Contents

Preface xxi
List of symbols xxiv

Part I Use of experimental data

1 Properties, dimensions, and scales 3
 1.1 Introduction 3
 1.2 Fluid properties 3
 Viscosity 3
 Density and kinematic viscosity 5
 Units and values 5
 Non-Newtonian liquids 7
 Surface tension 10
 Continuum approximation 11
 1.3 Scales and dimensionless groups 12
 Scales 12
 Dimensions 13
 Stress scales 13
 Dimensionless groups 14
 Example 1.3-1 Deep-water waves 16
 Example 1.3-2 Inkjet printing 16
 1.4 Dimensional analysis 17
 Pi theorem 17
 Example 1.4-1 Speed of water waves 18
 Example 1.4-2 Shear stress in pipe flow 20
 Example 1.4-3 Energy of an atomic blast 21
 Dynamic similarity 22
 1.5 Conclusion 22

References 23
Problems 24
 1.1 Falling body 24
 1.2 Pendulum 24
 1.3 Salad dressing 24
 1.4 Heat transfer coefficient 24
 1.5 Oscillating drops 25
 1.6 Dip coating 25
Contents

1.7 Breakup of liquid jets 26
1.8 Valve scale-up 27
1.9 Ship scale-up 27
1.10 Power input in a stirred tank 28
1.11 Underwater swimming 28

2 Pipe flow 30
2.1 Introduction 30
2.2 Shear stress 30
 - Fundamental quantities 30
 - Friction factor 31
2.3 Pressure drop and dynamic pressure 34
 - Friction factor and pressure drop 34
 - Circuit analogy 36
 - Example 2.3-1 Pressure drop for water in process pipes 36
 - Example 2.3-2 Pressure drop in an oil pipeline 37
 - Example 2.3-3 Flow rate in an oil pipeline 38
 - Example 2.3-4 Capillary viscometer 38
2.4 Noncircular cross-sections 39
 - Turbulent flow 39
 - Laminar flow 40
 - Example 2.4-1 Pressure drop for air in a triangular duct 41
 - Example 2.4-2 Material efficiency of square and circular ducts 41
2.5 Wall roughness 42
 - Example 2.5-1 Effect of roughness on water flow in a process pipe 45
 - Example 2.5-2 Practical smoothness 45
2.6 Conclusion 46
 References 47
 Problems 47
 2.1 Cavitation 47
 2.2 Bottling honey 48
 2.3 Filling a boiler 48
 2.4 Syringe pump 48
 2.5 Flue gases 49
 2.6 Hydraulic fracturing 49
 2.7 Drag reduction 49
 2.8 Economic pipe diameter 50
 2.9 Microfluidic device 51
 2.10 Murray’s law 51
 2.11 Open-channel flow 52

3 Drag, particles, and porous media 54
3.1 Introduction 54
3.2 Drag 54
 - Origins 54
 - Drag coefficient 55
 - Spheres 56
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disks</td>
<td>57</td>
</tr>
<tr>
<td>Cylinders</td>
<td>58</td>
</tr>
<tr>
<td>Flat plates</td>
<td>59</td>
</tr>
<tr>
<td>Example 3.2-1 Drag on a cylinder in water</td>
<td>61</td>
</tr>
<tr>
<td>Example 3.2-2 Comparative drag on a cylinder and a flat plate</td>
<td>61</td>
</tr>
<tr>
<td>3.3 Terminal velocity</td>
<td>62</td>
</tr>
<tr>
<td>Buoyancy and gravity</td>
<td>62</td>
</tr>
<tr>
<td>Terminal velocities for solid spheres</td>
<td>62</td>
</tr>
<tr>
<td>Example 3.3-1 Sand grain falling in air</td>
<td>64</td>
</tr>
<tr>
<td>Example 3.3-2 Microfluidic cell separation</td>
<td>65</td>
</tr>
<tr>
<td>Terminal velocities for fluid spheres</td>
<td>65</td>
</tr>
<tr>
<td>Approach to terminal velocity</td>
<td>66</td>
</tr>
<tr>
<td>Example 3.3-3 Approach to terminal velocity for large spheres</td>
<td>66</td>
</tr>
<tr>
<td>3.4 Porous media</td>
<td>68</td>
</tr>
<tr>
<td>Darcy permeability</td>
<td>68</td>
</tr>
<tr>
<td>Microstructural models</td>
<td>70</td>
</tr>
<tr>
<td>Example 3.4-1 Air flow through a packed bed of spheres</td>
<td>72</td>
</tr>
<tr>
<td>Example 3.4-2 Comparative properties of granular and fibrous media</td>
<td>73</td>
</tr>
<tr>
<td>3.5 Packed beds and fluidized beds</td>
<td>73</td>
</tr>
<tr>
<td>Packed beds</td>
<td>73</td>
</tr>
<tr>
<td>Fluidized beds</td>
<td>75</td>
</tr>
<tr>
<td>Example 3.5-1 Fluidization at low Reynolds number</td>
<td>76</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>76</td>
</tr>
<tr>
<td>References</td>
<td>77</td>
</tr>
<tr>
<td>Problems</td>
<td>78</td>
</tr>
<tr>
<td>3.1 Chain-link fence</td>
<td>78</td>
</tr>
<tr>
<td>3.2 Rowing power</td>
<td>78</td>
</tr>
<tr>
<td>3.3 Dispersion of pollen</td>
<td>78</td>
</tr>
<tr>
<td>3.4 Downhill ski racing</td>
<td>78</td>
</tr>
<tr>
<td>3.5 Homogenized milk</td>
<td>79</td>
</tr>
<tr>
<td>3.6 Approach to terminal velocity for small fluid spheres</td>
<td>79</td>
</tr>
<tr>
<td>3.7 Inhaled particles</td>
<td>79</td>
</tr>
<tr>
<td>3.8 Flocculation</td>
<td>81</td>
</tr>
<tr>
<td>3.9 Hydrogel disks</td>
<td>81</td>
</tr>
<tr>
<td>3.10 Bypassing a packed bed</td>
<td>81</td>
</tr>
<tr>
<td>3.11 Fluidization at high Reynolds number</td>
<td>82</td>
</tr>
</tbody>
</table>

