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Quantum Mechanics and Experience

Quantum mechanics is an extremely successful physical theory due to its accurate

empirical predictions. The core of the theory, which is contained in various

non-relativistic quantum theories, is the Schrödinger equation and the Born rule.1

The Schrödinger equation governs the time evolution of the wave function assigned

to a physical system, and the Born rule connects the wave function with the

probabilities of possible results of a measurement on the system. In this chapter,

I will introduce the core of quantum mechanics, especially the connections of its

mathematical formalism with experience. The introduction is intended not to be

complete but enough for the later analysis of the meaning of the wave function and

the ontological content of quantum mechanics.

1.1 The Mathematical Formalism

The mathematical formalism of quantum mechanics is mainly composed of two

parts. The first part assigns a mathematical object, the so-called wave function or

quantum state, to a physical system appropriately prepared at a given instant.2 The

second part specifies how the wave function evolves with time. The evolution of

the wave function is governed by the Schrödinger equation, whose concrete form is

determined by the properties of the system and its interactions with environment.

There are two common representations for the wave function: the Hilbert space

representation and the configuration space representation, which have their respec-

tive advantages. According to the Hilbert space representation, the wave function

1 An apparent exception is collapse theories (Ghirardi, 2016). In these theories, however, the additional collapse
term in the revised Schrödinger equation is so tiny for microscopic systems that it can be ignored in analyzing
the ontological status and meaning of the wave function.

2 It is worth noting that although all quantum theories assign the same wave function to an isolated physical
system, different quantum theories, such as no-collapse theories and collapse theories, may assign different
wave functions to a nonisolated physical system. The assignment, which depends on the concrete laws of
motion in the theory, does not influence the ontological status and meaning of the wave function.
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2 Quantum Mechanics and Experience

is an unit vector or state vector in a Hilbert space, usually denoted by |ψ(t)〉

with Dirac’s bracket notation. The Hilbert space is a complete vector space with

scalar product, and its dimension and structure depend on the particular system.

For example, the Hilbert space associated with a composite system is the tensor

product of the Hilbert spaces associated with the systems of which it is composed.3

This structure of the Hilbert space can be seen more clearly from the con-

figuration space representation. The configuration space of an N-body quantum

system has 3N dimensions, and each point in the space can be specified by an

ordered 3N-tuple, where each group of three coordinates are position coordinates

of each subsystem in three-dimensional space. The wave function of the system

is a complex function on this configuration space,4 and it can be written as

ψ(x1, y1, z1, . . . , xN , yN , zN , t), where xi, yi, zi are coordinates of the ith subsystem

in the 3N-dimensional configuration space. Moreover, the wave function is

normalized; namely, the integral of the modulus squared of the wave function

over the whole space is one. When the N subsystems are independent, the whole

wave function can be decomposed as the product of the wave functions of the N

subsystems, each of which lives in three-dimensional space.

For an N-body quantum system, there are also a 3N-dimensional space and wave

functions on the space for other properties of the system besides position. For

example, the momentum space of an N-body system is a 3N-dimensional space

parameterized by 3N momentum coordinates, and the momentum wave function

is a complex function on this space. Here the Hilbert space representation is more

convenient. Every measurable property or observable of a physical system is rep-

resented by a Hermitian operator on the Hilbert space associated with the system,

and the wave functions for different properties such as position and momentum

may be transformed into each other by considering the relationship between the

corresponding operators of these properties.

The second part of the mathematical formalism of quantum mechanics specifies

how the wave function assigned to a physical system evolves with time. The time

evolution of the wave function, |ψ(t)〉, is governed by the Schrödinger equation

ih̄
∂ |ψ(t)〉

∂t
= H |ψ(t)〉 , (1.1)

where h̄ is Planck’s constant divided by 2π , and H is the Hamiltonian operator

that depends on the energy properties of the system. The time evolution is linear

and unitary in the sense that the Hamiltonian is independent of the evolving wave

3 Similarly, the Hilbert space associated with independent properties is the tensor product of the Hilbert spaces
associated with each property.

