Author index

Page numbers are given only for first authors. Bold numbers indicate where full citations or biographical data appear.

Abramovich, G. N., 280, 282, 287
Adamson, A. W., 10, 23, 101, 101
Ahn, B. See Oh, K. W.
Allen, M. P., 7, 23
Armstrong, R. C. See Bird, R. B.
Arney, M. See Than, P.
Atkinson, B., 350, 351
Barenblatt, G. I., 17, 21, 23
Batchelor, G. K., 58, 77, 217, 222
Bates, R. L., 23, 28
Baxter, L. T., 217, 223
Beebe, D. J. See Walker, G. M.
Bernoulli, D., 228
Bird, R. B., 8, 9, 10, 23, 179, 180, 306, 314, 362, 384. See also Hirschfelder, J. O.
Blanchard, D. C., 101, 105, 106
Blasius, H., 240, 252
Blevins, R. D., 7, 23, 327, 350, 352
Boger, D. V., 323, 324, 350
Brand, L., 362, 368, 371, 374, 384
Brater, E. F., 43, 47
Brauer, H. See Sucker, D.
Brenner, H. See Happel, J.
Brenner, M. P. See Lauga, E.
Bridgman, P. W., 17, 18, 23
Brochard-Wyart, F. See De Gennes, P.-G.
Brokolfekbank, M. P. See Atkinson, B.
Cameron, A., 198, 217
Card, C. C. H. See Atkinson, B.
Carman, P. C., 71, 77
Catchpole, J. P., 16, 23
Chan, B. See Hu, D. L.
Chisnell, R. F., 77, 79
Churchill, S. W., 251, 252
Clague, D. S., 72, 77
Clift, R., 56, 57, 58, 66, 77, 252, 260
Colebrook, C. F., 33, 43, 44, 47
Corpstein, R. R. See Bates, R. L.
Crane Company, 326, 327, 350
Crawford, M. E. See Kays, W. M.
Curtiss, C. F. See Hirschfelder, J. O.
Dahler, J. S., 146, 155
Davies, R. M., 252, 260
Denn, M. M., 332, 350, 355
Dimotakis, P. E., 282, 283
Doyle, P. S. See Randall, G. C.
Durst, E., 274, 282
Eggers, J., 23, 26
Eiffel, A. G., 57
Epstein, N. B., 350, 353, 354
Ergun, S., 71, 73, 77
Euler, L., 228
Fondy, P. L. See Bates, R. L.
Frohlich, J., 281, 282
Fulford, G. See Catchpole, J. P.
Furlani, E. P. See Oh, K. W.
Gant, A. P. See Adamson, A. W.
Gavis, J. See Middleman, S.
Grace, J. R. See Clift, R.
Haaland, S. E., 33, 43, 47
Hagerman, F. C., 77, 78
Happel, J., 207, 217
Hartree, D. R., 242, 252
Hassager, O. See Bird, R. B.
Haward, S. J., 8, 23
Hay, G. B., 371, 384
Hildebrand, F. B., 362, 384
Author index

