Index

acceleration, xii
action functional, 173
and Newton’s equation (Maupertuis’s principle), 173
action of a group on a set, 206
transitive, 157
affine part of a subset of \(\mathbb{R}P^2 \), 143
algebraic multiplicity of an eigenvalue, 185
angle between tangent vectors, 120
angle sum
in a hyperbolic triangle, 159
in a spherical triangle, 157
angular momentum, 2, 64
and curvature, 138
is a constant of motion in the \(n \)-body problem, 64
is a constant of motion in the CFP, 2
angular velocity, 4
instantaneous, 80, 96
anomaly
eccentric, 37, 42
integral description, 47
mean, 38
relation between the true and eccentric – in the elliptic case, 46
true, 28
Apollonius of Perga (third century BC), 21
arc length, 115, 135
– parametrisation, 116, 136
length functional w.r.t. a Riemannian metric, 171
area element in polar coordinates, 5
area in the hyperbolic plane, 158
area swept out by the position vector, 4, 9
argument of the pericentre, 50
asymptote of a hyperbola, 22
autonomous
differential equation, 86
Hamiltonian system, 178
Lagrangian function, 171
barycentre, see centre of mass
boundary at infinity, 121
branch of a hyperbola, 15
bump function, 170
canonical system, see Hamilton equations
canonical transformation, 180
also called ‘symplectomorphism’, 182
Cardano, Gerolamo (1501–1576), 45
formula for cubic equations, 43
Cauchy–Lipschitz theorem, xiv
central configuration, 67
as a critical point condition, 68
finiteness question, 72
for four bodies, 69
of equal mass, 72
for three bodies, 69
gives rise to a homothetic solution of the \(n \)-body problem, 67
planar, 69
planar – gives rise to a homographic solution of the \(n \)-body problem, 69
planar – gives rise to a relative equilibrium, 71
regular \(n \)-gon is a – for \(n \) equal masses, 69
central force problem, 1
as a first-order system, 2
centrally symmetric, 7
is conservative, 7
motion is planar, 2
symmetries, 7
centre of mass
of a two-body system, 52
of an n-body system, 64
(CFP), see central force problem
characteristic polynomial, 185
Cherry’s example concerning stability, 191
choreographic solution of the n-body problem, 93
circles are characterised by constant curvature, 137
compact topological space, 153
cone, 20, 58
complement of the thick diagonal is a –, 58
configuration space, 178
for (PCR3B), 178
conformal map, 110
and the Jacobian matrix, 153
conformally equivalent Riemannian metrics, 121
Jacobi metric and euclidean metric, 173
conic section, 15, 20, 21
as a solution of the Kepler problem, 24
conservative force field, 6
centrally symmetric CFP, 7
Kepler problem, 27
n-body problem, 56
constant of motion, 2
angular momentum, 2, 64
autonomous Hamiltonian, 178, 181
energy, 6, 57
for the Hooke problem, 147
for the Kepler problem (orbital elements), 49
for the n-body problem, 64
for the two-body problem, 52
from an autonomous Lagrangian function, 122
geometric interpretation, 88
Jacobi constant, 87
linear momentum, 64
continuous map between topological spaces, 153
convex hull, 73
convex subset of \mathbb{R}^d, 73
coordinates
homogeneous, 142
Jacobi –, 75
‘no set of – is good enough’, 72
spherical, 154
co-planar motion, 69
covering map, 4
cubic equation
general form, 47
in the parabolic case of the Kepler problem, 42
solution by radicals (Cardano’s formula), 43–45
curtate cycloid, 40
curvature of a curve on a surface in \mathbb{R}^3
geodesic, 145
normal, 145
curvature of a planar curve, 137
and angular momentum of its polar reciprocal, 138, 160
and central force, 165
and the duality of force laws, 165
constant curvature characterises circles, 137
transformation under a holomorphic map, 161