Part II Fundamentals of fluid dynamics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Fluid statics: pressure, gravity, and surface tension</td>
<td>85</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>4.2 Pressure in static fluids</td>
<td>85</td>
</tr>
<tr>
<td>Properties of pressure</td>
<td>85</td>
</tr>
<tr>
<td>Static pressure equation</td>
<td>85</td>
</tr>
<tr>
<td>Pressure distributions</td>
<td>87</td>
</tr>
<tr>
<td>Example 4.2-1 Manometer</td>
<td>87</td>
</tr>
<tr>
<td>Example 4.2-2 Layered fluids</td>
<td>88</td>
</tr>
<tr>
<td>Additional note: Pascal's law</td>
<td>89</td>
</tr>
<tr>
<td>xi</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Pressure forces

- Stress and force vectors 89
- Boundaries 90
- Example 4.3-1 Rectangular tank 90
- Example 4.3-2 Inclined planar surface 91
- Projected areas 92
- Immersed objects at constant pressure 93
- Buoyancy 94
- Example 4.3-3 Buoyancy of a sphere 95

4.4 Surface tension

- Tensile forces and contact lines 96
- Example 4.4-1 Young–Laplace equation 97
- Example 4.4-2 Capillary rise 98
- Interfaces with variable curvature 99

4.5 Conclusion 101

References 101

Problems 101

4.1 Manometry for liquid pipe flow 101
4.2 Hydraulic lift 102
4.3 Static pressure variations in air 103
4.4 Force on Hoover Dam 103
4.5 Floating cup 103
4.6 Sedimentation in a sucrose gradient 104
4.7 Half-submerged cylinder 105
4.8 Buoyancy of a cone 105
4.9 Formation of small bubbles 105
4.10 Capillary adhesion 106
4.11 Capillary flotation 107
4.12 Plateau–Rayleigh instability 107

5 Fluid kinematics 110

5.1 Introduction 110
5.2 Continuity
- Example 5.2-1 Unknown velocity component 111
- Example 5.2-2 Expansion of the Universe 112
- Example 5.2-3 Filtration in a hollow fiber 113
5.3 Rates of change for moving observers 115
- Example 5.3-1 Temperature changes sensed by a weather balloon 116
5.4 Rate of strain
- Example 5.4-1 Rate of strain in simple shear flow 117
- Example 5.4-2 Rate of strain in pure dilatation 118
5.5 Vorticity
- Definition 119
- Irrotational flow 120
5.6 Stream function
- Definitions 121
- Streamlines and streaklines 122
Contents

5.7 Conclusion

- Example 5.6-1 Streamlines from the stream function
- Trajectories
- Example 5.6-2 Streamlines from trajectories