Hirschfelder, J. O., 7, 23
Hu, D. L., 101, 107
Jackson, G. W., 72, 77
Jain, R. K. See Baxter, L. T.
James, D. F. See Jackson, G. W.
Jasper, J. J., 11, 23
Jeffreys, H., 363, 384
Jennings, S. G., 64, 77
Jones, C. W., 241, 242, 245, 252, 257, 260
Joseph, D. D. See Than, P.
Jovanovic, J. See Durst, F.
Kadomura, T., 7, 23
Kármán, T. von, 14, 23, 33, 47, 57, 77, 273, 282
Kays, W. M., 272, 275, 277, 282, 287
Kennard, E. H., 7, 11, 23
Kestin, J., 325, 350
Kim, J., 275, 282
King, H. W. See Brater, E. F.
Kleiber, M., 23, 29
Koury, E., 32, 44, 45, 47
Kunii, D., 75, 76, 77, 82
Kürtken, H., 57, 77
Lamb, H., 229, 252
Lance, G. N. See Rogers, M. H.
Landau, L. D., 179, 181
Lauper, J., 275, 282, 284
Lauga, E., 150, 155
Leaf, L. G., 205, 207, 217
Lee, K. See Oh, K. W.
Lesieur, M., 281, 282
Levenspiel, O. See Kunii, D.
Lide, D. R., 6, 7, 23
Lipmann, H. W., 335, 350
Lifshitz, E. M. See Landau, L. D.
Lightfoot, E. N. See Bird, R. B.
Lindell, J. E. See Brater, E. F.
Lumley, J. L. See Panchapakesan, N. R. and Tennekes, H.
Mahesh, K. See Moir, P.
Martin, J. J., 224, 326, 350
Matsunaga, N. See Kadomura, K.
McClements, D. J., 77, 79
McComb, W. D., 34, 47, 263, 264, 282
McKinley, G. H. See Haward, S. J.
Merrill, E. W., 179, 188
Miake-Lye, R. C. See Dimotakis, P. E.
Middleman, S., 198, 217, 309, 314, 335, 344, 345, 350
Moon, P., 265, 282. See also Kim, J.
Moody, L. F., 43, 47
Moore, P., 384, 384
Moser, R. See Kim, J.
Murray, C. D., 47, 52
Nagashima, A. See Kadomura, K.
Nikuradse, I., 240, 241, 252
Nikuradse, J., 32, 42, 44, 47
Oh, K. W., 36, 47, 51
Owen, J. P., 67, 68, 77
Panchapakesan, N. R., 280, 282, 284, 287
Papantoniou, D. A. See Dimotakis, P. E.
Peters, M. S., 47, 50
Phillips, R. J. See Clagae, D. S.
Pinkus, O., 198, 217
Poiseuille, J., 33
Poling, B. E. See Reid, R. C.
Prandtl, L., 33, 227, 252, 271, 282
Prausnitz, J. M. See Reid, R. C.
Preziosi, L. See Than, P.
Pritchard, P. J., 350, 352
Purcell, E. M., 200, 217
Quéré, D. See De Gennes, P.-G.
Raasch, J. See Kürtken, H.
Randall, G. C., 217, 218
Rayleigh, Lord, 168, 179
Reichardt, H., 282, 285
Reid, R. C., 7, 24
Reynolds, O., 264, 282
Rodi, W. See Fröhlich, J.
Rogers, M. H., 253, 258
Rosenweig, R. E., 146, 155
Rosshko, A. See Liepmann, H. W.
Rumpf, H. See Kürtken, H.
Ryu, W. S. See Owen, J. P.
Sandham, N. D., 265, 281, 282
Schlichting, H., 40, 44, 47, 60, 61, 77, 155, 157, 233, 242, 244, 246, 251, 253, 256, 271, 279, 280, 282, 287, 314, 316
Scriven, L. E. See Dahler, J. S.
Sender, J. See Durst, F.
Shapiro, A. H., 353, 354, 350
Sherman, T. F., 47, 52
Skalak, R. See Suter, S. P.
Smith, J. M. See Atkinson, B.
Smits, A. J. See Zagora, M. V.
Sokolov, M. See Kestin, J.
Spencer, D. E. See Moon, P.
Speziele, C. G., 272, 282
Sternlicht, B. See Pinkus, O.
Stewart, W. E. See Bird, R. B.
Stokes, G. G., 57, 201, 217
Stone, H. A. See Lauga, E.
Sturh, T. W., 47, 53, 310, 314
Author index

Sucker, D., 58, 77
Sutera, S. P., 33, 47, 164, 179
Szydek, L. D. See Blanchard, D. C.

Tallmadge, J. A. See White, D. A.
Tanner, R. L., 8, 10, 24, 198, 217
Taylor, G. I., 21, 24. See also Davies, R. M.
Tennekes, H., 264, 282
Than, P., 10, 24
Thomas, G. B., Jr., 100, 101, 374, 384
Thompson, P. A., 335, 347, 350, 360
Tildesley, D. J. See Allen, M. P.
Tilton, J. N., 47, 51, 326, 327, 350, 357
Timmerhaus, K. D. See Peters, M. S.
Townsend, A. A., 314, 317

