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CHAPTER 1

Preliminaries and Notation

1.1 Introduction

The work of Euler in 1736 is often recognized as the first study of graphs [260]. The
original question Euler addressed was how to cross once and only once the seven
bridges in the town of Konigsberg (see Figure 1.1).

The first book on graph theory, written by Konig [472], appeared only 200 years
later, although various related studies were published before this book (e.g., [144, 642,
683, 745]). In [360], Hamilton introduced the famous Around the World game, which is
currently known as the Traveling Salesman Problem, and it is still under investigation.
Since 1936, graph theory has developed rapidly under the leadership of various experts
in operations research who have addressed specific problems (e.g., see [279, 481]).
For further details on the early history of graph theory, the reader may refer to Graph
Theory by Biggs [90].

Figure 1.1. Representation of the bridges in the town of Konigsberg.
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2 PRELIMINARIES AND NOTATION
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Figure 1.2. Graph representation of the professional network of Francgois Fouss, proposed by
inMaps.LinkedInLabs.com, where each node represents an individual and each edge an existing
link between the corresponding persons.

More recently, with the development of algorithms and computers, graphs have
been used in many areas to model and analyze real interconnected systems, including
chemistry, biology, physics, human sciences, and engineering.

Some well-known examples are as follows. In chemistry, graphs can be used to
model molecules by assuming that molecules with similar chemical structures will
have similar properties. In social networks, graphs can be used to model the links
(such as friendship or professional links) between the members of a community (see
Figure 1.2), for example, to discover the proximity or similarities between members
or the common behaviors of members. In information and communication technology,
graphs can be used to model and analyze the Internet, by, for example, mapping the
physical connectivity of the Internet (see Figure 1.3).

The common feature of all these examples (and many others) is the use of a graphical
structure to model or represent part of the real world. From a mathematical viewpoint,
a graph is simply a collection of nodes that correspond to entities in the real world and
edges that express links between these entities (interactions, relations, transactions,
etc.). According to various examples, these entities can be of various types (web
pages, individuals, atoms, etc.), and the links can have various meanings (hyperlinks,
friendships, chemical bonds, etc.), and thus they correspond to different relationships
depending on the reality modeled by the graph.

The remainder of this chapter introduces some basic graph concepts, algorithms,
and associated matrices that are particularly useful in various parts of the book. It starts
with a short synopsis of the content of the book.
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Figure 1.3. Graph representation of the Internet proposed by Internet mapping (see http://en.
wikipedia.org/wiki/Internet_Mapping_Project, the Wikipedia page of the Internet Mapping Project).

1.2 Content of the Book

The main focus of the book is the extraction of useful information from static net-
work data, observed in real life. Each chapter covers techniques tackling a family of
functional tasks, such as “Identifying prestigious nodes,” “Detecting the most central
nodes,” “Predicting information associated with the nodes,” and “Finding dense com-
munities.” Each method is described in depth in a separate section that is — as far as
possible — self-contained, so that each can be read independently.

The content of the book comprises two levels of analysis for static network data,
where the first level (Chapters 2-5) is focused on characterizing the basic elements of
a network (i.e., nodes and/or edges) and the second level (Chapters 6-10) is focused
on analyzing the global structure of a network.

In particular, Chapters 2—5 describe methods for answering questions such as, Should
these two nodes be considered as similar/dissimilar? or Does this node have a central
or key position in the network?
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4 PRELIMINARIES AND NOTATION

Chapter 2. In Chapter 2, we introduce various similarity/dissimilarity measures
between the nodes of a graph. These measures are computed from the structure of
a graph and may serve to answer questions like Who will be your best friend on a
social network like Facebook? In most cases, these measures consider the amount
of connectivity between the nodes, that is, two nodes are more similar when the
number of direct or indirect paths between them is larger. Several local (i.e., based on
the neighborhood of the nodes of interest) or global (i.e., based on the whole graph)
measures between nodes in a (generally undirected) graph are presented in this chapter.
Two of these global measures are of particular interest in our study: the shortest path
and the commute time distances.

Chapter 3. The shortest path and the commute time distances can be regarded as
two extreme ways of defining dissimilarity between graph nodes; that is, the former
only considers the length without addressing the connectivity, whereas the latter only
considers connectivity without addressing the length. In Chapter 3, we develop families
of dissimilarities that lie in between these two distances. These quantities depend on a
continuous parameter (at one limit of the value of the parameter, they converge to the
shortest-path distance, whereas at the other end, they converge to the commute time
distance). They thus “interpolate” between the two distances.

