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The central force problem

Moment. Das Moment des Eindrucks, den ein Mann auf
das gemeine Volk macht, ist ein Produkt aus dem Wert des
Rocks in den Titel.

Georg Christoph Lichtenberg

We start by dealing with an idealised problem, where a body of mass m – more
precisely, a dimensionless particle – is moving in euclidean 3-space R3 subject
to an attractive force directed towards a fixed centre, which for convenience
we place at the origin 0 ∈ R3. To begin with, we allow more general forces
than the one described by Newton’s law of gravitation; the force may even be
repelling in some regions of space.

The central force problem Find solutions of the differential equation1

mr̈ = −m f (r) ·
r

r
, (CFP)

where f : R3 \ {0} → R is a given continuous function.

By a solution of (CFP) we mean a C2-map r : I → R3 \ {0}, defined on some
interval I ⊂ R, that satisfies the differential equation (CFP).

The equation (CFP) expresses the requirement that the force act along the
line joining the body and the centre 0, and that it be proportional to the mass m,
so that in fact m is irrelevant to the solution of (CFP). The sign in (CFP) has
been chosen in such a way that the force is attracting at points r ∈ R3 \ {0}
where f (r) > 0, which is the case we usually consider, and repelling where
f (r) < 0.

As is standard in the theory of differential equations, the second-order dif-
ferential equation (CFP) can be rewritten as a system of first-order equations

1 All equations with individual labels are listed in the Index under ‘equations’.
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2 The central force problem

by introducing the velocity v := ṙ as an additional variable:

ṙ = v

v̇ = − f (r) ·
r

r
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (CFP′)

Any C2-solution t �→ r(t) of (CFP) gives rise to a C1-solution t �→
(
r(t), ṙ(t)

)
of (CFP′). Conversely, the first component of a C1-solution t �→

(
r(t), v(t)

)
of

(CFP′) is a solution of (CFP); notice that the equations (CFP′) imply that this
first component is actually of class C2.

The advantage of the formulation (CFP′) is that we can think of solutions as
integral curves of the vector field X on (R3 \ {0}) × R3 defined by

X(r, v) = (v,− f (r) · r/r).

This point of view will become relevant in Sections 3.1 and 6.2, for instance.
A first step towards understanding a system of differential equations is to

ask whether there are any preserved quantities. In the physical context consid-
ered here, these will be referred to as constants of motion. By this we mean
functions of r and v that are constant along integral curves of (CFP′). In this
chapter we shall meet two such constants of motion: the angular momentum
and, in the centrally symmetric case, the total energy.

1.1 Angular momentum and Kepler’s second law

Definition 1.1 Let r : I → R3 be a C1-map. The angular momentum of r

about 0 ∈ R3 is

c(t) := r(t) × ṙ(t),

where × denotes the usual cross product in R3.

Remark 1.2 The physical angular momentum of a body of mass m moving
along a trajectory described by the map r is mr× ṙ, so – strictly speaking – our
angular momentum is the angular momentum per unit mass.

Proposition 1.3 In the central force problem, the angular momentum is a
constant of motion. For c � 0, the motion takes place in the plane through 0

orthogonal to c. For c = 0, the motion is along a straight line through 0.

Proof With (CFP) we find

ċ = ṙ × ṙ + r × r̈ = 0.
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1.1 Angular momentum and Kepler’s second law 3

0

r(t)
ṙ(t)

c

Figure 1.1 The angular momentum c.

This proves the first statement. Moreover, we have 〈c, r〉 = 0 by the definition
of c. This settles the case c � 0, see Figure 1.1.

In order to deal with the case c = 0, we first derive a general identity in
vector analysis. Consider a C1-map u : I → R3 \ {0}. Then

u̇ =
d
dt

√
〈u,u〉 =

〈u, u̇〉
√
〈u,u〉

=
〈u, u̇〉

u
,

hence

uu̇ = 〈u, u̇〉.

Then
d
dt

(
u

u

)
=

u̇u − uu̇
u2 =

u̇〈u,u〉 − u〈u, u̇〉
u3 .

With the Graßmann identity

(a × b) × c = 〈a, c〉b − 〈b, c〉 a (1.1)

for vectors a,b, c ∈ R3 (see Exercise 1.2), we obtain

d
dt

(
u

u

)
=

(u × u̇) × u

u3 .