Van Driest, E. R., 271, 282
Van Dyke, M., 123, 126, 282, 283

Villermaux, E. See Eggers, J.
Vincenti, W. G., 33, 47
Virk, P. S., 34, 47, 49
Wakeham, W. See Kestin, J.
Walker, G. M., 217, 225
Wang, C.-S., 77, 80
Watson, E. J. See Jones, C. W.
Weber, M. E. See Clift, R.
Wei, C. Y. See Brater, E. F.
West, R. E. See Peters, M. S.
Whitaker, S., 145, 155
White, C. M. See Colebrook, C. F.
White, D. A., 24, 26
Wijshoff, H., 17, 24
Wilkes, J. O., 327, 350
Wilson, E. B., 362, 367, 384

Zagarola, M. V., 33, 45, 47, 323, 350
Subject index

Added mass, 67, 254
Anisotropic material, 71
Annular conduit, 39, 40, 41, 180
Arc length, 92, 375
Archimedes’ law, 62, 94–96
Archimedes number, 63
Atomic blast, 21
Automobile tire, 358
Axisymmetric flow, 121

Base vectors, 364, 376
Bernoulli equations
 engineering, 302
 irrotational, 230
 streamline, 228, 303
 variable density, 336–337
Bingham fluid, 9, 144, 188
Blasius equation, 33, 285
Blood rheology or blood vessels, 51–52, 188–189, 223–224
Bond number, 15, 16, 17, 26, 98, 174
Borda–Carnot equation, 326, 329–330
Boundary conditions
 approximations at gas–liquid interfaces, 173–174
 stress, 151–152
 symmetry, 178–179
 velocity, 149–150
Boundary layer
 definition, 236
 laminar momentum equation, 237, 239
 matching with outer region, 238–239
 separation, 247–251
 thickness, 60, 237, 241, 242, 245, 247, 278
 turbulent momentum equation, 277
Bubble
 formation, 105–106, 255
 spherical cap, 259–260
 surface tension, 97–98
 velocity field, 126, 220
 Buoyancy force, 62, 94–96

Capillary adhesion, 106–107
Capillary flotation, 107
Capillary length, 16, 98
Capillary number, 15, 17, 26, 185
Capillary pump, 225–226
Capillary rise, 98–99
Casson fluid, 188
Cauchy momentum equation, 136–137, 306
Cavitation, 47, 168, 320
Cavity flow, 185–186
Choked flow. See Compressible flow
Closure problem (turbulent flow), 268, 269
Coating
 blade, 219
 candy, 219
 dip, 25–26, 184–185
 slot, 185
 spin, 254–255
Colebrook equation, 33
Colebrook–White equation, 43
Combination of variables. See Similarity method
Compressible flow
 adiabatic, 341–343
 choked, 344–346
 isentropic, 346–349, 359–360
 isothermal, 337–341
 mechanical energy sinks, 301
 transonic, 360–361
Conservation equations
 linear momentum, 134–136, 295–298, 308
 mass, 110–111, 291–293, 295
 mechanical energy, 300–302, 306–308
 total energy, 341–342
Constitutive equations, 9–10, 141–142, 143–144
Contact angle or contact line, 97
Continuity equation, 110–111, 116
Continuum approximation, 11, 12
Control volume, 31, 33, 291–292
Coordinate surface, 91, 377
Coordinate systems
 Cartesian, 380–381
 cylindrical, 380–382
 orthogonal curvilinear, 376–384
 scale factors, 376–377, 378–379
 spherical, 382–383
Subject index