After defining the similarity/dissimilarity measures between the nodes of the net-
work, they can be used for several tasks, such as link prediction (predicting missing
links), clustering (finding compact communities), and finding nearest neighbors.

Chapter 4. In addition to information about the similarity/dissimilarity between pairs
of nodes in a network, we could also be interested in answering questions such as, What
is the most representative, or central, node within a given community? How critical
is a given node with respect to the information flow in a network?, or Which node is
the most peripheral in a social network? These questions are all focused on centrality
measures in undirected graphs, covered in this chapter.

Many different measures of the centrality and prestige of a node have been defined
in social science, computer science, physics, statistics, and applied mathematics, where
these measures are also known as “importance,” “standing,” “prominence,” or “pop-
ularity,” especially in the case of social networks. In this book, we speak of prestige
when the graph is directed, whereas the concept is referred to as centrality in the case
of an undirected graph. In Chapter 4, we describe three types of centrality measures:
the closeness centrality to quantify the extent to which a node (or a group of nodes)
is central to the network; the betweenness centrality to quantify the extent to which
a node (or a group of nodes) is an important intermediary in the network; and the
criticality to quantify the extent to which a node or an edge is “critical” or “vital” to
the graph in terms of communication, movement, or transmission.

EEINT3

Chapter 5. Chapter 5 considers prestige measures for quantifying the importance of a
node in a directed graph where the edges possess some “endorsement” relationship. For
instance, prestige measures are the focus of questions such as, Does a node in a network
have a special or prestigious position if it is chosen by many others? How influential is
a given node in a social network? In this context, the prestige of a node increases as it
receives more positive citations or endorsements (incoming links). Numerous measures
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have been developed in the social sciences (only the most popular are introduced in
this chapter), and this chapter also describes some prestige measures introduced in
computer science and applied mathematics. These measures were developed mainly
in the context of bibliometrics and search engines, and they are now among the most
popular for quantifying node prestige.

The first part of this book is focused on characterizing the elements of the network,
whereas the second is devoted to analyzing the global structure of the network. In
particular, Chapters 610 address the tasks of labeling nodes, clustering nodes, and
finding dense regions as well as the analysis of bipartite graphs and graph embedding.

Chapter 6. In Chapter 6, we introduce some techniques for assigning a class label
to an unlabeled node based on knowledge of the class of some labeled nodes and the
network structure. A concrete example is, Is it possible to predict the technological
category of patents linked by citations, given that these categories are known only for a
few nodes? This within-network classification task conforms to the semisupervised
classification paradigm, the goal of which is to fit a predictive model using a small
number of labeled samples and some (usually a large number of) unlabeled samples
(the labels are missing or unobserved for these samples), where it is assumed that
combining these two sources of information will yield predictive models that are more
accurate than when simply using the labeled samples alone (and thus ignoring the
unlabeled samples). Most of the semisupervised classification models described in this
chapter are presented in a one-versus-all classification setting (i.e., one model is fitted
per class and the resulting models are then used for classification).

Chapter 7. Another well-known task when handling network data involves clustering
the nodes of the network into a partition, that is, grouping a set of objects into subsets
or clusters such that those belonging to the same cluster are more “related” than
those belonging to different clusters. Most of the well-known clustering algorithms
described in Chapter 7 comprise top-down divisive techniques (splitting methods)
that start from an initial situation where all the nodes of the graph are contained in
only one cluster before trying to split the cluster into pieces, optimization techniques
that maximize a criterion by measuring the quality of the partition, and bottom-up
agglomerative techniques that start from a degenerate partition where each node is
a cluster by itself before trying to merge the most similar nodes/clusters recursively.
Top-down and optimization techniques (described in Chapter 7) produce a partition
of the nodes, whereas bottom-up techniques (described in Chapter 8) produce sets of
dense clusters, at least at the beginning of the procedure. The algorithms described in
this chapter answer questions such as, Are there highly connected clusters with few
links between clusters in the network?

Chapter 8. It may also be interesting to identify dense regions inside the network
where, instead of trying to find a partition of the graph, we only seek some subsets of
nodes that are highly interconnected (the nodes that are not part of a dense region are
simply not assigned to any cluster of reference). An example of a concrete problem
is, Can we identify dense communities of nodes in a mobile network, with a very high
calling rate between the members of the community? In Chapter 8, we first investigate
some well-known local density measures to quantify the extent to which a local subset

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107125773
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-12577-3 - Algorithms and Models For Network Data and Link Analysis
Francois Fouss, Marco Saerens and Masashi Shimbo

Excerpt

More information

6 PRELIMINARIES AND NOTATION

of nodes centered on a particular node is highly cohesive. We then present some
global measures for smoothing the density over the network, measures that tend to be
more robust with respect to local variations in the density. Finally, we describe some
bottom-up agglomerative methods, which allow highly dense regions to be detected
by extending them gradually in a sequential manner according to a greedy algorithm.