References

- Problems

5.1 Flow past a bubble

5.2 Channel with wavy walls

5.3 Condensation on a vertical wall

5.4 Flow past a solid sphere

5.5 Wedge flow

5.6 Flow between porous and solid disks

5.7 Trajectories of sedimenting particles

6 Stress and momentum

6.1 Introduction

6.2 Stress vector and stress tensor

- Stress notation
- Stress at an arbitrary surface

6.3 Force at a point

6.4 Conservation of momentum

- Additional note: stress equilibrium

6.5 Viscous stress

- Rate-of-strain tensor
- Example 6.5-1 Rate of strain in simple shear flow
- Newtonian fluids
- Non-Newtonian fluids
- Additional note: stress symmetry

6.6 Governing equations

- Newtonian fluids with constant properties
- Example 6.6-1 Pressure in planar stagnation flow
- Fluids with varying viscosity
- Velocities at phase boundaries
- Stresses at phase boundaries
- Example 6.6-2 Shear-stress boundary condition with variable surface tension
- Force calculations
- Example 6.6-3 General expression for the drag on a sphere

6.7 Conclusion

- References

Problems

6.1 Stress vector and tensor

6.2 Effect of surface orientation on the stress vector

6.3 Force balance for plane Couette flow

6.4 Force balance for plane Poiseuille flow

6.5 Normal viscous stress at a solid surface

6.6 Drag on a cylinder at high Reynolds number
Contents

6.7 Pressure for creeping flow past a solid sphere 158
6.8 Pressure between porous and solid disks 158

Part III Microscopic analysis

7 Unidirectional flow 161

- 7.1 Introduction 161
- 7.2 Fully developed flow 161
 - Example 7.2-1 Velocity and pressure for plane Poiseuille flow 161
 - Example 7.2-2 Velocity and pressure for Poiseuille flow 163
 - Example 7.2-3 Friction factor for laminar tube flow 164
- 7.3 Moving surfaces 166
 - Example 7.3-1 Plane Couette flow 166
 - Example 7.3-2 Rotating rod 166
 - Example 7.3-3 Plate suddenly set in motion 168
- 7.4 Free surfaces 172
 - Example 7.4-1 Falling film on a vertical wall 172
 - Example 7.4-2 Surface of a stirred liquid 174
- 7.5 Non-Newtonian fluids 175
 - Example 7.5-1 Poiseuille flow of a power-law fluid 175
 - Example 7.5-2 Plane Couette flow of generalized Newtonian fluids 177
- 7.6 Symmetry conditions 178
 - Cylindrical symmetry 178
 - Reflective symmetry 178
- 7.7 Conclusion 179
 - References 179
 - Problems 179
 - 7.1 Couette viscometer 179
 - 7.2 Annular conduit 180
 - 7.3 Triangular conduit 180
 - 7.4 Elliptical conduit 181
 - 7.5 Slip in tube flow 182
 - 7.6 Darcy permeability of a fibrous material 182
 - 7.7 Surface of a liquid in rigid-body rotation 183
 - 7.8 Layered liquids on an inclined surface 183
 - 7.9 Liquid film outside a vertical tube 184
 - 7.10 Film on an upward-moving surface 184
 - 7.11 Slot coating 185
 - 7.12 Flow in a cavity 185
 - 7.13 Falling-cylinder viscometer 186
 - 7.14 Bubble rising in a tube 187
 - 7.15 Paint film 188
 - 7.16 Temperature-dependent viscosity 188
 - 7.17 Blood rheology 188

8 Approximations for viscous flows 190

- 8.1 Introduction 190
8.2 Lubrication approximation

Example 8.2-1 Tapered channel 191
Example 8.2-2 Permeable tube 194
Example 8.2-3 Slider bearing 195

8.3 Creeping flow

Stokes’ equation 198
Example 8.3-1 Flow between porous and solid disks 200
Example 8.3-2 Flow past a sphere 201
Example 8.3-3 Stokes’ law 205
Porous media 206

8.4 Pseudosteady flow

Example 8.4-1 Parallel-plate channel with a decaying pressure drop 207
Example 8.4-2 Squeeze flow 208

8.5 Anticipating approximations

Order-of-magnitude estimation 209
Example 8.5-1 Order-of-magnitude analysis for a tapered channel 211
Example 8.5-2 Order-of-magnitude analysis for Stokes flow past a sphere 212
Lubrication approximation 212
Creeping-flow approximation 213
Pseudosteady approximation 213
Example 8.5-3 Order-of-magnitude analysis for squeeze flow 214
Example 8.5-4 Force on a slider bearing 215