Couette flow, 166, 171, 177–178
Creeping flow, 198, 207, 213
Cross product, 366–367
Curl, 370, 379–380
Cylinder
 boundary-layer flow, 248–251
 potential flow, 230–232
 surface curvature, 100
D’Alembert’s paradox, 227, 232–233, 251
Darcy’s law or Darcy permeability, 68–73, 182–183, 206, 223–224
Davies–Taylor equation, 259–260
Deborah number, 15
Deformation (of a fluid), 4, 116
Density
 representative values, 6
Diffuser, 346–349, 351–352, 357, 360–361
Dilatation, 117, 118–119, 141–142
Dimensional analysis, 17–22, 169, 171–172
Dimensionless groups, 14–16
Dimensions, 3, 13
Direct numerical simulation (turbulent flow), 265
Disk (drag), 57–58
Dissipation. See Viscous dissipation
Divergence, 370, 379
Divergence theorem, 374
Dot product
 vector–tensor or tensor–tensor, 367–368
 vector–vector, 364–366
Drag coefficient or drag force
 bubble or droplet, 66, 220
 cylinder, 58–59, 157–158, 222–223
 disk, 57–58
 flat plate, 60–61
 form versus friction drag, 55, 59, 62, 157–158, 205–206, 251
 general, 54, 56, 153
 lubrication flow, 215–216
 packed bed, 74–75
 potential flow, 232–233
 related to wake velocity, 315–317
 sphere, 56–57, 153–154
Drag reduction, 34, 49
Drainage pipe, 321
Drop
 oscillation, 25
 surface tension, 97–98
 terminal velocity, 65–66, 79
 velocity field, 222
Dropping-mercury electrode, 222
Dyad or dyadic product, 367
Dynamic pressure, 35, 146–147
Dynamic similarity, 22
Eddy diffusivity, 270–272, 285, 287–288
Eiffel phenomenon, 57
Elliptical conduit, 181–182
Energy conservation. See Conservation equations
Entrance region, 161, 256, 322–325, 351
Equidimensional (Euler) equation, 203, 231
Equivalent pressure. See Dynamic pressure
Ergun equation, 74
Error function, 170
Falkner–Skan equation, 242, 260
Falling film, 127, 172–174, 183–184, 188
Fibrous material, 72, 182–193
Filtration, 113–114, 194–195
Flat plate
 boundary-layer thickness, 60, 241, 247, 278
 drag coefficient, 60–61
 laminar-flow analysis, 239–242, 246–247, 257
 suction, 259
 transition, 59–60
 turbulent-flow analysis, 277–279
Flocculation, 81
Flow separation. See Boundary layer
Fluctuations (turbulent flow), 262–263
Fluidized bed, 75–76, 82
Force calculations (general), 152–153
Force per unit volume, 132–134
Free surface, 172–175, 308
Friction factor, 30, 32, 35, 74
Friction velocity, 263
Froude number, 15, 16, 19, 310
Fully developed flow, 31, 161–165
Gas constant, 5
Gas cylinder, 358–359
Gauckler–Manning formula, 53
Generalized Newtonian fluids. See Non-Newtonian fluids
Geometric similarity, 22
Gradient, 370, 378
Gravitational acceleration or force, 5, 62
Haaland equation, 43
Hadamard–Rybczyński equation, 66, 126
Hagen–Poiseuille equation. See Poiseuille’s law
Heads, 303, 328
Heat-capacity ratio, 335
Home plumbing, 353
Honey, 48
Hubble’s law, 112–113
Hydraulic diameter, 39, 71, 286
Hydraulic fracturing, 49
Hydraulic jump, 309–311
Hydraulic lift, 102–103
Hydroelectric power, 305, 319
Ideal-gas law, 5
Identity tensor, 368–369
Subject index