Chapter 9. Chapter 9 focuses on bipartite graphs, where we explore various methods
and models for analyzing such graphs. In bipartite graphs, the node set may be parti-
tioned into two disjoint sets, where each edge has one endpoint in the first set of nodes
and the other in the second set of nodes. These graphs appear naturally in applications
involving two types of objects, or objects that play different roles, including collabo-
rative recommendation, item ranking, information retrieval, or matching problems. An
example question which the algorithms of this chapter are trying to answer is, Can we
identify groups of persons interested in the same movies as well as groups of movies
watched by the same persons? Most of the methods explored are standard and have
been known for many years in the context of contingency tables analysis, that is, simple
correspondence analysis, a latent class model, and a bi-clustering approach. However,
others are more recent, such as the reputation model introduced in Section 9.4.

Chapter 10. Finally, we introduce graph embedding in Chapter 10, where the aim
is to associate a position or vector in a Euclidean space with each node of the graph.
Thus, this mapping corresponds to the configuration of the nodes in a Euclidean
space that preserves the structure of the graph as much as possible. The techniques
described here try to answer the following question: Is it possible to represent the
network in a two-dimensional plane in an accurate way, that is, while conserving the
structure of the network? In this chapter, we only present some of the most popular
methods, including spectral methods (which define the embedding according to certain
eigenvectors of graph-related matrices), a latent space method, and some basic force-
directed techniques, which produce the layout based on a physical analogy (spring
networks or attractive forces). After a graph embedding has been computed, it can be
used for graph drawing (when the embedding space has dimension two or three), but
more generally, it associates a data matrix with the graph, where each row of the matrix
corresponds to a node. This data matrix can then be used in multivariate statistical
techniques such as clustering and classification.

1.3 Basic Definitions and Notation

This section is intended to provide an informal description of the notation and vocab-
ulary used throughout this book. Note that a list of symbols and notation is provided
in the preamble of the book.

In mathematics and computer science, graph theory involves the study of graphs,
where a graph is a collection of nodes and the edges that connect pairs of nodes. More
precisely, graph theory provides a set of definitions, tools, and techniques for describing
graphs and their properties (e.g., see [9, 78, 102, 106, 223, 331, 777, 810] for some
standard textbooks on mathematical graph theory, as well as [85, 170, 233, 261, 316,
331,432,450, 706, 754] for textbooks related to algorithms on graphs, and [804] in the
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BASIC DEFINITIONS AND NOTATION 7

Figure 1.4. A simple unweighted, undirected graph G.

context of social sciences). Largely inspired by [102, 332, 469, 608, 706], this section
reviews the basic terminology and concepts of graphs, while introducing important
connections between graphs and matrix algebra and providing a brief presentation of
some basic algorithms that address various questions related to graphs.

In this work, we are more interested in tools and techniques for analyzing and
extracting information from network data, that is, graphs that model some real system
or “sample” graphs observed in real life.

We must stress that this section is very compact and only outlines a very small
part of the useful theory (please see the references given earlier for more rigorous and
in-depth treatments).

An illustrative example. A small example is used throughout this section to illustrate
various graph concepts. The graph G of this small and simple example is shown in
Figure 1.4. Note that the positions of the nodes have no particular meaning.

1.3.1 Basic Graph Concepts

A graph or network G is a mathematical structure that can be formally defined by
providing

» a finite nonempty set V(G) =V, the elements of which are called nodes (or
vertices)

» aset £(G)=E CV x V, the elements of which are (ordered or not) pairs of
nodes called edges (or arcs, links)

Thus, a graph is a collection of nodes linked by edges, (V, £). In general, the nodes
represent some objects or entities (e.g., people in a social network) and the edges
represent the existence of a relation between two objects (e.g., “is a friend of” or
“went together to a concert” in a social network). The theory of relations is a well-
known field studied in discrete mathematics and relational databases (e.g., see [1, 672]
for more information). The nodes are usually identified by a number, called the index
of the node.

