conditions:

f 0 = id and f s+t = f s ◦ f t for every s, t ∈R. (1.1.2)

In particular, each transformation f t is invertible and the inverse is f−t. Flows
arise naturally in connection with differential equations of the form

dγ

dt
(t)= X(γ (t))

in the following way: under suitable conditions on the vector field X, for each
point x in the domain M there exists exactly one solution t �→ γx(t) of the
differential equation with γx(0)= x; then f t(x)= γx(t) defines a flow in M.

We say that a measure μ is invariant under a flow (f t)t if it is invariant under
each one of the transformations f t, that is, if

μ(E)=μ(f−t(E)) for every measurable set E⊂M and t ∈R. (1.1.3)
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1.1 Invariant measures 3

Proposition 1.1.1. Let f : M →M be a measurable transformation and μ be
a measure on M. Then f preserves μ if and only if∫

φ dμ=
∫
φ ◦ f dμ (1.1.4)

for every μ-integrable function φ : M→R.

Proof. Suppose that the measure μ is invariant under f . We are going to show
that the relation (1.1.4) is valid for increasingly broader classes of functions.
Let XB denote the characteristic function of any measurable subset B. Then

μ(B)=
∫

XB dμ and μ(f−1(B))=
∫

Xf−1(B) dμ=
∫
(XB ◦ f )dμ.

Thus, the hypothesis μ(B) = μ(f−1(B)) means that (1.1.4) is valid for
characteristic functions. Then, by linearity of the integral, (1.1.4) is valid for all
simple functions. Next, given any integrable φ : M → R, consider a sequence
(sn)n of simple functions, converging to φ and such that |sn| ≤ |φ| for every n.
That such a sequence exists is guaranteed by Proposition A.1.33. Then, using
the dominated convergence theorem (Theorem A.2.11) twice:∫

φ dμ= lim
n

∫
sn dμ= lim

n

∫
(sn ◦ f )dμ=

∫
(φ ◦ f )dμ.

This shows that (1.1.4) holds for every integrable function if μ is invariant.
The converse is also contained in the arguments we just presented.

1.1.1 Exercises

1.1.1. Let f : M→M be a measurable transformation. Show that a Dirac measure δp is
invariant under f if and only if p is a fixed point of f . More generally, a probability
measure δp,k = k−1

(
δp + δf (p) + ·· · + δf k−1(p)

)
is invariant under f if and only if

f k(p)= p.
1.1.2. Prove the following version of Proposition 1.1.1. Let M be a metric space, f :

M →M be a measurable transformation and μ be a measure on M. Show that f
preserves μ if and only if ∫

φ dμ=
∫
φ ◦ f dμ

for every bounded continuous function φ : M→R.
1.1.3. Prove that if f : M →M preserves a measure μ then, given any k ≥ 2, the iterate

f k also preserves μ. Is the converse true?
1.1.4. Suppose that f : M → M preserves a probability measure μ. Let B ⊂ M be a

measurable set satisfying any one of the following conditions:
(a) μ(B \ f−1(B))= 0;
(b) μ(f−1(B) \B)= 0;
(c) μ(B
f−1(B))= 0;
(d) f (B)⊂ B.
Show that there exists C⊂M such that f−1(C)= C and μ(B
C)= 0.
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4 Recurrence

1.1.5. Let f : U → U be a C1 diffeomorphism on an open set U ⊂ Rd. Show that the
Lebesgue measure m is invariant under f if and only if |detDf | ≡ 1.

1.2 Poincaré recurrence theorem

We are going to study two versions of Poincaré’s theorem. The first one
(Section 1.2.1) is formulated in the context of (finite) measure spaces.
The theorem of Kac̆, that we state and prove in Section 1.2.2, provides
a quantitative complement to that statement. The second version of the
recurrence theorem (Section 1.2.3) assumes that the ambient is a topological
space with certain additional properties. We will also prove a third version of
the recurrence theorem, due to Birkhoff, whose statement is purely topological.