<table>
<thead>
<tr>
<th>Incompressible approximation, 5, 111, 337</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation time, 357–358</td>
</tr>
<tr>
<td>Inhaled particles, 79–81</td>
</tr>
<tr>
<td>Injection molding, 225</td>
</tr>
<tr>
<td>Inkjet printing, 16–17</td>
</tr>
<tr>
<td>Integral momentum equation. See Kármán integral equation</td>
</tr>
<tr>
<td>Interfacial conditions. See Boundary conditions</td>
</tr>
<tr>
<td>Inviscid flow, 227–228</td>
</tr>
<tr>
<td>Irotational flow, 120–121, 229–236</td>
</tr>
<tr>
<td>Jet</td>
</tr>
<tr>
<td>breakup, 16–17, 26–27, 109</td>
</tr>
<tr>
<td>capillary, 308–309</td>
</tr>
<tr>
<td>impact on plate, 311–313, 318–319</td>
</tr>
<tr>
<td>laminar, 243–244, 254, 256</td>
</tr>
<tr>
<td>turbulent, 279–280, 283–284, 287–288</td>
</tr>
<tr>
<td>Jet ejector, 317</td>
</tr>
<tr>
<td>Kármán integral equation, 244–246</td>
</tr>
<tr>
<td>displacement and momentum thicknesses, 245</td>
</tr>
<tr>
<td>velocity profiles, 246</td>
</tr>
<tr>
<td>Kármán–Nikuradse equation. See Prandtl–Kármán equation</td>
</tr>
<tr>
<td>Kármán–Pohlhausen method, 246</td>
</tr>
<tr>
<td>Kinematic momentum, 243–244, 256</td>
</tr>
<tr>
<td>Kinematic reversibility, 198–200, 231</td>
</tr>
<tr>
<td>Kinematic viscosity, 5</td>
</tr>
<tr>
<td>representative values, 6</td>
</tr>
<tr>
<td>viewed as diffusion coefficient, 171</td>
</tr>
<tr>
<td>Kinetic energy, 228, 300</td>
</tr>
<tr>
<td>Kleiber’s law, 29</td>
</tr>
<tr>
<td>Knudsen number, 15, 64</td>
</tr>
<tr>
<td>Kolmogorov scales, 264–266</td>
</tr>
<tr>
<td>Kozeny–Carman equation, 71</td>
</tr>
<tr>
<td>Krounecker delta, 365</td>
</tr>
<tr>
<td>Laplace’s equation, 120</td>
</tr>
<tr>
<td>Laplacian, 370–371, 380</td>
</tr>
<tr>
<td>Law of the wall, 274</td>
</tr>
<tr>
<td>Layered fluids, 88, 183–184</td>
</tr>
<tr>
<td>Leibniz formulas, 267, 295</td>
</tr>
<tr>
<td>Lift force, 153, 233, 253</td>
</tr>
<tr>
<td>Loss coefficient, 325–327, 354, 357</td>
</tr>
<tr>
<td>Lubrication approximation, 190–198, 212–213</td>
</tr>
<tr>
<td>Mach number, 15, 341</td>
</tr>
<tr>
<td>Magnitude</td>
</tr>
<tr>
<td>tensor, 368</td>
</tr>
<tr>
<td>vector, 365, 366</td>
</tr>
<tr>
<td>Manifold, 330–332, 354–355</td>
</tr>
<tr>
<td>Manometer, 87–88, 101–102</td>
</tr>
<tr>
<td>Marangoni flow, 152, 186</td>
</tr>
<tr>
<td>Mass conservation. See Conservation equations</td>
</tr>
<tr>
<td>Material derivative, 115–116, 378</td>
</tr>
<tr>
<td>Material point, 116</td>
</tr>
<tr>
<td>Mean curvature, 99–100</td>
</tr>
<tr>
<td>Mean free path, 11</td>
</tr>
<tr>
<td>Mechanical energy equation. See Conservation equations</td>
</tr>
<tr>
<td>Microfluidics, 36, 51, 65, 218, 225–226</td>
</tr>
<tr>
<td>Milk, 79</td>
</tr>
<tr>
<td>Mixing length, 271, 285, 286</td>
</tr>
<tr>
<td>Modified pressure. See Dynamic pressure</td>
</tr>
<tr>
<td>Momentum conservation. See Conservation equations</td>
</tr>
<tr>
<td>Momentum-integral equation. See Kármán integral equation</td>
</tr>
<tr>
<td>Murray’s law, 51</td>
</tr>
<tr>
<td>Natural-gas pipeline, 339–341, 345</td>
</tr>
<tr>
<td>Navier–Stokes equation, 146–148</td>
</tr>
<tr>
<td>Newtonian fluid, 4, 141–143, 146–149</td>
</tr>
<tr>
<td>Newton’s law (for drag), 57</td>
</tr>
<tr>
<td>Nikuradse equation (tube roughness), 42</td>
</tr>
<tr>
<td>Non-Newtonian fluids, 4–5, 7–10</td>
</tr>
<tr>
<td>generalized Newtonian, 143–144, 149, 177–178</td>
</tr>
<tr>
<td>Normal stress, 4, 131, 151, 157</td>
</tr>
<tr>
<td>Nozzle, 315, 346–349, 351–352, 359, 360–361</td>
</tr>
<tr>
<td>Ohnesorge number, 27</td>
</tr>
<tr>
<td>Open-channel flow, 52–53, 309–311</td>
</tr>
<tr>
<td>Order-of-magnitude (OM) estimation, 210–212</td>
</tr>
<tr>
<td>Orifice, 326</td>
</tr>
<tr>
<td>Orthogonal unit vectors, 365, 366</td>
</tr>
<tr>
<td>Packed bed, 72–75</td>
</tr>
<tr>
<td>Paint, 188</td>
</tr>
<tr>
<td>Parallel-plate channel entrance length, 161, 351</td>
</tr>
<tr>
<td>friction factor, 40</td>
</tr>
<tr>
<td>hydraulic diameter, 39</td>
</tr>
<tr>
<td>permeable, 218</td>
</tr>
<tr>
<td>time-dependent pressure drop, 207–208</td>
</tr>
<tr>
<td>velocity profile, 129, 161–163</td>
</tr>
<tr>
<td>wavy walls, 126–127, 217</td>
</tr>
<tr>
<td>Pascal’s law, 89</td>
</tr>
<tr>
<td>Permutation symbol, 366</td>
</tr>
<tr>
<td>Pi theorem, 17–18</td>
</tr>
<tr>
<td>Pipe flow. See Tube</td>
</tr>
<tr>
<td>Pitot tube, 319–320</td>
</tr>
<tr>
<td>Planar flow, 121</td>
</tr>
<tr>
<td>Plane Poiseuille flow. See Parallel-plate channels</td>
</tr>
<tr>
<td>Plateau–Rayleigh instability, 107–109</td>
</tr>
<tr>
<td>Plug-flow approximation, 297, 302–303</td>
</tr>
<tr>
<td>Poiseuille flow. See Tubes</td>
</tr>
<tr>
<td>Poiseuille’s law, 33, 36, 164</td>
</tr>
<tr>
<td>Pollen, 78</td>
</tr>
<tr>
<td>Porosity. See Void fraction</td>
</tr>
<tr>
<td>Porous media, 68–73, 206, 224–225</td>
</tr>
<tr>
<td>Position vectors, 376–377</td>
</tr>
<tr>
<td>Potential energy, 228, 300, 306</td>
</tr>
<tr>
<td>Potential flow. See Irotational flow</td>
</tr>
</tbody>
</table>
Subject index