cycloid, 40
curate, 40
describes solutions of (K) with $c = 0$ and $h < 0$, 47
Descartes’s sign rule for polynomials, 98
diagonal in $\mathbb{R}^d \times \mathbb{R}^d$, 51
‘thick’ – in \mathbb{R}^{3n}, 55
differential of a C^1-map
geometric interpretation, 120
on S^2, 207
on hyperbolic space, 120
directrix
of ellipse, 13
role in Newton’s geometric solution of the Kepler equation, 40
of hyperbola, 18
of parabola, 18
dual of a curve in $\mathbb{R}P^2$, 144
and polar reciprocal, 145
dual projective plane, 143
duality between conics and circles, 138
duality between poles and polars, 134
and polar reciprocation, 138, 159
projective version, 144
duality between solutions of (H) and (K), 147
via holomorphic transformations, 175
was found by Newton, 151
duality of force laws, 164, 174
and curvature of planar curves, 165
eccentric anomaly
and the Levi-Civita parameter, 131
elliptic case, 37
gives the arc length parametrisation of the transformed hodograph, 117, 127, 128
hyperbolic case, 47
integral description, 47, 128, 130, 159
parabolic case, 42
eccentricity (vector)
of ellipse, 11
as one of the six orbital elements, 50
of hyperbola, 15
of parabola, 18
ecliptic, 49
eigenvalue
algebraic multiplicity, 185
geometric multiplicity, 184
ellipse, 10
as a solution of the Hooke problem, 147
as a solution of the Kepler problem, 24
centre, 10
description
as a conic section, 21
by a quadratic equation, 14
by a vector equation, 11
in polar coordinates, 12, 20
via the gardener’s construction, 10
with a directrix, 13, 20
directrix, 13
eccentricity (vector), 11
foci, 10
parametrisation in terms of the eccentric
anomaly, 38
pericentre, 37
pericentre distance, 12
reflection property, 35
semi-major axis, 10
semi-minor axis, 13
energy
and the Euler–Lagrange equation, 172
in the Hooke problem, 147
in the Kepler problem, 27
is a constant of motion in a conservative
force field, 6
kinetic, 6
of an n-body system, 57
total (kinetic + potential), 6
as a Hamiltonian function, 178
in the n-body problem, 57
equation of a set of lines, 161
equations
(CFP): central force problem, 1
(CFP ′): (CFP) as a first-order system, 2
(EL): Euler–Lagrange equation, 168
(EL ′): (EL) for an autonomous Lagrangian
function, 171
(H): Hooke problem, 146
solutions of type (H₀), (H₊), 146
Hamiltonian system, 177
as a flow equation, 181
in complex notation, 179
(K): Kepler problem, 23
(K ′): (K) as a first-order system, 25
(K) in Hamiltonian form, 197
(N): Newton’s equation of motion, 6
(N₀): (N) for a conservative force field, 6,
173
n-body problem, 55
as a conservative system, 57
as a first-order system, 59
central configuration, 67
homothetic solution, 67
(PCR3B): planar circular restricted
three-body problem in rotating
coordinates, 86
(PCR3B ′): (PCR3B) as a first-order system,
87
(PCR3B) in Hamiltonian form, 166–167
(R3B): restricted three-body problem, 84
three-body problem
collinear circular solution, 83
in Jacobi coordinates, 75
two-body problem, 51
in barycentric coordinates, 53
in relative coordinates, 52
equilibrium point
asymptotic stability, 185
of a dynamical system, 185
infinitesimal stability, 185
of a general first-order system
Lyapunov vs. infinitesimal stability, 185
of a Hamiltonian system, 182
infinitesimal stability, 187
stability of the origin in a linear system, 185
equilibrium solution, 58
n-body problem does not have any, 58
of (PCR3B), see libration points
Euler points, 90
are not stable, 193
are saddle points of Φ, 92
Euler, Leonhard (1707–1783)
collinear solutions of the three-body
problem, 83–84, 99–100
theorem on positive homogeneous
functions, 58
Euler, Leonhard (cont.)