8.6 Conclusion 216

References 217
Problems 217

8.1 Imperfect parallel-plate channel 217
8.2 Permeable closed-end tube 218
8.3 Permeation-driven flow in a microchannel 218
8.4 Candy manufacturing 219
8.5 Blade coating 219
8.6 Torque on a rotating sphere 220
8.7 Velocity and pressure for flow past a bubble 220
8.8 Terminal velocity of a small bubble 220
8.9 Rotating and stationary disks 221
8.10 Cone-and-plate viscometer 221
8.11 Growing mercury drop 222
8.12 Drag on a cylinder at low Reynolds number 222
8.13 Darcy flow in a tumor 223
8.14 Washburn’s law 224
8.15 Injection molding 225
8.16 Capillary pump 225

9 Laminar flow with inertia 227

9.1 Introduction 227
9.2 Inviscid and irrotational flow 227
Contents

Inviscid flow 227
Vorticity transport 228
Irrotational flow 229
Example 9.2-1 Velocity for potential flow past a cylinder 230
Example 9.2-2 Pressure and drag for inviscid and irrotational flow past a cylinder 232
Example 9.2-3 Water waves 233

9.3 Boundary layers: differential analysis

Boundary-layer approximation 236
Joining the regions 238
Example 9.3-1 Blasius solution for a flat plate 239
Wedge flows 242
Internal boundary layers 243
Example 9.3-2 Planar jet 243

9.4 Boundary layers: integral analysis

Integral momentum equation 244
Example 9.4-1 Integral solution for a flat plate 246
Boundary-layer separation 247
Example 9.4-2 Integral solution for a cylinder 248

9.5 Conclusion

References 252
Problems 253

9.1 Potential flow past a sphere 253
9.2 Lift on a half-cylinder 253
9.3 Axisymmetric stagnation flow 253
9.4 Opposed circular jets 254
9.5 Added mass for a sphere 254
9.6 Spin coating 254
9.7 Bubble growing in a liquid 255
9.8 Entrance length 256
9.9 Axisymmetric jet 256
9.10 Boundary layers in power-law fluids 257
9.11 Normal velocity component for a flat plate 257
9.12 Rotating disk 257
9.13 Flat plate with suction 259
9.14 Terminal velocity of a large bubble 259
9.15 Planar stagnation flow 260
9.16 Flow past a right-angle wedge 260

10 Turbulent flow

10.1 Introduction 261
10.2 Characteristics and scales

- Basic features 261
- Wall variables 263
- Kolmogorov scales 264
- Example 10.2-1 Turbulence scales for air flow in a pipe 265

10.3 Reynolds averaging 266

- Time-smoothed variables 266
Contents

Continuity equation 267
Navier–Stokes equation 268
Closure problem 268
Reynolds stress 268
10.4 Closure schemes 269
Eddy diffusivities 270
Other approaches 272
10.5 Unidirectional flow 272
Example 10.5-1 Velocity profile near a wall 272
Complete velocity profile for tube flow 275
Example 10.5-2 Prandtl–Kármán equation 276
10.6 Boundary layers 277
Example 10.6-1 Flat plate 277
Example 10.6-2 Axisymmetric jet 279
Limitations of mixing-length concept 281
10.7 Conclusion 281
References 282
Problems 283
10.1 Turbulence scales for water flow in a pipe 283
10.2 Cell damage in turbulent flow 283
10.3 Jet velocity from a photograph 283
10.4 Reynolds-stress data 284
10.5 Eddy diffusivity from near-wall velocity data 285
10.6 Mixing length in tube flow 285
10.7 Power-law velocity profile and Blasius friction factor 285
10.8 Improved velocity profile for tube flow 285
10.9 Friction factor and hydraulic diameter 286
10.10 Effects of tube roughness 286
10.11 Planar jet 287
10.12 Eddy diffusivity in a circular jet 287

Part IV Macroscopic analysis

11 Macroscopic balances for mass, momentum, and energy 291
11.1 Introduction 291
11.2 Conservation of mass
General control volume 291
Discrete openings 292
Example 11.2-1 Fluid displacement from a cavity 293
Example 11.2-2 Draining of a tank through a horizontal pipe 293
Integration of the continuity equation 295
11.3 Conservation of momentum
General control volume 295
Discrete openings 296
Example 11.3-1 Force on a return bend 298
Example 11.3-2 Acceleration of a force-free rocket 299
Contents

11.4 Mechanical energy balances
- General control volume: 300
- Discrete openings: 301
- Example 11.4-1 Viscous loss in pipe flow: 303
- Example 11.4-2 Venturi flow meter: 304
- Example 11.4-3 Hydroelectric power: 305
- Additional note: mechanical energy derivations: 306