Power-law fluid, 8, 144, 175–177, 257
Power number, 28
Prandtl–Kármán equation, 33, 276–277
Pressure. See also Dynamic pressure
boundary-layer flow, 237, 239
force, 90
fully developed flow, 165
interfaces, 151
inviscid flow, 228
lubrication flow, 190–191, 213
mechanical properties, 85
scales, 13–14, 204, 337
static fluids, 85–88
stress vector, 89
Projected areas, 55, 59, 92–93
Pump
capillary, 225–226
centrifugal, 327–328, 356
jet ejector, 317
positive displacement, 327
power required, 303–304
sump, 320–321
syringe, 48, 318
Rate of change for moving observer, 115–116
Rate of dilatation, 118
Rate of strain, 116–119, 139–141, 144
Rayleigh problem, 168–172
Rectangular conduit, 39, 40, 41
Reynolds averaging. See Time smoothing in turbulence
Reynolds number, 14–15
boundary-layer flow, 236, 251
creeping flow, 213
flat plate, 59–60
lubrication flow, 212–213
packed bed, 74
representative values, 13
tube flow, 32
turbulent, 264–266
Reynolds stress, 268–269, 284
Rheology, 7
Rigid-body rotation, 116, 119–120, 183
Rocket, 299–300
Rotating disk, 221, 257–258
Rotating rod, 166–168, 174–175
Roughness parameter, 42–43, 286–287
Rowing, 78
Scale factors. See Coordinate systems
Scales (of variables), 3, 12, 210–212
Separable solution, 200
Shaft work, 301–302
Shear rate, 4, 117, 144
Shear stress, 4, 131, 151–152
Shear thinning or thickening. See Power-law fluid
Shell balance, 86, 113
Shock, 346
SI system, 3, 5
Similarity method
steady flow past flat plate, 239–242
steady flow past wedge, 242
transient flow, flat plate, 169–172
Simple shear flow, 117–118, 120, 141
Siphon, 320, 352
Ski racing, 78–79
Slider bearing, 195–198, 215–216
Slip (at a surface), 150, 182
Sound, speed of, 335, 359–360
Sphere
added mass, 67, 254
creeping flow, 128, 158, 201–205, 206, 212, 220
drag coefficient or drag force, 56–57, 153–154
potential flow, 253
surface curvature, 100
terminal velocity, 62–66
torque, 220
Squeeze flow, 208–209, 214–215
Stagnation density, 347
Stagnation flow, 111–112, 123–124, 125, 147–149, 253–254, 260
Stagnation point, 124
Stagnation pressure, 347
Stagnation temperature, 347
Static pressure equation, 87
Stefan equation, 209
Stirred tank, 28
Stokes’ equation, 198
law, 56–57, 205–206
paradox, 206
Streaklines, 122–123
Stream function, 121–122, 204–205, 231–232
Streamlines, 115, 122–125, 204–205, 231–232
Stress, 4, 130–131
equilibrium, 136–137
scales, 13–14
symmetry, 145–146
tensor, 131–132
vector, 89, 131–132
Strohnaul number, 15, 213
Substantial derivative. See Material derivative
Sudden contraction, 326
Sudden expansion, 326, 329–330
Superficial velocity, 69
Surface area (differential), 377
Surface curvature. See Mean curvature
Surface tension, 10, 96–101, 151–152
representative values, 11
Symmetry conditions. See Boundary conditions
Tank emptying or filling, 293–295, 314, 332–335, 356, 358
Tapered channel, 191–194, 211–212