4 To be consistent with convention, I will also say “the wave function of a physical system,” but it still means
“the wave function assigned to a physical system.”
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1.2 The Born Rule 3

function and it keeps the normalization of the wave function unchanged. The con-

crete forms of the Hamiltonian and the Schrödinger equation depend on the studied

system and its interactions with other systems in the environment. For example, the

wave function of an electron evolving in an external potential obeys the following

Schrödinger equation:

ih̄
∂ψ(x, y, z, t)

∂t
=

[

−
h̄2

2m
∇2 + V(x, y, z, t)

]

ψ(x, y, z, t), (1.2)

where ψ(x, y, z, t) is the wave function of the electron, m is the mass of the electron,

and V(x, y, z, t) is the external potential.

1.2 The Born Rule

What is the empirical content of quantum mechanics? Or how does the wave func-

tion assigned to a physical system relate to the results of measurements on the

system? The well-known connection rule is the Born rule, which has been precisely

tested by experiments. It says that a (projective) measurement of an observable A

on a system with the wave function |ψ〉 will randomly obtain one of the eigenvalues

of A, and the probability of obtaining an eigenvalue ai is given by |〈ai|ψ〉|2, where

|ai〉 is the eigenstate corresponding to the eigenvalue ai.

The Born rule can also be formulated in the language of configuration space. It

says that the integral of the modulus squared of the wave function over a certain

region of the configuration space associated with a property of a physical system

gives the probability of the measurement of the property of the system obtaining the

values inside the region. For example, for a physical system whose wave function is

ψ(x, y, z, t), |ψ(x, y, z, t)|2dxdydz represents the probability of a position measure-

ment on the system obtaining a result between (x, y, z) and (x+dx, y+dy, z+dz), and

|ψ(x, y, z, t)|2 is the corresponding probability density in position (x, y, z). Similarly,

for an N-body system whose wave function is ψ(x1, y1, z1, . . . , xN , yN , zN , t),

|ψ(x1, y1, z1, . . . , xN , yN , zN , t)|2 represents the probability density that a position

measurement on the first subsystem obtains result (x1, y1, z1), and a position

measurement on the second subsystem obtains result (x2, y2, z2), . . . , and a posi-

tion measurement on the Nth subsystem obtains result (xN , yN , zN).

The Born rule provides a probabilistic connection between the wave function

and the results of measurements. However, it may be not the only connection rule,

as the involved measurements are only one kind of measurements, projective mea-

surements. In order to know whether there are other possible connections between

quantum mechanics and experience, we need to analyze measurements in more

detail.
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4 Quantum Mechanics and Experience

A measurement is an interaction between a measured system and a measuring

device. It can be described by using the standard von Neumann procedure. Suppose

the wave function of the measured system is |ψ〉 at a given instant t = 0, and the

initial wave function of the pointer of a measuring device at t = 0 is a Gaussian

wavepacket of very small width w0 centered in initial position x0, denoted by

|φ(x0)〉. The total Hamiltonian of the combined system can be written as

H = HS + HD + HI , (1.3)

where HS and HD are the free Hamiltonians of the measured system and the mea-

suring device, respectively, and HI is the interaction Hamiltonian coupling the

measured system to the measuring device, which can be further written as

HI = g(t)PA, (1.4)

where P is the momentum of the pointer of the measuring device, A is the mea-

sured observable, and g(t) represents the time-dependent coupling strength of the

interaction, which is a smooth function normalized to
∫

dtg(t) = 1 during the

measurement interval τ , and g(0) = g(τ ) = 0.

It has been known that there are different types of measurements, depending on

the interaction strength and time and whether the measured system is appropriately

protected, and so on. The most common measurements are projective measure-

ments involved in the Born rule. For a projective measurement, the interaction HI

is of very short duration and so strong that it dominates the rest of the Hamiltonian,

and thus the effect of the free Hamiltonians of the measuring device and the mea-

sured system can be neglected. Then the state of the combined system at the end of

the interaction can be written as

|t = τ 〉 = e− i
h̄

PA
|ψ〉 |φ(x0)〉 . (1.5)

By expanding |ψ〉 in the eigenstates of A, |ai〉, we obtain

|t = τ 〉 =
∑

i

e− i
h̄

Paici |ai〉 |φ(x0)〉 , (1.6)

where ci are the expansion coefficients. The exponential term shifts the center of

the pointer by ai:

|t = τ 〉 =
∑

i

ci |ai〉 |φ(x0 + ai)〉 . (1.7)

This is an entangled state, where the eigenstates of A with eigenvalues ai are cor-

related to the measuring device states in which the pointer is shifted by these

eigenvalues ai.
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1.3 A Definite Connection with Experience 5

The Born rule tells us (and we also know by experience) that the result of this

projective measurement is one of the eigenvalues of the measured observable, say,

ai, with probability |ci|
2. However, we still don’t know whether this entangled

superposition is the final state of the combining system after the measurement.5

The appearance of the definite result seems apparently incompatible with the super-

posed state. This is the notorious measurement problem. I will try to solve this

problem in Chapter 8.