Specialising to u = r, we get

d
dt

(
r

r

)
=

c × r

r3 . (1.2)

Hence, for c = 0 the vector r/r is constant, and r(t) = r(t) · r(t)/r(t) is always
a positive multiple of this constant vector. �

Given a solution to (CFP), we may choose our coordinate system in such a
way that the motion takes place in the xy-plane. Therefore, for the remainder
of this section, we restrict our attention to planar curves

α : I → R2 \ {0}.
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4 The central force problem

We write

α(t) =
(
α1(t), α2(t)

)
= r(t) ·

(
cos θ(t), sin θ(t)

)
with r(t) > 0.

Remark 1.4 The transformation from polar to cartesian coordinates is de-
scribed by the smooth map

p : R+ × R −→ R2 \ {0}
(r, θ) �−→ (r cos θ, r sin θ).

The Jacobian determinant of this map is

det Jp,(r,θ) =

∣∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣∣ = r � 0,

so p is a local diffeomorphism by the inverse function theorem. Moreover, p
is a covering map, which means the following. For any point in R2 \ {0} one
can find an open, path-connected neighbourhood U whose preimage p−1(U)
is a non-empty disjoint union of sets Uλ, λ ∈ Λ, such that p|Uλ : Uλ → U is
a homeomorphism for each λ in the relevant index set Λ. (You are asked to
verify this property in Exercise 1.3.)

The covering space property guarantees that any continuous curve α : I →
R2 \ {0} can be lifted to a continuous curve α̃ : I → R+ ×R with p◦ α̃ = α, and
this lift is uniquely determined by the choice of α̃(t0) ∈ p−1(α(t0)) for some
t0 ∈ I. The local diffeomorphism property implies that if α was of class Ck, so
will be α̃.

The upshot is that a planar Ck-curve α can be written in polar coordinates
with Ck-functions r and θ. Of course, r is uniquely determined by r = |α|; the
function θ is uniquely determined up to adding an integer multiple of 2π by an
appropriate choice θ(t0) at some t0 ∈ I, and the requirement that θ at least be
continuous.

In Exercise 1.4 you are asked to arrive at the same conclusion by an ar-
gument that does not involve any topological reasoning, but only the Picard–
Lindelöf theorem.

Proposition 1.5 Let

α = r (cos θ, sin θ) : [t0, t1] −→ R2 \ {0}

be a C1-curve with angular velocity θ̇ > 0 on [t0, t1] and θ(t1) − θ(t0) < 2π.
Then the area of

D :=
{
sα(t) : t ∈ [t0, t1], s ∈ [0, 1]

}
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1.1 Angular momentum and Kepler’s second law 5

(see Figure 1.2) is given by

area(D) =
1
2

∫ t1

t0
r2(t) θ̇(t) dt.

0

α(t)

r(t)

Figure 1.2 The area swept out by the position vector.

Proof Because of θ̇ > 0, the inverse function theorem allows us to regard t
and hence r as a function of θ. The area element dA is given in polar coordi-
nates by dA = r dr dθ; this follows from the transformation formula:

dA = dx dy =

∣∣∣∣∣∣∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣∣∣ dr dθ = r dr dθ,

cf. Remark 1.4. Write θi = θ(ti), i = 0, 1. Then

area(D) =
∫ θ1

θ0

∫ r(θ)

0
ρ dρ dθ =

1
2

∫ θ1

θ0

r2(θ) dθ.

The transformation rule (with r(t) := r(θ(t)) and dθ = θ̇ dt) yields the claimed
area formula. �

Theorem 1.6 (Kepler’s second law) The radial vector describing a solution
of the central force problem sweeps out equal areas in equal intervals of time.

Proof Choose coordinates such that the motion takes place in the xy-plane
and c points in the positive z-direction. We may then write

r(t) = r(t) ·
(
cos θ(t), sin θ(t), 0

)
.

Hence

ṙ(t) =
(
ṙ cos θ − rθ̇ sin θ, ṙ sin θ + rθ̇ cos θ, 0

)
.
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6 The central force problem

By Proposition 1.3, the angular momentum

c = r × ṙ =
(
0, 0, r2θ̇

)
is constant. With our assumption on the orientation of c this implies r2θ̇ =

c. (In particular, we have θ̇ ≥ 0, i.e. the motion is along a line or counter-
clockwise in the xy-plane.) Thus, according to Proposition 1.5, the area swept
out during the time interval [t0, t1] equals c(t1 − t0)/2. �

Remark 1.7 The converse to this theorem is also true: if a planar motion in a
force field satisfies Kepler’s second law with respect to the centre 0, the force
field is central. This can be seen as follows. If Kepler’s second law holds, then
r2θ̇ is constant. By the computation in the proof above, this means that c is
constant. Hence 0 = ċ = r × r̈, which means that r̈ is parallel to r.