In other words, graphs can be viewed as a convenient way of representing pairwise
relations between objects. In this book, we are mainly interested in graphs that represent
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8 PRELIMINARIES AND NOTATION

only a single relation. Many studies have addressed multirelational graphs [199, 234,
314] and the extension of simple relations, but this topic is not investigated in the present
study. In general, there is at most one single edge between two nodes. However, in
some situations, multiple edges are permitted (parallel edges), where we refer to this
structure as a multigraph.

Note that we use the terms graph and network interchangeably. The number of
nodes n = |V| and the number of edges ¢ = |£| are sometimes called the order and
the size of the graph G, respectively. A graph where the pairs of nodes that determine
the edges are ordered (i.e., (i, j) is distinct from (j, 7)) is called a directed graph. By
convention, for a directed graph, the first node of the pair determines the starting node
of the edge and the second node of the pair determines the ending node of the edge.
If there is no order (i.e., (i, j) and (j, i) correspond to one and only one edge), the
graph is said to be undirected. A directed edge connecting node i and node j is often
denoted quite naturally by i — j, or (i, j), whereas an undirected edge is denoted by
i < j,orsimply by (i, j) (the order is not important in this case).

We say that two nodes are adjacent when an edge exists that connects these two
nodes; they are therefore neighbors. A node and an edge are incident when the edge
is connected to the node. When applying an algorithm designed for directed graphs
to an undirected graph, each edge i <> j of the undirected graph is considered as
the superposition of two directed edges, i — j and j — i. An obvious example of a
directed graph is the World Wide Web, where the nodes are web pages and the edges
are the (directed) hyperlinks between pages. By contrast, a graph of coauthorship is
undirected.

Moreover, in the case of an undirected graph, the set of neighbors of i, that is, nodes
adjacent to node i, will be denoted as N'(i), or N (i) = {j | (i, j) € £}. In the directed
case, when there exists an edge i — j, node j is said to be a successor of node i, and
conversely, node i is said to be a predecessor of j. The set of successors of i will be
denoted as Succ(i), and the set of predecessors of i will be denoted as Pred(i). Thus
Succ(i)={jli—> je&tand Pred(i)={j | j—> i€t}

In the case of a weighted undirected graph, a nonnegative symmetric weight w;;
(with w;; = wj;), which quantifies the degree of “affinity,” the degree of “similarity,”
or the “closeness” between the two nodes i and j, or alternatively a nonnegative
symmetric cost c;;, which quantifies the cost of following the link i — j, is associated
with each edge. In a coauthorship network, for example, weights can be the number
of papers cosigned by two authors. As mentioned earlier, an undirected graph is often
considered as a directed graph where, for each edge, bothi — j and j — i are present
with the same weight (the edge is bidirectional). A graph without weights assigned to
the edges is called unweighted.

If the graph is weighted and directed, the (directed) weight w;; can usually be
interpreted as a degree of endorsement, credit, reward, or dependency of object i
relative to object j, which defines a binary (weighted) relation between pairs of nodes,
where the starting node delivers some kind of “credit” to the ending node. For example,
this occurs in a citation network where papers cite other papers or in social organizations
where employees depend on their direct managers.

By contrast, for some directed networks, the weights on the edges may instead
reflect a relation that involves the dominance or influence of i on j. For instance, these
weights could be obtained from a tournament where the corresponding relation could
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BASIC DEFINITIONS AND NOTATION 9

be “has defeated” or “is stronger than.” Thus, the weights are set to the (positive) score
differential between the two opponents. In this situation, reverting the relation and
thus the link to j — i brings us back to the first interpretation, that is, endorsement or
dependency. In the sequel, if not explicitly stated otherwise, the first interpretation is
assumed for directed graphs. Of course, it is very important to interpret and understand
the correct relation that has been captured in a network before its analysis because each
algorithm makes implicit assumptions about the semantics of the edges. Sometimes,
as with undirected graphs, a nonnegative directed cost ¢;; is specified in addition to the
weights or to replace the weights.

A graph can also contain self-loops, which is an edge that may be weighted, starting
at one node and ending at the same node. In the sequel, unless stated otherwise explicitly,
it is assumed that a graph does not contain self-loops. A graph without self-loops and
without multiple edges between two nodes is often called a simple graph.

In an unweighted undirected graph, the degree of a node is the number of edges
incident with it, or equivalently, the degree of a node is the number of nodes adjacent
to it. The degree ranges from a minimum of O if no node is adjacent to a given
node, to a maximum of n — 1 if the given node is adjacent to all other nodes in the
graph. In the case of a weighted graph, the generalized degree (sometimes called the
strength), or simply the degree, of a node is the sum of the weights (the total weight)
of the edges incident with it. A node with a degree equal to O is called an isolated
node.