1.2.1 Measurable version

Our first result asserts that, given any finite invariant measure, almost every
point in any positive measure set E returns to E an infinite number of times:

Theorem 1.2.1 (Poincaré recurrence). Let f : M → M be a measurable
transformation and μ be a finite measure invariant under f . Let E ⊂ M be
any measurable set with μ(E) > 0. Then, for μ-almost every point x ∈ E there
exist infinitely many values of n for which f n(x) is also in E.

Proof. Denote by E0 the set of points x ∈ E that never return to E. As a first
step, let us prove that E0 has zero measure. To this end, let us observe that the
pre-images f−n(E0) are pairwise disjoint. Indeed, suppose there exist m> n≥ 1
such that f−m(E0) intersects f−n(E0). Let x be a point in the intersection and
y = f n(x). Then y ∈ E0 and f m−n(y) = f m(x) ∈ E0. Since E0 ⊂ E, this means
that y returns to E at least once, which contradicts the definition of E0. This
contradiction proves that the pre-images are pairwise disjoint, as claimed.

Since μ is invariant, we also have that μ(f−n(E0))= μ(E0) for all n≥ 1. It
follows that

μ

( ∞⋃
n=1

f−n(E0)

)
=

∞∑
n=1

μ(f−n(E0))=
∞∑

n=1

μ(E0).

The expression on the left-hand side is finite, since the measure μ is assumed
to be finite. On the right-hand side we have a sum of infinitely many terms that
are all equal. The only way such a sum can be finite is if the terms vanish. So,
μ(E0)= 0 as claimed.

Now let us denote by F the set of points x∈E that return to E a finite number
of times. It is clear from the definition that every point x ∈ F has some iterate
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1.2 Poincaré recurrence theorem 5

f k(x) in E0. In other words,

F ⊂
∞⋃

k=0

f−k(E0).

Since μ(E0)= 0 and μ is invariant, it follows that

μ(F)≤μ
( ∞⋃

k=0

f−k(E0)

)
≤

∞∑
k=0

μ
(
f−k(E0)

)= ∞∑
k=0

μ(E0)= 0.

Thus, μ(F)= 0 as we wanted to prove.

Theorem 1.2.1 implies an analogous result for continuous time systems: if
μ is a finite invariant measure of a flow (f t)t then for every measurable set
E ⊂ M with positive measure and for μ-almost every x ∈ E there exist times
tj →+∞ such that f tj(x) ∈ E. Indeed, if μ is invariant under the flow then, in
particular, it is invariant under the so-called time-1 map f 1. So, the statement
we just made follows immediately from Theorem 1.2.1 applied to f 1 (the times
tj one finds in this way are integers). Similar observations apply to the other
versions of the recurrence theorem that we present in the sequel.

On the other hand, the theorem in the next section is specific to discrete time
systems.

1.2.2 Kac̆ theorem

Let f : M → M be a measurable transformation and μ be a finite measure
invariant under f . Let E ⊂M be any measurable set with μ(E) > 0. Consider
the first-return time function ρE : E→N∪{∞}, defined by

ρE(x)=min{n≥ 1 : f n(x) ∈ E} (1.2.1)

if the set on the right-hand side is non-empty and ρE(x)=∞ if, on the contrary,
x has no iterate in E. According to Theorem 1.2.1, the second alternative occurs
only on a set with zero measure.

The next result shows that this function is integrable and even provides the
value of the integral. For the statement we need the following notation:

E0 = {x ∈ E : f n(x) /∈ E for every n≥ 1} and

E∗0 = {x ∈M : f n(x) /∈ E for every n≥ 0}.
In other words, E0 is the set of points in E that never return to E and E∗0 is
the set of points in M that never enter E. We have seen in Theorem 1.2.1 that
μ(E0)= 0.

Theorem 1.2.2 (Kac̆). Let f : M→M be a measurable transformation, μ be a
finite invariant measure and E⊂M be a positive measure set. Then the function
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6 Recurrence

ρE is integrable and ∫
E
ρE dμ=μ(M)−μ(E∗0).

