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72 Elements of the representation theory of associative algebras III, DANIEL SIMSON & ANDRZEJ

SKOWROŃSKI
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Und in der Tat, die wichtigsten geistigen Vorkehrungen der Menschheit die-
nen der Erhaltung eines beständigen Gemütszustands, und alle Gefühle, alle
Leidenschaften der Welt sind ein Nichts gegenüber der ungeheuren, aber völlig
unbewußten Anstrengung, welche die Menschheit macht, um sich ihre gehobe-
ne Gemütsruhe zu bewahren! Es lohnt sich scheinbar kaum, davon zu reden, so
klaglos wirkt es. Aber wenn man näher hinsieht, ist es doch ein äußerst künst-
licher Bewußtseinszustand, der dem Menschen den aufrechten Gang zwischen
kreisenden Gestirnen verleiht und ihm erlaubt, inmitten der fast unendlichen
Unbekanntheit der Welt würdevoll die Hand zwischen den zweiten und dritten
Rockknopf zu stecken.

Robert Musil, Der Mann ohne Eigenschaften
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Preface

DER INQUISITOR Und da richten diese Würmer von
Mathematikern ihre Rohre auf den Himmel [...] Ist es nicht
gleichgültig, wie diese Kugeln sich drehen?

Bertolt Brecht, Leben des Galilei

Celestial mechanics has attracted the interest of some of the greatest mathemat-
ical minds in history, from the ancient Greeks to the present day. Isaac New-
ton’s deduction of the universal law of gravitation (Newton, 1687) triggered
enormous advances in mathematical astronomy, spearheaded by the mathe-
matical giant Leonhard Euler (1707–1783). Other mathematicians who drove
the development of celestial mechanics in the first half of the eighteenth cen-
tury were Alexis Claude Clairaut (1713–1765) and Jean le Rond d’Alembert
(1717–1783), see (Linton, 2004). In those days, the demarcation lines sepa-
rating mathematics and physics from each other and from intellectual life in
general had not yet been drawn. Indeed, d’Alembert may be more famous
as the co-editor with Denis Diderot of the Encyclopédie. During the Enlight-
enment, celestial mechanics was a subject discussed in the salons by writ-
ers, philosophers and intellectuals like Voltaire (1694–1778) and Émilie du
Châtelet (1706–1749).

The history of celestial mechanics continues with Joseph-Louis Lagrange
(1736–1813), Pierre-Simon de Laplace (1749–1827) and William Rowan Ha-
milton (1805–1865), to name but three mathematicians whose contributions
will be discussed at length in this text. Henri Poincaré (1854–1912), perhaps
the last universal mathematician, initiated the modern study of the three-body
problem, together with large parts of the theory of dynamical systems and what
is now known as symplectic geometry (Barrow-Green, 1997; Charpentier et
al., 2010; McDuff and Salamon, 1998).

Yet this time-honoured subject seems to have all but vanished from the

ix
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x Preface

mathematical curricula of our universities. This is reflected in the available
textbooks, which are either getting a bit long in the tooth, or are addressed to a
fairly advanced and specialised audience. The Lectures on Celestial Mechanics
by Siegel and Moser (1971), a classic in their own right, deal with Sundman’s
work on the three-body problem in the wake of Poincaré’s, and with questions
about periodic solutions and stability, all at a rather mature level. Celestial me-
chanics as a key motivation for the study of dynamical systems is served well
by (Moser and Zehnder, 2005) and (Meyer et al., 2009).

My personal interest in celestial mechanics stems from reading the paper
(Albers et al., 2012), where the three-body problem is approached with meth-
ods from contact topology, my core area of expertise, see (Geiges, 2008). I
should say ‘attempting to read’, for I quickly realised that I was ignorant of
some of the most basic terminology in celestial mechanics.

In order to remedy this deplorable state of affairs – and to confute the in-
quisitor – I decided to teach a course on celestial mechanics, with (Pollard,
1966), (Danby, 1992) and (Ortega and Ureña, 2010) as my excellent guides.
The latter textbook can be recommended even to readers whose grasp of Span-
ish is as rudimentary as mine.

However, none of these texts takes the geometric view that I wished to em-
phasise, so I included material from sources such as (Milnor, 1983) and (Hall
and Josić, 2000), expanded and adapted to the needs of an introductory course.
The present text rather faithfully reflects the course I taught at the Univer-
sity of Cologne in 2012/13, where the audience of some seventy ranged from
second-year mathematics or physics undergraduates all the way to Ph.D. stu-
dents. For a follow-up seminar in 2014/15 and this write-up I added more
geometric material, notably on the curvature of planar curves and projective
geometry, inspired by (Coolidge, 1920), and I removed a couple of sections on
generating functions and Hamilton–Jacobi theory, which I felt were less in the
spirit of this elementary geometry course in disguise.