For directed graphs, indegrees and outdegrees must be introduced, where the
indegree of a node is the number of incoming edges (or the total weight for a weighted
graph) ending at the considered node and its outdegree is the number of outgoing edges
(or the total weight for a weighted graph) starting from the considered node.

A subgraph H is a subset of a graph’s nodes that, together with the subset of edges
of G connecting the nodes in H, also constitutes a graph. Many computational tasks
involve identifying subgraphs of various types.

A path o (sometimes called a walk) in a graph is a sequence of edges where each
successive node (after the first) is adjacent, through an existing edge, to its predecessor
in the path. A path between i and j is denoted by i ~~ j or g;;. A cycle or loop is a
path for which the starting node is equal to the ending node. The set of all possible
paths of G, differing in terms of length (i.e., number of hops or steps when following
the path), starting from node i and ending at node j (including cycles), is denoted by
Pij, and the set of all ¢-steps paths of G starting from node i and ending at node j
(including cycles) is denoted by P;;(2).

In an unweighted graph, the geodesic or shortest-path distance between two nodes
is defined as the length of a minimum length path between them. For weighted graphs,
the shortest path refers to the path for which the total accumulated cost along the
path is a minimum. The shortest-path (or lowest-cost) distance is then defined as
this minimum accumulated cost. Now, if there is no path between two nodes, then the
distance between them is considered as infinite (or sometimes undefined) as they are
not reachable. Note that, in an undirected graph, a shortest path between nodes i and
j 1is also a shortest path between nodes j and i. In some cases, we are interested in
simple paths, that is, paths that do not include repeating nodes, so the nodes are all
distinct. In other words, each node does not appear more than once in a simple path;
therefore, simple paths have length at most n — 1 in a graph with n nodes.
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10 PRELIMINARIES AND NOTATION

Let us now define the concept of a bipartite graph (or bigraph). Bipartite graphs are
encountered frequently, such as in collaborative recommendation problems where there
are two different types of nodes (e.g., customer nodes and item nodes). For example,
there is a link between a customer i and an item j if the customer bought this item.
A bipartite graph is a graph where the nodes can be divided into two disjoint sets X
and Y such that each edge links a node in X to a node in Y or vice versa. In other
words, for all of the edges i — j € £, eitheri e XY and j € Yori € Yand j € &,
with X NY = @ and X UY = £. Consequently, no edge connects two nodes in X’ or
connects two nodes in ). It can be shown that a bipartite graph is a graph that does not
contain any odd-length cycle [810].

A graph is connected (or strongly connected if directed) if at least one path exists
from each node to each other node in the graph. Stated otherwise, each node is reachable
from each other node. A graph that is not connected is disconnected, and it comprises
a set of connected components, which are maximal connected subgraphs. The term
maximal connected subgraph H means that

» the subgraph H is connected

» there is no path from a subgraph node in H to any other node in the graph that is
not part of the subgraph H, and thus

» this subgraph H is maximal, that is, it contains the largest number of nodes and
edges that have this property

Many algorithms are available for identifying the maximal connected subgraphs
(e.g., see [706] and Section 1.3.3).

The diameter of a connected graph G is the distance of the largest shortest path
between any pair of nodes in G, providing, therefore, information about the distance
between the two farthest nodes in the graph. In an unweighted graph, the diameter can
range from a minimum of 0 (a single isolated node) to a maximum of n — 1.

In some cases, associated features on the nodes provide information about the
object the node represents. For instance, if we consider a graph of a social network like
Facebook, each node represents a person, and the associated features on the node are
simply information that the person has published, for example, the person’s gender and
age. All of these features are gathered in a feature vector x, which usually contains
missing values when the person has not published the corresponding information. Then,
each node i has a feature vector X;, which contains its features.

An illustrative example. The illustrative graph shown in Figure 1.4 is unweighted and
undirected, and it is defined by

» V={1,2,3,4,5,6,7,8,9,10}
» £={(1,2),(1,3),(1,4),1,5),(2,3), (2,4, (2,7), (3, 4), 3,5, 3,7, 4,5),
(5,7),(5,9), (6,9), (6, 10), (8,9), (8, 10), (9, 10)},

thereby leading to n = 10 and e = 18.

Moreover,

» the graph is connected (but it would not be connected if there were no edge
between nodes 5 and 9, or if node 5 or node 9 is removed)
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