CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor
Arvind Varma, Purdue University

Editorial Board
Christopher Bowman, University of Colorado
Edward Cussler, University of Minnesota
Chaitan Khosla, Stanford University
Athanassios Z. Panagiotopoulos, Princeton University
Gregory Stephanopoulos, Massachusetts Institute of Technology
Jackie Ying, Institute of Bioengineering and Nanotechnology, Singapore

Books in Series
Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems
Chau, Process Control: A First Course with MATLAB
Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition
Cussler and Moggridge, Chemical Product Design, Second Edition
De Pablo and Schieber, Molecular Engineering Thermodynamics
Deen, Introduction to Chemical Engineering Fluid Mechanics
Denn, Chemical Engineering: An Introduction
Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer
Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction
Fan and Zhu, Principles of Gas–Solid Flows
Fox, Computational Models for Turbulent Reacting Flows
Franses, Thermodynamics with Chemical Engineering Applications
Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors
Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems
Mewis and Wagner, Colloidal Suspension Rheology
Morbidelli, Gavriilidis, and Varma, *Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes*

Nicoud, *Chromatographic Processes*

Noble and Terry, *Principles of Chemical Separations with Environmental Applications*

Orbey and Sandler, *Modeling Vapor–Liquid Equilibria: Cubic Equations of State and their Mixing Rules*

Petyluk, *Distillation Theory and its Applications to Optimal Design of Separation Units*

Rao and Nott, *An Introduction to Granular Flow*


Schobert, *Chemistry of Fossil Fuels and Biofuels*

Shell, *Thermodynamics and Statistical Mechanics*


Slattery, *Advanced Transport Phenomena*

Varma, Morbidelli, and Wu, *Parametric Sensitivity in Chemical Systems*
Introduction to Chemical Engineering Fluid Mechanics

William M. Deen
Massachusetts Institute of Technology
To Meredith and Michael
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>List of symbols</td>
<td>xxiv</td>
</tr>
<tr>
<td><strong>Part I  Use of experimental data</strong></td>
<td></td>
</tr>
<tr>
<td>1 Properties, dimensions, and scales</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Fluid properties</td>
<td>3</td>
</tr>
<tr>
<td>Viscosity</td>
<td>3</td>
</tr>
<tr>
<td>Density and kinematic viscosity</td>
<td>5</td>
</tr>
<tr>
<td>Units and values</td>
<td>5</td>
</tr>
<tr>
<td>Non-Newtonian liquids</td>
<td>7</td>
</tr>
<tr>
<td>Surface tension</td>
<td>10</td>
</tr>
<tr>
<td>Continuum approximation</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Scales and dimensionless groups</td>
<td>12</td>
</tr>
<tr>
<td>Scales</td>
<td>12</td>
</tr>
<tr>
<td>Dimensions</td>
<td>13</td>
</tr>
<tr>
<td>Stress scales</td>
<td>13</td>
</tr>
<tr>
<td>Dimensionless groups</td>
<td>14</td>
</tr>
<tr>
<td>Example 1.3-1 Deep-water waves</td>
<td>16</td>
</tr>
<tr>
<td>Example 1.3-2 Inkjet printing</td>
<td>16</td>
</tr>
<tr>
<td>1.4 Dimensional analysis</td>
<td>17</td>
</tr>
<tr>
<td>Pi theorem</td>
<td>17</td>
</tr>
<tr>
<td>Example 1.4-1 Speed of water waves</td>
<td>18</td>
</tr>
<tr>
<td>Example 1.4-2 Shear stress in pipe flow</td>
<td>20</td>
</tr>
<tr>
<td>Example 1.4-3 Energy of an atomic blast</td>
<td>21</td>
</tr>
<tr>
<td>Dynamic similarity</td>
<td>22</td>
</tr>
<tr>
<td>1.5 Conclusion</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td>Problems</td>
<td>24</td>
</tr>
<tr>
<td>1.1 Falling body</td>
<td>24</td>
</tr>
<tr>
<td>1.2 Pendulum</td>
<td>24</td>
</tr>
<tr>
<td>1.3 Salad dressing</td>
<td>24</td>
</tr>
<tr>
<td>1.4 Heat transfer coefficient</td>
<td>24</td>
</tr>
<tr>
<td>1.5 Oscillating drops</td>
<td>25</td>
</tr>
<tr>
<td>1.6 Dip coating</td>
<td>25</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press  www.cambridge.org
## Contents