1.2 Conservation of energy

The motion of a particle in an open subset Ω ⊂ R3 under the influence of a
force field F : Ω→ R3 is described by the Newtonian differential equation

mr̈ = F. (N)

The force field F is called conservative if it has a potential V : Ω → R, i.e. a
C1-function such that

F = − grad V.

Proposition 1.8 For motions in a conservative force field, i.e. solutions of the
Newtonian differential equation

mr̈ = − grad V(r), (Nc)

the total energy

E(t) :=
1
2

mv2(t) + V(r(t))

is constant.

Proof With v2 = 〈ṙ, ṙ〉 we see that

dE
dt
= m〈r̈, ṙ〉 + 〈grad V(r), ṙ〉 = 〈mr̈ + grad V(r), ṙ〉 = 0. �

Remark 1.9 The kinetic energy mv2/2 is the work required to accelerate a
body of mass m from rest to velocity v. Indeed, if we accelerate the body along
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Exercises 7

a path γ during the time interval [0,T ] from rest to the final velocity v(T ), the
work done is∫

γ
〈F, ds〉 =

∫ T

0
m

〈
a,

ds

dt

〉
dt =

∫ T

0
m〈v̇, v〉 dt =

1
2

m|v(T )|2.

Example 1.10 The force field describing the centrally symmetric central
force problem is conservative. In order to see this, notice that in the centrally
symmetric case the function f in (CFP) depends only on r rather than r, i.e.
we have

F = −m f (r) ·
r

r
.

I claim that the potential of this force field is given by the centrally symmetric
function

V(r) := m
∫ r

r0

f (ρ) dρ.

Indeed, we compute

grad V(r) = V ′(r) · grad r = m f (r) ·
r

r
.

Remark 1.11 In the Newtonian case, with f (r) = μ/r2, the usual normalisa-
tion convention is to take r0 = ∞, i.e.

V(r) = m
∫ r

∞

μ

ρ2 dρ = −
mμ
r
.

Notes and references

The path-lifting property for coverings alluded to in Remark 1.4 is not difficult
to show, but it requires a careful argument; see (Jänich, 2005, Chapter 9) or
(McCleary, 2006, Chapter 8).

Kepler’s second law was originally proved by Newton (1687) in Book 1,
Proposition 1 of his Principia. A very useful guide to Newton’s masterpiece is
(Chandrasekhar, 1995).

Exercises

1.1 Let R � t �→ r(t) ∈ R3 \ {0} be a solution of the central force problem
(CFP). In this exercise we investigate the symmetries of such a solution.
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8 The central force problem

(a) Show that t �→ r(t+b) for b ∈ R and t �→ r(−t) are likewise solutions
of (CFP), i.e. we have invariance under time translation and time
reversal.

(b) Suppose we are in the centrally symmetric situation, i.e. the function
f in (CFP) depends only on r rather than r. Show that in this case
we have invariance under isometries, i.e. distance-preserving maps:
if A : R3 → R3 is an isometry with A(0) = 0, so that A may be
regarded as an element of the orthogonal group O(3), then t �→ Ar(t)
is likewise a solution.

1.2 Verify the Graßmann identity (1.1).
Hint: Observe that both sides of the equation are linear in a,b and c.

It therefore suffices to check equality when a,b, c are chosen from the
three standard basis vectors of R3.

1.3 Verify that the map p in Remark 1.4 is a covering map in the sense de-
scribed there. As index set one can take Λ = Z. How does one have to
choose the neighbourhood U of a given point in R2 \ {0}?

1.4 Let I ⊂ R be an interval and α : I → R2 \ {0} a Ck-curve for some k ∈ N.
We write

α(t) = (α1(t), α2(t)) = r(t)
(
cos θ(t), sin θ(t)

)
with r(t) > 0. For every t ∈ I, the angle θ(t) is determined by α(t) up
to adding integer multiples of 2π. The aim of this exercise is to give
an alternative proof of the observation in Remark 1.4, i.e. that θ can be
chosen as a Ck-function.