391
Subject index

Time scales
 approach to terminal velocity, 66–67, 79
 convective, 15
 process, 15
 viscous, 15, 170
Time-smoothing in turbulence, 262–263, 266–268
Torque, 145–146, 153, 167, 220, 221–222
Torricelli's law, 314
Trace (of a tensor), 368, 369
Trajectories, 124–125
Transition (laminar–turbulent), 32, 59–60
Transpose (of a tensor), 364
Triangular conduit, 39, 40, 41, 180–181
Tube
 bend, 298–299, 328–329
 branching, 36, 51–52, 330–332
 economic diameter, 50–51
 entrance effects, 256, 322–325
 fittings, 325–327
 friction factor, 20, 32, 35, 164–165
 laminar-flow analysis, 163–164
 permeable, 194–195, 218
 power-law fluid, 175–177
 roughness effects, 42–45, 286–287
 transition, 32
 turbulent-flow analysis, 272–277, 285–286
 viscous loss, 303–304
Tumor, flow in, 223–224
Turbulence scales, See Kolmogorov scales
Turbulent stress, See Reynolds stress
Unit vector
 general, 366
 normal to surface, 91, 149, 374, 375
 orthogonal set, 365, 366, 376
 tangent to surface, 149, 374
Velocity potential, 120
Venturi effect, 304–305
Viscometer
 capillary, 38–39, 325
 cone-and-plate, 221–222
 Couette, 5, 179–180
 falling cylinder, 186–187
Viscosity, 3–4
 bulk (dilatational) vs. shear, 142
 Newtonian, 4, 141–142
 representative values, 6
 temperature dependence, 7, 188
 Viscous dissipation, 301
 Viscous stress tensor, 133–134, 141–144
 Void fraction, 70
Volume (differential), 377
Vorticity, 119–120
inviscid fluid, 229
irrotational flow, 120–121
rigid-body rotation, 119–120
simple shear flow, 120
tensor, 139–140
transport, 228–229
Wake, 315–317
Wall shear stress, 4
Wall variables (turbulent flow), 263
Washburn's law, 224–225
Water clock, 314–315
Water strider, 107
Water waves, 16, 18–20, 233–236, 317–318
Wave equation, 359–360
Weather balloon, 116
Weber number, 15, 174
Wedge flow, 128, 242, 260
Yield stress, 9, 188
Young–Laplace equation, 97–98