1.7 Breakup of liquid jets 26
1.8 Valve scale-up 27
1.9 Ship scale-up 27
1.10 Power input in a stirred tank 28
1.11 Underwater swimming 28

2 Pipe flow 30
2.1 Introduction 30
2.2 Shear stress 30
   Fundamental quantities 30
   Friction factor 31
2.3 Pressure drop and dynamic pressure 34
   Friction factor and pressure drop 34
   Circuit analogy 36
   Example 2.3-1 Pressure drop for water in process pipes 36
   Example 2.3-2 Pressure drop in an oil pipeline 37
   Example 2.3-3 Flow rate in an oil pipeline 38
   Example 2.3-4 Capillary viscometer 38
2.4 Noncircular cross-sections 39
   Turbulent flow 39
   Laminar flow 40
   Example 2.4-1 Pressure drop for air in a triangular duct 41
   Example 2.4-2 Material efficiency of square and circular ducts 41
2.5 Wall roughness 42
   Example 2.5-1 Effect of roughness on water flow in a process pipe 45
   Example 2.5-2 Practical smoothness 45
2.6 Conclusion 46

References 47
Problems 47
2.1 Cavitation 47
2.2 Bottling honey 48
2.3 Filling a boiler 48
2.4 Syringe pump 48
2.5 Flue gases 49
2.6 Hydraulic fracturing 49
2.7 Drag reduction 49
2.8 Economic pipe diameter 50
2.9 Microfluidic device 51
2.10 Murray’s law 51
2.11 Open-channel flow 52

3 Drag, particles, and porous media 54
3.1 Introduction 54
3.2 Drag 54
   Origins 54
   Drag coefficient 55
   Spheres 56
Contents

Disks 57
Cylinders 58
Flat plates 59
Example 3.2-1 Drag on a cylinder in water 61
Example 3.2-2 Comparative drag on a cylinder and a flat plate 61
3.3 Terminal velocity 62
Buoyancy and gravity 62
Terminal velocities for solid spheres 62
Example 3.3-1 Sand grain falling in air 64
Example 3.3-2 Microfluidic cell separation 65
Terminal velocities for fluid spheres 65
Approach to terminal velocity 66
Example 3.3-3 Approach to terminal velocity for large spheres 66
3.4 Porous media 68
Darcy permeability 68
Microstructural models 70
Example 3.4-1 Air flow through a packed bed of spheres 72
Example 3.4-2 Comparative properties of granular and fibrous media 73
3.5 Packed beds and fluidized beds 73
Packed beds 73
Fluidized beds 75
Example 3.5-1 Fluidization at low Reynolds number 76
3.6 Conclusion 76
References 77
Problems 78
3.1 Chain-link fence 78
3.2 Rowing power 78
3.3 Dispersion of pollen 78
3.4 Downhill ski racing 78
3.5 Homogenized milk 79
3.6 Approach to terminal velocity for small fluid spheres 79
3.7 Inhaled particles 79
3.8 Flocculation 81
3.9 Hydrogel disks 81
3.10 Bypassing a packed bed 81
3.11 Fluidization at high Reynolds number 82

Part II Fundamentals of fluid dynamics

4 Fluid statics: pressure, gravity, and surface tension 85
4.1 Introduction 85
4.2 Pressure in static fluids 85
   Properties of pressure 85
   Static pressure equation 85
   Pressure distributions 87
   Example 4.2-1 Manometer 87
   Example 4.2-2 Layered fluids 88
   Additional note: Pascal’s law 89

© in this web service Cambridge University Press www.cambridge.org
Contents

4.3 Pressure forces 89
   Stress and force vectors 89
   Boundaries 90
   Example 4.3-1 Rectangular tank 90
   Example 4.3-2 Inclined planar surface 91
   Projected areas 92
   Immersed objects at constant pressure 93
   Buoyancy 94
   Example 4.3-3 Buoyancy of a sphere 95

4.4 Surface tension 96
   Tensile forces and contact lines 96
   Example 4.4-1 Young–Laplace equation 97
   Example 4.4-2 Capillary rise 98
   Interfaces with variable curvature 99

4.5 Conclusion 101
References 101
Problems 101
4.1 Manometry for liquid pipe flow 101
4.2 Hydraulic lift 102
4.3 Static pressure variations in air 103
4.4 Force on Hoover Dam 103
4.5 Floating cup 103
4.6 Sedimentation in a sucrose gradient 104
4.7 Half-submerged cylinder 105
4.8 Buoyancy of a cone 105
4.9 Formation of small bubbles 105
4.10 Capillary adhesion 106
4.11 Capillary flotation 107
4.12 Plateau–Rayleigh instability 107