work on the three-body problem, 93–94
Euler–Lagrange equation, 168
and Newton's equation (Hamilton’s principle), 169
for an autonomous Lagrangian function, 171
existence and uniqueness theorem for first-order differential equations (Picard–Lindelöf), xiv
existence of solutions for all times, 25
fall time, 48
flow line of a vector field, xiv
focus of ellipse, 10
of hyperbola, 15
of parabola, 18
force field, 6
conservative, 6
for the centrally symmetric CFP is conservative, 7
potential of, 6
fractional linear transformation, 157
is an isometry of the hyperbolic plane, 157
fundamental lemma of the calculus of variations, 169
Galilean relativity principle, 51
gardener’s construction of ellipse, 10
of hyperbola, 15
of parabola, 18
general linear group, 189
generalised momenta, 178
geodesic, 115
for the Jacobi metric, 173
hyperbolic, see hyperbolic geodesic in a subset of \(\mathbb{R}^n \) with a Riemannian metric, 171
on \(S^2, 155, 171 \)
on \(S^3, 115 \)
on \(S^{n-1}, 156 \)
on a submanifold in \(\mathbb{R}^n \)
as a locally distance minimising curve, 154
characterised by the acceleration vector, 155
on a surface in \(\mathbb{R}^3, 146 \)
variational characterisation, 156, 171
geodesic curvature, 145
geodesic flow on \(S^2, 195–197 \)
geometric multiplicity of an eigenvalue, 185

gravitational constant \(G \), xiii
Grassmann identity for the vector product, 3, 8
great circle, 115
(H), see Hooke problem
\(H \) is for Huygens, 187
Hamilton equations, 167, 177
as a flow equation, 181
in complex notation, 179
linear approximation at an equilibrium point, 186
Hamilton’s principle, 169
Hamilton, William Rowan (1805–1865)
discovery of the quaternions, 200
invention of the hodograph, 150
Hamiltonian function, 167
derived from a Lagrangian function (Legendre transformation), 177
for motions in a conservative force field (energy), 178
\(H \) stands for Huygens, 187
Hamiltonian system, 178
autonomous, 178
has \(H \) as a constant of motion, 178, 181
configuration space, 178
equilibrium point, 182
generalised momenta, 178
phase portrait, 190
phase space, 178
Hamiltonian vector field, 181
Hill’s region, 91, 172
hodograph, 102
circularity of the – characterises the Newtonian law of attraction, 162
Hamilton’s theorem, 102
Moser’s theorem, 115
Moser–Osipov–Belbruno theorem, 131
of a regularised collision solution, 114
theorem of Osipov and Belbruno, 126
homeomorphism, xiv, 153
homogeneous coordinates for projective space, 142
homographic solution of the \(n \)-body problem, 69
is homothetic iff \(c = 0, 97 \)
planar – comes from a central configuration, 69
homographic solution of the three-body problem (Lagrange’s theorem), 77
circular case, 94
Laplace’s proof, 93
homothetic solution of the n-body problem, 67
homothety, 67
Hooke problem
duality with the Kepler problem, see duality between solutions of (H) and (K)
is conservative, 147
solutions, 146
Hooke, Robert (1635–1703)
role in the discovery of the inverse square law, 23, 31
Huygens, Christiaan (1629–1695)
formulation of energy conservation, 187
hyperbola, 15
as a solution of the Hooke problem, 147
as a solution of the Kepler problem, 24
asymptote, 22
branches, 15
description
by a quadratic equation, 21
by a vector equation, 15
in polar coordinates, 17, 20
via the gardener’s construction, 15
with a directrix, 17, 20
directrix, 18
eccentricity (vector), 15
foci, 15
parametrisation in terms of the eccentric anomaly, 22, 46
pericentre, 38
pericentre distance, 17
principal branch, 16
real semi-axis, 15
reflection property, 35
hyperbolic area, 158
hyperbolic geodesic, 118
in the half-space model, 119
via variational principle, 172, 188
hyperbolic length, 118
hyperbolic line, 122
in the half-space model, 122
in the Poincaré disc model, 125
hyperbolic space
boundary at infinity, 121
half-space model, 120
hyperbolic k-plane in \mathbb{R}^{n+1}, 158
Poincaré disc model, 125
hyperbolic triangle, 158
inclination, 49
instantaneous angular velocity, 80, 96
integral curve of a vector field, xiv
intrinsic normal vector, 145