Proof. For each n≥ 1, define

En = {x ∈ E : f (x) /∈ E, . . . , f n−1(x) /∈ E, but f n(x) ∈ E} and

E∗n = {x ∈M : x /∈ E, f (x) /∈ E, . . . , f n−1(x) /∈ E, but f n(x) ∈ E}.
That is, En is the set of points of E that return to E for the first time exactly at
time n,

En = {x ∈ E : ρE(x)= n},
and E∗n is the set points that are not in E and enter E for the first time exactly at
time n. It is clear that these sets are measurable and, hence, ρE is a measurable
function. Moreover, the sets En, E∗n , n≥ 0 constitute a partition of the ambient
space: they are pairwise disjoint and their union is the whole of M. So,

μ(M)=
∞∑

n=0

(
μ(En)+μ(E∗n)

)=μ(E∗0)+ ∞∑
n=1

(
μ(En)+μ(E∗n)

)
. (1.2.2)

Now observe that

f−1(E∗n)= E∗n+1 ∪En+1 for every n. (1.2.3)

Indeed, f (y) ∈ E∗n means that the first iterate of f (y) that belongs to E is
f n(f (y)) = f n+1(y) and that occurs if and only if y ∈ E∗n+1 or else y ∈ En+1.
This proves the equality (1.2.3). So, given that μ is invariant,

μ(E∗n)=μ(f−1(E∗n))=μ(E∗n+1)+μ(En+1) for every n.

Applying this relation successively, we find that

μ(E∗n)=μ(E∗m)+
m∑

i=n+1

μ(Ei) for every m> n. (1.2.4)

The relation (1.2.2) implies that μ(E∗m)→ 0 when m→∞. So, taking the limit
as m→∞ in the equality (1.2.4), we find that

μ(E∗n)=
∞∑

i=n+1

μ(Ei). (1.2.5)

To complete the proof, replace (1.2.5) in the equality (1.2.2). In this way we
find that

μ(M)−μ(E∗0)=
∞∑

n=1

( ∞∑
i=n

μ(Ei)

)
=

∞∑
n=1

nμ(En)=
∫

E
ρE dμ,

as we wanted to prove.
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1.2 Poincaré recurrence theorem 7

In some cases, for example when the system (f ,μ) is ergodic (this property
will be defined and studied later, starting from Chapter 4), the set E∗0 has zero
measure. Then the conclusion of the Kac̆ theorem means that

1

μ(E)

∫
E
ρE dμ= μ(M)

μ(E)
(1.2.6)

for every measurable set E with positive measure. The left-hand side of this
expression is the mean return time to E. So, (1.2.6) asserts that the mean return
time is inversely proportional to the measure of E.

Remark 1.2.3. By definition, E∗n = f−n(E)\⋃n−1
k=0 f−k(E). So, the fact that the

sum (1.2.2) is finite implies that the measure of E∗n converges to zero when
n→∞. This fact will be useful later.

1.2.3 Topological version

Now let us suppose that M is a topological space, endowed with its Borel
σ -algebra B. A point x ∈ M is recurrent for a transformation f : M → M
if there exists a sequence nj →∞ of natural numbers such that f nj(x)→ x.
Analogously, we say that x ∈ M is recurrent for a flow (f t)t if there exists a
sequence tj →+∞ of real numbers such that f tj(x)→ x when j→∞.

In the next theorem we assume that the topological space M admits a
countable basis of open sets, that is, there exists a countable family {Uk : k ∈N}
of open sets such that every open subset of M may be written as a union of
elements Uk of this family. This condition holds in most interesting examples.

Theorem 1.2.4 (Poincaré recurrence). Suppose that M admits a countable
basis of open sets. Let f : M→M be a measurable transformation and μ be a
finite measure on M invariant under f . Then, μ-almost every x∈M is recurrent
for f .