5 Fluid kinematics 110
5.1 Introduction 110
5.2 Continuity 110
   Example 5.2-1 Unknown velocity component 111
   Example 5.2-2 Expansion of the Universe 112
   Example 5.2-3 Filtration in a hollow fiber 113
5.3 Rates of change for moving observers 115
   Example 5.3-1 Temperature changes sensed by a weather balloon 116
5.4 Rate of strain 116
   Example 5.4-1 Rate of strain in simple shear flow 117
   Example 5.4-2 Rate of strain in pure dilatation 118
5.5 Vorticity 119
   Definition 119
   Irrotational flow 120
5.6 Stream function 121
   Definitions 121
   Streamlines and streaklines 122
Contents

Example 5.6-1 Streamlines from the stream function 123
Example 5.6-2 Streamlines from trajectories 125
5.7 Conclusion 125
References 126
Problems 126
5.1 Flow past a bubble 126
5.2 Channel with wavy walls 126
5.3 Condensation on a vertical wall 127
5.4 Flow past a solid sphere 128
5.5 Wedge flow 128
5.6 Flow between porous and solid disks 128
5.7 Trajectories of sedimenting particles 129

6 Stress and momentum 130
6.1 Introduction 130
6.2 Stress vector and stress tensor
   Stress vector and notation 131
   Stress at an arbitrary surface 132
6.3 Force at a point 132
6.4 Conservation of momentum 134
   Additional note: stress equilibrium 136
6.5 Viscous stress 139
   Rate-of-strain tensor 139
   Example 6.5-1 Rate of strain in simple shear flow 141
   Newtonian fluids 141
   Non-Newtonian fluids 143
   Additional note: stress symmetry 145
6.6 Governing equations 146
   Newtonian fluids with constant properties 146
   Example 6.6-1 Pressure in planar stagnation flow 147
   Fluids with varying viscosity 149
   Velocities at phase boundaries 149
   Stresses at phase boundaries 151
   Example 6.6-2 Shear-stress boundary condition with variable
   surface tension 151
   Force calculations 152
   Example 6.6-3 General expression for the drag on
   a sphere 153
6.7 Conclusion 154
References 155
Problems 155
6.1 Stress vector and tensor 155
6.2 Effect of surface orientation on the stress vector 156
6.3 Force balance for plane Couette flow 156
6.4 Force balance for plane Poiseuille flow 156
6.5 Normal viscous stress at a solid surface 157
6.6 Drag on a cylinder at high Reynolds number 157
Contents

6.7 Pressure for creeping flow past a solid sphere 158
6.8 Pressure between porous and solid disks 158

Part III Microscopic analysis

7 Unidirectional flow 161
7.1 Introduction 161
7.2 Fully developed flow 161
  Example 7.2-1 Velocity and pressure for plane Poiseuille flow 161
  Example 7.2-2 Velocity and pressure for Poiseuille flow 163
  Example 7.2-3 Friction factor for laminar tube flow 164
7.3 Moving surfaces 166
  Example 7.3-1 Plane Couette flow 166
  Example 7.3-2 Rotating rod 166
  Example 7.3-3 Plate suddenly set in motion 168
7.4 Free surfaces 172
  Example 7.4-1 Falling film on a vertical wall 172
  Example 7.4-2 Surface of a stirred liquid 174
7.5 Non-Newtonian fluids 175
  Example 7.5-1 Poiseuille flow of a power-law fluid 175
  Example 7.5-2 Plane Couette flow of generalized Newtonian fluids 177
7.6 Symmetry conditions 178
  Cylindrical symmetry 178
  Reflective symmetry 178
7.7 Conclusion 179
  References 179
  Problems 179
  7.1 Couette viscometer 179
  7.2 Annular conduit 180
  7.3 Triangular conduit 180
  7.4 Elliptical conduit 181
  7.5 Slip in tube flow 182
  7.6 Darcy permeability of a fibrous material 182
  7.7 Surface of a liquid in rigid-body rotation 183
  7.8 Layered liquids on an inclined surface 183
  7.9 Liquid film outside a vertical tube 184
  7.10 Film on an upward-moving surface 184
  7.11 Slot coating 185
  7.12 Flow in a cavity 185
  7.13 Falling-cylinder viscometer 186
  7.14 Bubble rising in a tube 187
  7.15 Paint film 188
  7.16 Temperature-dependent viscosity 188
  7.17 Blood rheology 188