inversion, 108
and polar reciprocation, 133
as ‘Wiedergeburt und Auferstehung’, 150
fixed point set is the sphere of inversion, 109
is an involution, 108
is conformal, 110, 150
sends spheres and planes to spheres and planes, 110
Steiner’s theorem, 110
yields hyperbolic isometries, 121
involution, 108
isometry, 51
of \mathbb{H}, 120, 157
isometry group, 157
of \mathbb{H} acts transitively, 157
of the hyperbolic plane, 158
Jacobi constant, 87
Jacobi coordinates, 75
Jacobi integral, 87
as a Hamiltonian function for (PCR3B), 167
defines three-dimensional submanifolds, 88
Jacobi metric, 173
godesics are solutions of (N$_t$), 173
Jacobi, Carl Gustav Jacob (1804–1851)
introduction of the Jacobi metric, 187
(Kepler equation, see Kepler problem
Kepler equation
cubic analogue in the parabolic case, 42
for elliptic solutions, 38
for hyperbolic solutions, 47
solution by Newton’s iterative method, 45
solution by the cycloid, 40–41
solution in terms of Bessel functions, 45
Kepler problem, 23
as a first-order system, 25
as a Hamiltonian system, 197
constants of motion (orbital elements), 49
duality with the Hooke problem, see duality between solutions of (H) and (K)
energy, 27
hodograph, see hodograph, Moser, and Osipov–Belbruno theorem
is conservative, 7, 27
is of order six, 49
regularisation, see regularisation of collisions
solution with $e = 0$ and $h = 0$, 49
solutions with $e = 0$ and $h < 0$, 48
solutions with $e \neq 0$ (Kepler’s first law), 24
solutions with $e \neq 0$ are defined for all times, 25
Kepler’s first law, 24
Lagrange’s proof, 32
Laplace’s proof, 24, 30
proof by van Haandel and Heckman, 33
proof via a differential equation on the inverse radius, 31
proof via hodograph, 104
proof via Newton–Hooke duality, 149, 163
proof via polar reciprocation, 139
was proved by Newton, 30
Kepler’s second law, 5
converse, 6
was proved by Newton, 7
Kepler’s third law, 29, 39
for circular motions, 9
for several planets, 53
was proved by Newton, 30
kinetic energy, 6
of an n-body system, 57
Lagrange points, 90
are minima of Φ, 91, 100
condition for stability, 193
Trojan asteroids, 93
Lagrange, Joseph-Louis (1736–1813)
proof of Kepler’s first law, 32
theorem on homographic solutions of the three-body problem, 77
circular case, 94
Laplace’s proof, 93
Lagrange–Jacobi identity, 63
virial theorem, 71
Lagrangian function, 168
for motions in a conservative force field (kinetic minus potential energy), 169
Lambert’s theorem, 45
Laplace, Pierre-Simon (1749–1827)
proof of Kepler’s first law, 30
proof of Lagrange’s theorem on the three-body problem, 93
Laplace–Runge–Lenz vector, 25
Legendre condition
for the Hamiltonian function, 178
for the Lagrangian function, 176
Legendre transformation, 178
length functional, 171
Levi-Civita parameter, 131
and regularisation, 150
and the eccentric anomaly, 131
libration points, 90
Euler points, 90
are not stable, 193

\begin{tabular}{|l|l|}
\hline
$\text{Kepler’s first law}$ & 24 \\
Lagrange’s proof & 32 \\
Laplace’s proof & 24, 30 \\
proof by van Haandel and Heckman & 33 \\
proof via a differential equation on the inverse radius & 31 \\
proof via hodograph & 104 \\
proof via Newton–Hooke duality & 149, 163 \\
proof via polar reciprocation & 139 \\
was proved by Newton & 30 \\
Kepler’s second law & 5 \\
converse & 6 \\
was proved by Newton & 7 \\
Kepler’s third law & 29, 39 \\
for circular motions & 9 \\
for several planets & 53 \\
was proved by Newton & 30 \\
kinetic energy & 6 \\
of an n-body system & 57 \\
Lagrange points & 90 \\
are minima of Φ & 91, 100 \\
condition for stability & 193 \\
Trojan asteroids & 93 \\
Lagrange, Joseph-Louis (1736–1813) & \\
proof of Kepler’s first law & 32 \\
theorem on homographic solutions of the three-body problem & 77 \\
circular case & 94 \\
Laplace’s proof & 93 \\
Lagrange–Jacobi identity & 63 \\
virial theorem & 71 \\
Lagrangian function & 168 \\
for motions in a conservative force field (kinetic minus potential energy) & 169 \\
Lambert’s theorem & 45 \\
Laplace, Pierre-Simon (1749–1827) & \\