11.5 Systems with free surfaces
- Example 11.5-1 Capillary jet: 308
- Example 11.5-2 Hydraulic jump: 309
- Example 11.5-3 Liquid jet striking an inclined plate: 311

11.6 Conclusion: 313

References: 314
Problems: 314

11.1 Torricelli’s law: 314
11.2 Water clock: 314
11.3 Forces on nozzles: 315
11.4 Drag on a flat plate calculated from the wake velocity: 315
11.5 Drag on a cylinder calculated from the wake velocity: 316
11.6 Jet ejector: 317
11.7 Wave tank: 317
11.8 Force in a syringe pump: 318
11.9 Plate suspended by a water jet: 318
11.10 Viscous losses in laminar pipe flow: 319
11.11 Hydroelectric power: 319
11.12 Pitot tube: 319
11.13 Siphon: 320
11.14 Sump pump: 320
11.15 Drainage pipe: 321

12 Pipe flow: entrance effects, fittings, and compressibility

12.1 Introduction: 322
12.2 Entrance effects
- Entrance length: 322
- Excess pressure drop in entrance regions: 323
- Example 12.2-1 Entrance correction for a process pipe: 325
- Example 12.2-2 Entrance correction for a capillary viscometer: 325

12.3 Fittings, valves, and pumps
- Loss coefficients: 325
- Pump characteristics: 327
- Example 12.3-1 Force on a return bend (revisited): 328
- Example 12.3-2 Borda–Carnot equation: 329
- Example 12.3-3 Pressure increase at a diverging branch: 330
- Example 12.3-4 Draining of one tank into another: 332
- Additional note: pseudosteady approximation for tank filling or emptying: 334
Contents

12.4 Compressible flow in long pipes 335
 Engineering Bernoulli equation for variable density 336
 Isothermal pipe flow 337
 Example 12.4-1 Natural-gas pipeline 339
12.5 Compressible flow near the speed of sound 341
 Adiabatic pipe flow 341
 Choked flow 344
 Example 12.5-1 Absence of choking in a natural-gas pipeline 345
 Example 12.5-2 Choked air flow 345
 Varying cross-section: nozzles and diffusers 346
 Example 12.5-3 Converging nozzle 348
12.6 Conclusion 349

References 350
Problems 350
12.1 Entrance effects with air flow 350
12.2 Entrance-region model 351
12.3 Nozzle with diffuser 351
12.4 Water siphon 352
12.5 Pumping from a lower to a higher reservoir 352
12.6 Water transfer from a higher to a lower reservoir 352
12.7 Home plumbing 353
12.8 Membrane hydraulic permeability 353
12.9 Design of distribution manifolds 354
12.10 Tubular reactors in parallel 355
12.11 Pumping between tanks 356
12.12 Pumps in series or parallel 356
12.13 Conical diffuser 357
12.14 Balloon inflation 357
12.15 Discharge of a compressed-air tank 358
12.16 Automobile tire inflation 358
12.17 Comparison of isothermal and adiabatic pipe flow 358
12.18 Gas-cylinder hazard 358
12.19 Speed of sound 359
12.20 Transonic flow 360

Appendix. Vectors, tensors, and coordinate systems 362
 A.1 Introduction 362
 A.2 Notation and fundamentals 362
 Representation of vectors and tensors 362
 Basic operations 363
 Coordinate independence 364
 A.3 Vector and tensor products 364
 Vector dot product 364
 Vector cross product 366
 Dyadic product 367
 Tensor products 367
 Identity tensor 368
Contents

Example A.3-1 Repeated dot products of a vector with an antisymmetric tensor 369
Example A.3-2 Scalar triple products 369

A.4 Differential and integral identities
Gradient 370
Divergence 370
Curl 370
Laplacian 370
Differential identities 371
Example A.4-1 Proof of a differential identity 371
Example A.4-2 Proof of a differential identity 372
Example A.4-3 Proof of a differential identity 372
Example A.4-4 Proof of a differential identity 373
Integral transformations 374
Unit normal and unit tangent vectors 374
Example A.4-5 Integration of a unit normal over a surface 375

A.5 Orthogonal curvilinear coordinates
Base vectors 376
Position vectors and scale factors 376
Volumes and surface areas 377
Gradient 378
Scale-factor identities 378
Divergence 379
Curl 379
Laplacian 380
Cartesian coordinates 380
Cylindrical coordinates 380
Spherical coordinates 382

References 384

Author index 385
Subject index 388