Proof. For each k, denote by Ũk the set of points x ∈ Uk that never return to
Uk. According to Theorem 1.2.1, every Ũk has zero measure. Consequently,
the countable union

Ũ =
⋃
k∈N

Ũk

also has zero measure. Hence, to prove the theorem it suffices to check that
every point x that is not in Ũ is recurrent. That is easy, as we are going to see.
Consider x ∈M \ Ũ and let U be any neighborhood of x. By definition, there
exists some element Uk of the basis of open sets such that x ∈Uk and Uk ⊂U.
Since x is not in Ũ, we also have that x /∈ Ũk. In other words, there exists n≥ 1
such that f n(x) is in Uk. In particular, f n(x) is also in U. Since the neighborhood
U is arbitrary, this proves that x is a recurrent point.

Let us point out that the conclusions of Theorems 1.2.1 and 1.2.4 are false,
in general, if the measure μ is not finite:
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8 Recurrence

Example 1.2.5. Let f : R → R be the translation by 1, that is, the
transformation defined by f (x) = x+ 1 for every x ∈ R. It is easy to check
that f preserves the Lebesgue measure on R (which is infinite). On the other
hand, no point x ∈ R is recurrent for f . According to the recurrence theorem,
this last observation implies that f can not admit any finite invariant measure.

However, it is possible to extend these statements for certain cases of infinite
measures: see Exercise 1.2.2.

To conclude, we present a purely topological version of Theorem 1.2.4,
called the Birkhoff recurrence theorem, that makes no reference at all to
invariant measures:

Theorem 1.2.6 (Birkhoff recurrence). If f : M → M is a continuous
transformation on a compact metric space M then there exists some point x∈X
that is recurrent for f .

Proof. Consider the family I of all non-empty closed sets X ⊂ M that are
invariant under f , in the sense that f (X) ⊂ X. This family is non-empty, since
M ∈ I. We claim that an element X ∈ I is minimal for the inclusion relation
if and only if the orbit of every x ∈ X is dense in X. Indeed, it is clear that if
X is a closed invariant subset then X contains the closure of the orbit of each
one of its elements. Hence, in order to be minimal, X must coincide with every
one of these closures. Conversely, for the same reason, if X coincides with the
orbit closure of each one of its points then it has no proper subset that is closed
and invariant. That is, X is minimal. This proves our claim. In particular, every
point x in a minimal set is recurrent. Therefore, to prove the theorem it suffices
to prove that there exists some minimal set.

We claim that every totally ordered set {Xα} ⊂ I admits a lower bound.
Indeed, consider X =⋂α Xα . Observe that X is non-empty, since the Xα are
compact and they form a totally ordered family. It is clear that X is closed and
invariant under f and it is equally clear that X is a lower bound for the set {Xα}.
That proves our claim. Now it follows from Zorn’s lemma that I does contain
minimal elements.

Theorem 1.2.6 can also be deduced from Theorem 1.2.4 together with
the fact, which we will prove later (in Chapter 2), that every continuous
transformation on a compact metric space admits some invariant probability
measure.

1.2.4 Exercises

1.2.1. Show that the following statement is equivalent to Theorem 1.2.1, meaning that
each one of them can be obtained from the other. Let f : M→M be a measurable
transformation and μ be a finite invariant measure. Let E⊂M be any measurable
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1.2 Poincaré recurrence theorem 9

set with μ(E) > 0. Then there exists N ≥ 1 and a positive measure set D⊂E such
that f N(x) ∈ E for every x ∈D.

1.2.2. Let f : M→M be an invertible transformation and suppose that μ is an invariant
measure, not necessarily finite. Let B ⊂ M be a set with finite measure. Prove
that, given any measurable set E ⊂ M with positive measure, μ-almost every
point x ∈ E either returns to E an infinite number of times or has only a finite
number of iterates in B.

1.2.3. Let f : M → M be an invertible transformation and suppose that μ is a σ -finite
invariant measure: there exists an increasing sequence of measurable subsets Mk

with μ(Mk) <∞ for every k and
⋃

k Mk = M. We say that a point x goes to
infinity if, for every k, there exists only a finite number of iterates of x that are
in Mk. Show that, given any E ⊂M with positive measure, μ-almost every point
x ∈ E returns to E an infinite number of times or else goes to infinity.