1.3 A Definite Connection with Experience

It is not surprising that since the interaction between the measured system and the

measuring device is very strong during a projective measurement, the measurement

disturbs the measured system and changes its wave function greatly. This is not a

good measurement. A good measurement is required not to disturb the state of the

measured system so that it can measure the realistic properties of the system. This

is possible for projective measurements only when the initial state of the measured

system is an eigenstate of the measured observable. In this case, the final state of

the combining system is not an entangled state but a product state, such as:

|t = τ 〉 = |ai〉 |φ(x0 + ai)〉 . (1.8)

According to the Born rule, this projective measurement obtains a definite result ai.

A general way to make a good measurement is to protect the measured state

from being changed when the measurement is being made. A universal protec-

tion scheme is via the quantum Zeno effect (Aharonov, Anandan, and Vaidman,

1993).6 Let us see how this can be done. We make projective measurements of an

observable O, of which the measured state |ψ〉 is a nondegenerate eigenstate, a

large number of times that are dense in a very short measurement interval [0, τ ].

For example, O is measured in [0, τ ] at times tn = (n/N)τ , n = 1, 2, . . . , N, where

N is an arbitrarily large number. At the same time, we make the same projective

measurement of an observable A in the interval [0, τ ] as in the last section, which

is described by the interaction Hamiltonian (1.4).

5 In other words, it is still unknown how the wave function evolves during a projective measurement. In standard
quantum mechanics, which is formulated by Dirac (1930) and von Neumann (1932), it is assumed that after
a projective measurement of an observable, the entangled superposition formed by the Schrödinger evolution
collapses to one of the eigenstates of the observable that corresponds to the result of the measurement. This
assumption is called the collapse postulate. For a helpful introduction of standard quantum mechanics for
philosophers, see Ismael (2015).

6 Another protection scheme is to introduce a protective potential such that the measured wave function of
a quantum system is a nondegenerate energy eigenstate of the Hamiltonian of the system with finite gap
to neighboring energy eigenstates (Aharonov and Vaidman, 1993). By this scheme, the measurement of an
observable is required to be weak and adiabatic.
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6 Quantum Mechanics and Experience

As noted before, since the interaction HI is of very short duration and so strong

that it dominates the rest of the Hamiltonian, the effect of the free Hamiltonians of

the measuring device and the measured system can be neglected. Then the branch

of the state of the combined system after τ , in which each projective measurement

of O results in the state of the measured system being in |ψ〉, is given by

|t = τ 〉 = |ψ〉 〈ψ |e− i
h̄

τ
N

H(tN ) . . . |ψ〉 〈ψ |e− i
h̄

τ
N

H(t2) |ψ〉 〈ψ |

× e− i
h̄

τ
N

H(t1) |ψ〉 |φ(x0)〉

= |ψ〉 〈ψ |e− i
h̄

τ
N

g(tN )PA . . . |ψ〉 〈ψ |e− i
h̄

τ
N

g(t2)PA
|ψ〉 〈ψ |

× e− i
h̄

τ
N

g(t1)PA
|ψ〉 |φ(x0)〉 , (1.9)

where |φ(x0)〉 is the initial wave function of the pointer of the measuring device,

which is supposed to be a Gaussian wavepacket of very small width centered in

initial position x0.

Thus in the limit of N → ∞, we have

|t = τ 〉 = |ψ〉 e− i
h̄

∫ τ
0 g(t)〈ψ |A|ψ〉Pdt

|φ(x0)〉 = |ψ〉 |φ(x0 + 〈A〉)〉 , (1.10)

where 〈A〉 ≡ 〈ψ |A|ψ〉 is the expectation value of A in the measured state |ψ〉.