First of all, we observe that r is determined by r(t) = |α(t)| and hence
is of class Ck, since α � 0. Thus, by passing to the curve α/r we may
assume without loss of generality that r = 1.

(a) (Uniqueness) Suppose the planar curve α = (α1, α2) has been written
as α = (cos θ, sin θ) with a Ck-function θ. Let t0 ∈ I and θ0 = θ(t0).
Show that

θ(t) = θ0 +
∫ t

t0

(
α1(s)α̇2(s) − α̇1(s)α2(s)

)
ds.

(b) (Existence) Let α = (α1, α2) and t0 ∈ I be given. Choose θ0 such
that α(t0) = (cos θ0, sin θ0), and define θ via the equation in (a). Set
(β1, β2) := (cos θ, sin θ). Show that (α1, α2) and (β1, β2) are solutions
of one and the same linear system of differential equations, with
equal initial values at t = t0. Conclude with the uniqueness statement
in the Picard–Lindelöf theorem that (α1, α2) = (β1, β2). Verify that
the assumptions of that theorem are indeed satisfied.
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Exercises 9

1.5 In this exercise we want to give an alternative proof of the area formula
for planar sets D of the form

D =
{
sα(t) : t ∈ [t0, t1], s ∈ [0, 1]

}
,

where α = r (cos θ, sin θ) : [t0, t1]→ R2 \ {0} is a C1-curve with θ̇ > 0 on
[t0, t1] and θ(t1) − θ(t0) < 2π, cf. Proposition 1.5.

(a) Show that the exterior normal vector n(t) to D in the boundary point
α(t) ∈ ∂D is given by

n(t) =
(α̇2(t),−α̇1(t))
|α̇(t)|

.

(b) Apply the divergence theorem (a.k.a. Gauß’s theorem)∫
D

div v dx dy =
∫
∂D
〈v,n〉 ds

to the vector field v(x, y) = (x, y) in order to derive the area formula
from Proposition 1.5. What is the contribution of the line segments
in ∂D to the boundary integral?

1.6 (a) Let t �→ r(t) ∈ R3 \ {0} be a C2-map. Set v := ṙ and c := r× ṙ. Show
that

v2 = ṙ2 +
c2

r2 .

(b) Now assume that r is a solution of the central force problem. So we
may take r to be a planar curve and write r = r (cos θ, sin θ). Set
a = r̈. Show that

a =

∣∣∣∣∣∣c
2

r3 − r̈

∣∣∣∣∣∣ .
1.7 In this exercise we wish to derive a special case of Kepler’s third law, see

Theorem 3.7. Let a ∈ R+ and ω ∈ R. Show that

r(t) := a (cosωt, sinωt)

is a solution of the central force problem r̈ = −r/r3 (corresponding to
the Newtonian law of gravitation F ∝ r−2) if and only if |ω| = 1/a3/2.
What is the relation between the minimal period p (i.e. the time for one
full rotation) and the radius a?

1.8 Verify the formula grad r = r/r used in Example 1.10, and interpret this
formula geometrically.
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2

Conic sections

Wenn sie erst den Kegel sieht, muß sie glücklich sein.

Thomas Bernhard, Korrektur

As we shall see in the next chapter, when we specialise in the central force
problem to the Newtonian law of gravitational attraction, the solution curve
will be an ellipse, a parabola, or a hyperbola. In the present chapter I give a
bare bones introduction to the theory of these planar curves.

2.1 Ellipses

We take the following gardener’s construction as the definition of an ellipse,
see Figure 2.1, and then derive five other equivalent characterisations. The
distance between two points P,Q ∈ R2 will be denoted by |PQ|.

Definition 2.1 Let F1, F2 be two points in R2 (possibly F1 = F2), and choose
a real number a > 1

2 |F1F2|. The ellipse with foci F1, F2 and semi-major axis

a is the set

E :=
{
P ∈ R2 : |PF1| + |PF2| = 2a

}
.

If you wish to lay out an elliptic flower bed in your garden, proceed as
follows. Drive pegs into the ground at F1 and F2, take a piece of string of
length greater than |F1F2|, tie one end each to the pegs, and draw an ellipse
by moving a marker P around the two pegs while keeping the string stretched
tight with the marker.

The midpoint Z of the two foci is called the centre of the ellipse. If F1 =

F2 = Z, then E is a circle of radius a about Z. If F1 � F2, let P1 be the point on

10
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