The result, I hope, is a text that can be read profitably by undergraduates
in their penultimate or final year, while not being too pedestrian for more ad-
vanced students. I believe that, for students not intending to specialise in geo-
metry, learning elementary differential geometry and topology by seeing it ‘in
action’, that is, applied to questions in celestial mechanics, may be a more
satisfying experience than some traditional courses that concentrate on the de-
velopment of machinery and often stop before the student can really appreciate
its utility – needless to say, students who plan to continue with further courses
in geometry may likewise enjoy that experience. Celestial mechanics is a field
where many strands of pure and applied mathematics come together, and for
this reason alone it deserves a more prominent place in the curriculum.
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Preface xi

I have included over a hundred exercises, often with comments that explain
their relevance, making the text suitable for self-study. It should be possible
to cover most of this book in a one-semester course of 14 weeks. For shorter
courses one could omit the proof of planarity in Lagrange’s theorem (Theo-
rem 7.1) and make a selective choice of the material in Chapters 8 to 10.

The contents of this book

A large portion of this text is concerned with the simplest question in celes-
tial mechanics, the Kepler problem, which studies the motion of a single body
around a fixed centre under Newtonian attraction. One of my aims is to dis-
play the rich geometry of this problem. In particular, several proofs of Kepler’s
first law about the shape of the orbit will be given, based on geometric con-
cepts such as curvature of planar curves or conformal (i.e. angle-preserving)
transformations of the plane.

Chapter 1 introduces the central force problem, where the force law need
not be Newtonian. Even in this more general setting one finds two preserved
quantities of the motion: the angular momentum and, if the force field derives
from a potential, the energy. The preservation of the angular momentum can
be rephrased as Kepler’s second law about areas.

Kepler’s first law about the shape of the orbit, now assuming Newtonian
attraction, is proved (following Laplace) in Chapter 3: the orbit is a conic
section, with one focus in the force centre. Chapter 2 provides the background
on conic sections, to which the reader may refer as needed.

Of course, knowing the shape of the orbit is only half the answer, in particu-
lar if you are trying to locate a celestial object in the sky. One would really like
to have an explicit time parametrisation of the orbit. This surprisingly difficult
question is the theme of Chapter 4. In the elliptic and hyperbolic case it leads
to a transcendental equation named after Kepler; I present a geometric solution
of this equation, due to Newton, involving a famous planar curve, the cycloid.
In the parabolic case it leads to a cubic equation, and I reveal the geometry
behind the algebraic solution of such equations.

Passing from one to two bodies moving under mutual attraction, we shall
see in the brief Chapter 5 that this question reduces quite easily to the Kepler
problem.

Chapter 6 investigates the central question of celestial mechanics, the n-
body problem: How do n point masses move in R3 under mutual Newtonian
attraction? We find some preserved quantities of this problem that allow us
to make certain statements about the long-time behaviour of n-body systems,
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xii Preface

although we remain far from finding concrete solutions. In a section on central
configurations I exhibit explicit solutions under additional geometric assump-
tions.

Chapter 7 deals with the special case n = 3. The centre-piece of that chapter
is Lagrange’s beautiful theorem on homographic (i.e. self-similar) solutions
of the three-body problem. I also discuss the restricted three-body problem,
where one of the three masses is negligibly small compared with the others.

In Chapter 8 we return to the Kepler problem, but from a more geometric
point of view. This is really the geometric heart of the present text, where sev-
eral types of geometric transformations (inversion, stereographic projection,
polar reciprocation), spaces (hyperbolic space, projective plane) and differen-
tial geometric concepts (geodesics, curvature, conformal maps) are introduced.
These techniques are used not only to give alternative proofs of Kepler’s first
law, but chiefly to give a unified view of all Kepler solutions, including the
collision orbits (theorems of Moser, Osipov, and Belbruno).

Chapter 9 prepares the reader for the modern literature on the n-body prob-
lem by introducing the Hamiltonian formalism, starting from variational prin-
ciples. In Chapter 10, the Hamiltonian formalism is applied to the Kepler prob-
lem. We determine the topology of the three-dimensional energy hypersurfaces
in this problem, and I present a number of equivalent topological descriptions
of these 3-manifolds. In particular, I use the quaternions to identify the special
orthogonal group SO(3) as projective 3-space. Energy hypersurfaces with this
topology also arise in the restricted three-body problem.

All chapters but one end with extensive historical notes and references.