Since the modulus squared of the amplitude of this branch approaches one when

N → ∞, this state will be the state of the combined system after τ .7 It can be seen

that after the measurement, the measuring device state and the system state are not

entangled, and the pointer of the measuring device is shifted by the expectation

value 〈A〉.8

This demonstrates that for an arbitrary state of a quantum system at a given

instant, we can protect the state from being changed via the quantum Zeno effect,

and a projective measurement of an observable, which is made at the same time,

yields a definite measurement result, the expectation value of the observable in

the measured state. Such measurements have been called protective measure-

ments (Aharonov and Vaidman, 1993; Aharonov, Anandan, and Vaidman, 1993;

Vaidman, 2009).

In fact, it can be shown that if the measured state is not changed during a projec-

tive measurement, then the result must be the expectation value of the measured

7 It is worth noting that the possible collapse of the wave function resulting from the projective measurements of O

does not influence this result. The reason is that the probability of the measured state collapsing to another state

different from |ψ〉 after each projective measurement of O is proportional to 1/N2, and thus the sum of these
probabilities is proportional to 1/N after τ and approaches zero when N → ∞. Moreover, since the pointer of
a measuring device may be a microscopic system, whose shift can be further read out by another measuring
device, the effect of the possible collapse of the wave function resulting from the projective measurements of
A can also be ignored.

8 Note that after the measurement the pointer wavepacket does not spread, and the width of the wavepacket is the
same as the initial width. This ensures that the pointer shift can represent a valid measurement result.
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1.3 A Definite Connection with Experience 7

observable in the measured state. In this case, the evolution of the state of the

combined system is

|ψ(0)〉 |φ(0)〉 → |ψ(t)〉 |φ(t)〉 , t > 0, (1.11)

where |φ(0)〉 and |φ(t)〉 are the states of the measuring device at instants 0 and t,

respectively; |ψ(0)〉 and |ψ(t)〉 are the states of the measured system at instants 0

and t, respectively; and |ψ(t)〉 is the same as |ψ(0)〉 up to a phase factor during

the measurement interval [0, τ ]. The interaction Hamiltonian is still given by (1.4).

Then by Ehrenfest’s theorem we have

d

dt
〈ψ(t)φ(t)|X |ψ(t)φ(t)〉 = g(t)〈ψ(0)|A |ψ(0)〉 , (1.12)

where X is the pointer variable. This further leads to

〈φ(τ)|X |φ(τ)〉 − 〈φ(0)|X |φ(0)〉 = 〈ψ(0)|A |ψ(0)〉 , (1.13)

which means that the shift of the center of the pointer of the measuring device is

the expectation value of the measured observable in the measured state. This clearly

demonstrates that the result of a measurement that does not disturb the measured

state is the expectation value of the measured observable in the measured state.

Since the wave function can be reconstructed from the expectation values of a

sufficient number of observables, the wave function of a single quantum system

can be measured by a series of protective measurements. Let the explicit form of

the measured state at a given instant t be ψ(x), and the measured observable A be

(normalized) projection operators on small spatial regions Vn having volume vn:

A =

{

1
vn

, if x ∈ Vn,

0, if x � Vn.
(1.14)

A protective measurement of A then yields

〈A〉 =
1

vn

∫

Vn

|ψ(x)|2dv, (1.15)

which is the average of the density ρ(x) = |ψ(x)|2 over the small region Vn. Sim-

ilarly, we can measure another observable B = h̄
2mi

(A∇ + ∇A). The measurement

yields

〈B〉 =
1

vn

∫

Vn

h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)dv =

1

vn

∫

Vn

j(x)dv. (1.16)
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8 Quantum Mechanics and Experience

This is the average value of the flux density j(x) in the region Vn. Then when vn → 0

and after performing measurements in sufficiently many regions Vn we can measure

ρ(x) and j(x) everywhere in space. Since the wave function ψ(x, t) can be uniquely

expressed by ρ(x, t) and j(x, t) (except for an overall phase factor), the whole wave

function of the measured system at a given instant can be measured by protective

measurements.

Protective measurements provide a definite, direct connection between the wave

function assigned to a physical system and the results of measurements on the

system, and the connection is determined only by the linear Schrödinger evolution.9

As I will argue later in this book, although this connection seems less well known,

it will be extremely important for understanding the meaning of the wave function

and searching for the ontology of quantum mechanics.

9 Note that besides the wave function there are also state-independent quantities such as m (mass) and Q (charge)
in the Schrödinger equation, and the measurement of such a quantity will obtain a definite result. This is also a
definite, direct connection between the mathematical formalism of quantum mechanics and experience.
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