8 Approximations for viscous flows 190
8.1 Introduction 190
Contents

8.2 Lubrication approximation 190
   Example 8.2-1 Tapered channel 191
   Example 8.2-2 Permeable tube 194
   Example 8.2-3 Slider bearing 195

8.3 Creeping flow 198
   Stokes’ equation 198
   Example 8.3-1 Flow between porous and solid disks 200
   Example 8.3-2 Flow past a sphere 201
   Example 8.3-3 Stokes’ law 205
   Porous media 206

8.4 Pseudosteady flow 207
   Example 8.4-1 Parallel-plate channel with a decaying pressure drop 207
   Example 8.4-2 Squeeze flow 208

8.5 Anticipating approximations 209
   Order-of-magnitude estimation 210
   Example 8.5-1 Order-of-magnitude analysis for a tapered channel 211
   Example 8.5-2 Order-of-magnitude analysis for Stokes flow past a sphere 212
   Lubrication approximation 212
   Creeping-flow approximation 213
   Pseudosteady approximation 213
   Example 8.5-3 Order-of-magnitude analysis for squeeze flow 214
   Example 8.5-4 Force on a slider bearing 215

8.6 Conclusion 216

References 217
Problems 217

8.1 Imperfect parallel-plate channel 217
8.2 Permeable closed-end tube 218
8.3 Permeation-driven flow in a microchannel 218
8.4 Candy manufacturing 219
8.5 Blade coating 219
8.6 Torque on a rotating sphere 220
8.7 Velocity and pressure for flow past a bubble 220
8.8 Terminal velocity of a small bubble 220
8.9 Rotating and stationary disks 221
8.10 Cone-and-plate viscometer 221
8.11 Growing mercury drop 222
8.12 Drag on a cylinder at low Reynolds number 222
8.13 Darcy flow in a tumor 223
8.14 Washburn’s law 224
8.15 Injection molding 225
8.16 Capillary pump 225

9 Laminar flow with inertia 227
  9.1 Introduction 227
  9.2 Inviscid and irrotational flow 227

© in this web service Cambridge University Press  www.cambridge.org
Contents

Inviscid flow 227
Vorticity transport 228
Irrotational flow 229
Example 9.2-1 Velocity for potential flow past a cylinder 230
Example 9.2-2 Pressure and drag for inviscid and irrotational
flow past a cylinder 232
Example 9.2-3 Water waves 233
9.3 Boundary layers: differential analysis 236
Boundary-layer approximation 236
Joining the regions 238
Example 9.3-1 Blasius solution for a flat plate 239
Wedge flows 242
Internal boundary layers 243
Example 9.3-2 Planar jet 243
9.4 Boundary layers: integral analysis 244
Integral momentum equation 244
Example 9.4-1 Integral solution for a flat plate 246
Boundary-layer separation 247
Example 9.4-2 Integral solution for a cylinder 248
9.5 Conclusion 252
References 252
Problems 253
9.1 Potential flow past a sphere 253
9.2 Lift on a half-cylinder 253
9.3 Axisymmetric stagnation flow 253
9.4 Opposed circular jets 254
9.5 Added mass for a sphere 254
9.6 Spin coating 254
9.7 Bubble growing in a liquid 255
9.8 Entrance length 256
9.9 Axisymmetric jet 256
9.10 Boundary layers in power-law fluids 257
9.11 Normal velocity component for a flat plate 257
9.12 Rotating disk 257
9.13 Flat plate with suction 259
9.14 Terminal velocity of a large bubble 259
9.15 Planar stagnation flow 260
9.16 Flow past a right-angle wedge 260
10 Turbulent flow 261
10.1 Introduction 261
10.2 Characteristics and scales 261
Basic features 261
Wall variables 263
Kolmogorov scales 264
Example 10.2-1 Turbulence scales for air flow in a pipe 265
10.3 Reynolds averaging 266
Time-smoothed variables 266
Contents