Notational conventions

Vector quantities will be denoted in bold face; the euclidean length of a vector
quantity is usually denoted by the corresponding symbol in italics. For exam-
ple, r denotes the position vector of a particle in R3, and r := |r|. The norm | . |
will always be the euclidean one. The standard (euclidean) inner product on
R3 will be denoted by 〈 . , . 〉.

Time derivatives will be written with dots in the Newtonian fashion. For
instance, if t �→ r(t) denotes the motion of a particle, its velocity v and accel-
eration a are given by

v := ṙ :=
dr

dt
, a := r̈ :=

d2r

dt2 .

The length v := |v| of the velocity vector is called the speed.
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Preface xiii

The natural numbers N are the positive integers; if 0 is to be included, I
write N0. The rational, real and complex numbers are denoted by Q, R and C,
respectively. The positive reals are denoted by R+; the negative reals, by R−.
We set R+0 := R+ ∪ {0} and R× := R \ {0}. The notation H stands for hyperbolic
space or Hamilton’s quaternions, depending on the context. I use the standard
notation Ck, k ∈ N, for k times continuously differentiable functions or maps.
By C0 I simply mean continuous. Functions or maps of class C∞ are also
referred to as smooth.

Physical background

No prior knowledge of physics will be assumed apart from the following two
Newtonian laws.

The second Newtonian law of motion: The acceleration a experienced by a
body of mass m under the influence of a force F is given by

F = ma.

The universal law of gravitation: The force exerted by a body of mass m2 at
the point r2 ∈ R3 on a body of mass m1 at the point r1 ∈ R3 equals

F =
Gm1m2

r2 ·
r

r
,

where r := r2 − r1, and

G ≈ 6.673 · 10−11 m3

kg s2

is the universal gravitational constant.

Mathematical background

I have tried to keep the mathematical prerequisites to a minimum, but the level
of sophistication certainly increases as this text proceeds. A great number of
the students taking my class at the University of Cologne were physics under-
graduates in the second year of their studies. In their first year, they had fol-
lowed my course on analysis and linear algebra, where they had seen, amongst
other things, basic topological concepts, the notion of local and global diffeo-
morphisms, the inverse and the implicit function theorems, the classical matrix
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xiv Preface

groups, elementary ordinary differential equations (the Picard–Lindelöf theo-
rem on local existence and uniqueness, linear systems with constant coeffi-
cients), submanifolds, the transformation formula for higher-dimensional inte-
grals, the integral theorems of Gauß and Stokes, and differential forms. In this
text, submanifolds make a brief appearance in Chapter 7 and in the exercises
to Chapter 8; the concept is essential for Section 9.2 and Chapter 10. Differen-
tial forms are used only in Section 9.2. Homeomorphisms (i.e. bijective maps
that are continuous in either direction) and diffeomorphisms between submani-
folds make a brief appearance in Section 8.3, and they become central only in
Chapter 10. In that last chapter I also assume a certain familiarity with basic
notions in point-set topology (Hausdorff property, compactness); the relevant
material can be found in (Jänich, 2005) or (McCleary, 2006). In the context of
an alternative proof of Kepler’s first law, holomorphic maps appear in a couple
of isolated places in the exercises to Chapter 8 and in Section 9.1.

As regards differential equations, throughout I use the following geometric
interpretation. Let Ω ⊂ Rd be an open subset and X a vector field on Ω, i.e. a
function X : Ω→ Rd. This gives rise to a first-order differential equation

ẋ = X(x).

Solutions of this differential equations are C1-maps x : I → Ω, defined on
some interval I ⊂ R, that satisfy this equation; that is,

ẋ(t) = X
(
x(t)

)
for all t ∈ I.

In geometric terms this means that x is an integral curve or flow line of X, i.e.
a curve whose velocity vector ẋ(t) at the point x(t) coincides with the vector
X

(
x(t)

)
defined by the vector field X at that point.

The Picard–Lindelöf existence and uniqueness theorem (known to French
readers as the Cauchy–Lipschitz theorem) says that if X is locally Lipschitz
continuous, then for any x0 ∈ Ω the initial value problem

ẋ = X(x), x(0) = x0

has a solution defined on some small time interval (−δ, δ), and two such so-
lutions coincide on the time interval around 0 where both are defined. In all
cases studied in this text, the vector field will actually be C1 (or even smooth),
so that local Lipschitz continuity is guaranteed by the mean value theorem.

Excellent texts on differential equations emphasising the geometric view-
point are (Arnol’d, 1973) and (Bröcker, 1992). I can also recommend (Given-
tal, 2001) and (Robinson, 1999). An eminently readable proof of the Picard–
Lindelöf theorem is given in Appendix A of (Borrelli and Coleman, 2004).
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