1.2.4. Let f : M →M be a measurable transformation, not necessarily invertible, μ be
an invariant probability measure and D⊂M be a set with positive measure. Prove
that almost every point of D spends a positive fraction of time in D:

limsup
n

1

n
#{0≤ j≤ n− 1 : f j(x) ∈D}> 0

for μ-almost every x ∈ D. [Note: One may replace limsup by liminf in the
statement, but the proof of that fact will have to wait until Chapter 3.]

1.2.5. Let f : M → M be a measurable transformation preserving a finite measure μ.
Given any measurable set A⊂M with μ(A)> 0, let n1< n2< · · · be the sequence
of values of n such that μ(f−n(A)∩A) > 0. The goal of this exercise is to prove
that VA = {n1,n2, . . .} is a syndetic, that is, that there exists C> 0 such that ni+1−
ni ≤ C for every i.
(a) Show that for any increasing sequence k1 < k2 < · · · there exist j> i≥ 1 such

that μ(A∩ f−(kj−ki)(A)) > 0.
(b) Given any infinite sequence �= (lj)j of natural numbers, denote by S(�) the

set of all finite sums of consecutive elements of �. Show that VA intersects
S(�) for every �.

(c) Deduce that the set VA is syndetic.
[Note: Exercise 3.1.2 provides a different proof of this fact.]

1.2.6. Show that if f : [0,1] → [0,1] is a measurable transformation preserving the
Lebesgue measure m then m-almost every point x ∈ [0,1] satisfies

liminf
n

n|f n(x)− x| ≤ 1.

[Note: Boshernitzan [Bos93] proved a much more general result, namely that
liminfn n1/dd(f n(x),x) < ∞ for μ-almost every point and every probability
measure μ invariant under f : M →M, assuming M is a separable metric whose
d-dimensional Hausdorff measure is σ -finite.]

1.2.7. Define f : [0,1] → [0,1] by f (x) = (x+ ω)− [x+ ω], where ω represents the
golden ratio (1+√5)/2. Given x ∈ [0,1], check that n|f n(x)− x| = n2|ω− qn|
for every n, where (qn)n → ω is the sequence of rational numbers given by qn =
[x+nω]/n. Using that the roots of the polynomial R(z)= z2− z−1 are precisely
ω and ω −√5, prove that liminfn n2|ω − qn| ≥ 1/

√
5. [Note: This shows that

the constant 1 in Exercise 1.2.6 cannot be replaced by any constant smaller than
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10 Recurrence

1/
√

5. It is not known whether 1 is the smallest constant such that the statement
holds for every transformation on the interval.]

1.3 Examples

Next, we describe some simple examples of invariant measures for transforma-
tions and flows that help us interpret the significance of the Poincaré recurrence
theorems and also lead to some interesting conclusions.

1.3.1 Decimal expansion

Our first example is the transformation defined on the interval [0,1] in the
following way:

f : [0,1]→ [0,1], f (x)= 10x−[10x].
Here and in what follows, we use [y] as the integer part of a real number y,
that is, the largest integer smaller than or equal y. So, f is the map sending
each x ∈ [0,1] to the fractional part of 10x. Figure 1.1 represents the graph
of f .

We claim that the Lebesgue measure μ on the interval is invariant under the
transformation f , that is, it satisfies

μ(E)=μ(f−1(E)) for every measurable set E⊂M. (1.3.1)

This can be checked as follows. Let us begin by supposing that E is an interval.
Then, as illustrated in Figure 1.1, its pre-image f−1(E) consists of ten intervals,
each of which is ten times shorter than E. Hence, the Lebesgue measure of
f−1(E) is equal to the Lebesgue measure of E. This proves that (1.3.1) does
hold in the case of intervals. As a consequence, it also holds when E is a finite

0 2/10 4/10 6/10 8/10

1

1

E

Figure 1.1. Fractional part of 10x
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