Continuity equation 267
Navier–Stokes equation 268
Closure problem 268
Reynolds stress 268
10.4 Closure schemes 269
Eddy diffusivities 270
Other approaches 272
10.5 Unidirectional flow 272
Example 10.5-1 Velocity profile near a wall 272
Complete velocity profile for tube flow 275
Example 10.5-2 Prandtl–Kármán equation 276
10.6 Boundary layers 277
Example 10.6-1 Flat plate 277
Example 10.6-2 Axisymmetric jet 279
Limitations of mixing-length concept 281
10.7 Conclusion 281
References 282
Problems 283
10.1 Turbulence scales for water flow in a pipe 283
10.2 Cell damage in turbulent flow 283
10.3 Jet velocity from a photograph 283
10.4 Reynolds-stress data 284
10.5 Eddy diffusivity from near-wall velocity data 285
10.6 Mixing length in tube flow 285
10.7 Power-law velocity profile and Blasius friction factor 285
10.8 Improved velocity profile for tube flow 285
10.9 Friction factor and hydraulic diameter 286
10.10 Effects of tube roughness 286
10.11 Planar jet 287
10.12 Eddy diffusivity in a circular jet 287

Part IV Macroscopic analysis

11 Macroscopic balances for mass, momentum, and energy 291
11.1 Introduction 291
11.2 Conservation of mass 291
General control volume 291
Discrete openings 292
Example 11.2-1 Fluid displacement from a cavity 293
Example 11.2-2 Draining of a tank through a horizontal pipe 293
Integration of the continuity equation 295
11.3 Conservation of momentum 295
General control volume 295
Discrete openings 296
Example 11.3-1 Force on a return bend 298
Example 11.3-2 Acceleration of a force-free rocket 299
## Contents

11.4 Mechanical energy balances  
   General control volume  300  
   Discrete openings  301  
   Example 11.4-1 Viscous loss in pipe flow  303  
   Example 11.4-2 Venturi flow meter  304  
   Example 11.4-3 Hydroelectric power  305  
   Additional note: mechanical energy derivations  306  

11.5 Systems with free surfaces  308  
   Example 11.5-1 Capillary jet  308  
   Example 11.5-2 Hydraulic jump  309  
   Example 11.5-3 Liquid jet striking an inclined plate  311  

11.6 Conclusion  313  
   References  314  
   Problems  314  
   11.1 Torricelli’s law  314  
   11.2 Water clock  314  
   11.3 Forces on nozzles  315  
   11.4 Drag on a flat plate calculated from the wake velocity  315  
   11.5 Drag on a cylinder calculated from the wake velocity  316  
   11.6 Jet ejector  317  
   11.7 Wave tank  317  
   11.8 Force in a syringe pump  318  
   11.9 Plate suspended by a water jet  318  
   11.10 Viscous losses in laminar pipe flow  319  
   11.11 Hydroelectric power  319  
   11.12 Pitot tube  319  
   11.13 Siphon  320  
   11.14 Sump pump  320  
   11.15 Drainage pipe  321

12 Pipe flow: entrance effects, fittings, and compressibility  322  
   12.1 Introduction  322  
   12.2 Entrance effects  322  
      Entrance length  322  
      Excess pressure drop in entrance regions  323  
      Example 12.2-1 Entrance correction for a process pipe  325  
      Example 12.2-2 Entrance correction for a capillary viscometer  325  
   12.3 Fittings, valves, and pumps  325  
      Loss coefficients  325  
      Pump characteristics  327  
      Example 12.3-1 Force on a return bend (revisited)  328  
      Example 12.3-2 Borda–Carnot equation  329  
      Example 12.3-3 Pressure increase at a diverging branch  330  
      Example 12.3-4 Draining of one tank into another  332  
      Additional note: pseudosteady approximation for tank filling or emptying  334
## Contents

12.4 Compressible flow in long pipes 335
   Engineering Bernoulli equation for variable density 336
   Isothermal pipe flow 337
   Example 12.4-1 Natural-gas pipeline 339

12.5 Compressible flow near the speed of sound 341
   Adiabatic pipe flow 341
   Choked flow 344
   Example 12.5-1 Absence of choking in a natural-gas pipeline 345
   Example 12.5-2 Choked air flow 345
   Varying cross-section: nozzles and diffusers 346
   Example 12.5-3 Converging nozzle 348

12.6 Conclusion 349
   References 350
   Problems 350
   12.1 Entrance effects with air flow 350
   12.2 Entrance-region model 351
   12.3 Nozzle with diffuser 351
   12.4 Water siphon 352
   12.5 Pumping from a lower to a higher reservoir 352
   12.6 Water transfer from a higher to a lower reservoir 352
   12.7 Home plumbing 353
   12.8 Membrane hydraulic permeability 353
   12.9 Design of distribution manifolds 354
   12.10 Tubular reactors in parallel 355
   12.11 Pumping between tanks 356
   12.12 Pumps in series or parallel 356
   12.13 Conical diffuser 357
   12.14 Balloon inflation 357
   12.15 Discharge of a compressed-air tank 358
   12.16 Automobile tire inflation 358
   12.17 Comparison of isothermal and adiabatic pipe flow 358
   12.18 Gas-cylinder hazard 358
   12.19 Speed of sound 359
   12.20 Transonic flow 360