proof of Kepler’s first law & 30 \\
proof of Lagrange’s theorem on the three-body problem & 93 \\
Laplace–Runge–Lenz vector & 25 \\
Legendre condition & \\
for the Hamiltonian function & 178 \\
for the Lagrangian function & 176 \\
Legendre transformation & 178 \\
length functional & 171 \\
Levi-Civita parameter & 131 \\
and regularisation & 150 \\
and the eccentric anomaly & 131 \\
libration points & 90 \\
Euler points & 90 \\
are not stable & 193 \\
\hline
\end{tabular}
Newton’s iterative method, 45
proof of Kepler’s first law, 30
proof of Kepler’s second law, 7
proof of Kepler’s third law, 30
solution of the Kepler equation, 40, 45
Newtonian law
of gravitation, xiii, 23
second – of motion, xiii
non-autonomous differential equation, 85
normal curvature, 145
one-point compactification, 152
orbital elements, 49
order
of (K) is six, 49
of (PCR3B) is three, 86
of (R3B) is six, 86
of the planar restricted three-body problem
is four, 86
of the three-body problem with fixed centre
of mass is twelve, 75
of the two-body problem is twelve, 52
Osipov–Belbruno theorem, 126
general version, 131
parametric version
hyperbolic case, 128
parabolic case, 127
parabola, 18
as a solution of the Kepler problem, 24
description
as a conic section, 20
by a quadratic equation, 20
by a vector equation, 18
in polar coordinates, 19, 20
via the gardener’s construction, 18
with a directrix, 18, 20
directrix, 18
focus, 18
parametrisation in terms of the eccentric
anomaly, 42
pericentre, 38
reflection property, 35, 162
(PCR3B), see planar circular restricted
three-body problem
pericentre, 37
argument of the –, 50
called ‘perihelion’ for the Sun being the
central body, 50
pericentre passage, 38
as one of the six orbital elements, 50
perihelion, 50
period, 29, 33

phase portrait of a Hamiltonian system, 190
phase space, 178
Picard–Lindelöf theorem, xiv
planar central configuration, 69
planar circular restricted three-body problem,
85
as a first-order system, 87
as a Hamiltonian system, 166–167
Euler points, 90
Hill’s region, 91
in rotating coordinates, 86
is a model for the Trojan asteroids, 86
is of order three, 86
Jacobi constant, 87
Jacobi integral, 87
as a Hamiltonian function, 167
Lagrange points, 90
libration points, 90
zero velocity curves, 91
planar motion, 69
plane
hyperbolic – in \(\mathbb{H} \), 158
k-dimensional – in \(\mathbb{R}^k \), 110
radial, 102
points at infinity in projective space, 142
polar, 133
polar reciprocal, 135
defined projectively, 145
duality, 137
of conics and circles, 138, 162
projective version, 145
in cartesian coordinates, 135
is the envelope of the family of polars, 161
relation with the velocity curve, 140
polarisation identity, 122
pole, 133
positive homogeneous function, 58
Euler’s theorem, 58
Newton potential is a –, 58
potential
Newton – for the n-body problem, 56
of a centrally symmetric CFP, 7
of a conservative force field, 6
of the Newtonian central force, 7
primaries in the restricted three-body problem,
85
principal branch of a hyperbola, 16
projective line, 142
is diffeomorphic to a circle, 206
is homeomorphic to a circle, 163
projective plane, 141
affine part of a subset, 143
dual, 143
line in the –, 142
points at infinity, 142
projective space, 142
points at infinity, 142
RP^3 is diffeomorphic to SO(3), 204–205
RP^3 is homeomorphic to SO(3), 199–200,
202
quaternions, 200
conjugation, 201
form a division algebra, 201
imaginary part, 201
real part, 201
relation with the inner and cross product,
202
unit –, 202
were discovered by Hamilton, 200
quotient topology, 141
(R3B), see restricted three-body problem
radial plane, 102
real semi-axis of a hyperbola, 15
reflection of light rays in a mirror, 34
reflection property of conics, 35, 162
regular C^1-curve, 118, 135
in RP^2, 144
dual curve, 144
regularisation of collisions, 48
and an integral description of the eccentric
anomaly, 159
and Newton–Hooke duality, 149
and the hodograph, 114
and the Levi-Civita parameter, 150
in Moser’s theorem, 117
in the Osipov–Belbruno theorem, 126–128
relation between
a and h, 28
a, c and e, 25
c, e and h, 27
relative equilibrium, 70
always comes from a planar central
configuration, 71
in the three-body problem, 78–79
is planar, 97
rotates with constant angular velocity, 97
restricted three-body problem, 84
as a non-autonomous differential equation,
85
conservation laws do not hold, 86

Index

is of order six, 86
planar – is of order four, 86
primaries, 85
Riemannian metric, 119
and length functional, 171
conformal equivalence, 121
induced on a submanifold, 130, 155
on an open subset of R^n, 171
semi-major axis of an ellipse, 10
as one of the six orbital elements, 50
semi-minor axis of an ellipse, 13
smooth map, xiii
SO(3)
elements are rotations, 200
is a three-dimensional manifold, 198
is diffeomorphic to RP^3, 204–205
is diffeomorphic to the unit tangent bundle
of S^2, 199, 207
is homeomorphic to RP^3, 199–200, 202
solutions of a linear differential equation, 184
Somerville, Mary (1780–1872), 30
space forms in dimension three, 131
speed, xii
sphere
k-dimensional – in R^n, 110, 152
unit – in R^n, 107
spherical coordinates, 154
spherical triangle, 157
stability
asymptotic, 185
Cherry’s example, 191
indefinite, 185
condition in terms of the characteristic
roots, 187
indefinite – does not imply Lyapunov –,
190–191
of the libration points, 191–193
of the origin in a linear system, 185
relation between indefinite – and
Lyapunov –, 185
Steiner, Jakob (1796–1863)
theorem on involutions, 110, 150
stereographic projection, 109
cordinate description, 113
is an inversion, 109
is conformal, 111, 153
sends circles to circles or lines, 111
Sundman, Karl (1873–1949)
inequality, 65, 73–74
case of equality, 74
Index

power series solution to the three-body problem, 71
theorem on solutions to the n-body problem defined in finite time only, 71
theorem on total collapse, 66
symplectic form
 canonical – on \mathbb{R}^{2n}, 180
 on a manifold, 182
symplectic group, 188
 relation with the unitary group, 189
symplectic matrix, 180
 condition in terms of a block decomposition, 188
symplectomorphism, 182
tangent line of a curve in $\mathbb{R}P^2$, 144
tangent space
 at a point in \mathbb{R}^n, 171
 of SO(3) at E, 205
 of S^2, 196
 of a submanifold in \mathbb{R}^n, 155
 of hyperbolic space, 119
three-body problem
 Euler’s collinear solutions, 83–84, 99–100
 figure-eight solution, 93
 in Jacobi coordinates, 75
 Lagrange’s homographic solutions, 77–83
 circular case, 94
 Laplace’s proof, 93
 planar circular restricted, see planar circular restricted three-body problem
 relative equilibrium, 78–79
 restricted, see restricted three-body problem
 solutions with $c = 0$ are planar, 75
topology, 152
 compactness, 153
 continuity, 153
 induced on a subset, 152
 on a one-point compactification, 152
 quotient –, 141
total collapse, 65
 can happen only in planar three-body systems, 75
 can happen only in finite time, 65
 can happen only in systems with $c = 0$
 (Sundman’s theorem), 66
transitive group action, 157
triangle
 hyperbolic, 158
 spherical, 157
Trojan asteroids, 78
 are modelled by (PCR3B), 86
true anomaly, 28
two-body problem, 51
circular solution, 53
 constants of motion, 52, 64
 in barycentric coordinates, 53
 in relative coordinates, 52
 invariance properties, 51
 is of order twelve, 52
unit speed curve, see arc length parametrisation
unit tangent bundle of S^2, 196
 is a three-dimensional manifold, 196
 is diffeomorphic to SO(3), 199, 207
unitary group, 189
 relation with the symplectic group, 189
 unitary matrix, 189
variational principles
 characterisation of geodesics, 156, 171
 Hamilton’s principle, 169
 Maupertuis’s principle, 173
vector field, xiv
 and first-order differential equation, xiv
 integral curve (or flow line) of a –, xiv
velocity, xii, 2
 angular, see angular velocity
velocity circle, 104
velocity curve, 102
 relation with the polar reciprocal, 140
vernal equinox, 49
virial theorem, 71
volume of a parallelepiped, 31
wedge product of two 1-forms, 180
zero velocity curves, 91