Appendix. Vectors, tensors, and coordinate systems 362
   A.1 Introduction 362
   A.2 Notation and fundamentals 362
      Representation of vectors and tensors 362
      Basic operations 363
      Coordinate independence 364
   A.3 Vector and tensor products 364
      Vector dot product 364
      Vector cross product 366
      Dyadic product 367
      Tensor products 367
      Identity tensor 368

xix
Contents

Example A.3-1 Repeated dot products of a vector with an antisymmetric tensor 369
Example A.3-2 Scalar triple products 369
A.4 Differential and integral identities 370
Gradient 370
Divergence 370
Curl 370
Laplacian 370
Differential identities 371
Example A.4-1 Proof of a differential identity 371
Example A.4-2 Proof of a differential identity 372
Example A.4-3 Proof of a differential identity 372
Example A.4-4 Proof of a differential identity 373
Integral transformations 374
Unit normal and unit tangent vectors 374
Example A.4-5 Integration of a unit normal over a surface 375
A.5 Orthogonal curvilinear coordinates 376
Base vectors 376
Position vectors and scale factors 376
Volumes and surface areas 377
Gradient 378
Scale-factor identities 378
Divergence 379
Curl 379
Laplacian 380
Cartesian coordinates 380
Cylindrical coordinates 380
Spherical coordinates 382
References 384

Author index 385
Subject index 388
Preface

WHAT IS CHEMICAL ENGINEERING FLUID MECHANICS?

Quantitative experimentation with fluids began in antiquity, and the foundations for the mathematical analysis of fluid flow were well established by the mid 1800s. Although a mature subject, fluid mechanics remains a very active area of research in engineering, applied mathematics, and physics. As befits a field that is both fascinating and useful, it has been the subject of innumerable introductory textbooks. However, only a few have focused on the aspects of fluid mechanics that are most vital in chemical engineering.

Certain results that stem from conservation of mass and momentum in fluids cut across all fields. However, the kinds of flow that are of greatest interest differ considerably among the various branches of engineering. One thing that distinguishes fluid mechanics in chemical engineering from that in, say, aeronautical or civil engineering, is the central importance of viscosity. Viscous stresses are at the heart of predicting flow rates in pipes, which has always been the main application of fluid mechanics in process design. Moreover, chemical engineering encompasses many technologies that involve bubbles, drops, particles, porous media, or liquid films, where small length scales amplify the effects of viscosity. Surface tension, usually not a concern in other engineering disciplines, also can be important at such length scales. In addition, in chemical engineering applications even gases usually can be idealized as incompressible. Another feature of chemical engineering fluid mechanics is an emphasis on microscopic analysis to calculate velocity fields. Determining velocities and pressures, and finding the resulting forces or torques, is often not an end in itself. Detailed velocity fields are needed to predict concentration and temperature distributions, which in turn are essential for the analysis and design of reactors and separation devices. Of lesser concern than in some other disciplines are the fluid dynamics of rotating machinery, flow in open channels, and flow at near-sonic velocities (where gas compressibility is important). Thus, chemical engineering fluid mechanics is characterized by a heightened interest in the microscopic analysis of incompressible viscous flows. Biomedical and mechanical engineers share some of the same concerns.

PURPOSE AND ORGANIZATION

This book is designed mainly as a text for chemical engineering undergraduates. The intention is to present fundamental concepts in a rigorous but mathematically accessible manner. A recurring theme is how to identify what is important physically in a novel situation and how to use such insights in modeling. That is illustrated by examples both within and outside the traditional domain of chemical engineering. The end-of-chapter problems tend to be challenging. They are intended not just to provide practice in certain
Preface

kinds of calculations, but to build confidence in analyzing physical systems and to help
develop engineering judgment.

The essential prerequisites are introductory mechanics, multivariable calculus, and
ordinary differential equations. The information on vectors and tensors that is needed to
understand certain derivations is summarized in an appendix, thereby making that part
of the mathematics self-contained. Familiarity with a few numerical methods (e.g., solv-
ing first-order differential equations) is helpful but not necessary. No prior experience
with partial differential equations is assumed; solution methods are explained as the need
arises. A basic background in thermodynamics is presumed only in the last chapter.

The book has four parts. Part I, “Use of Experimental Data” (Chapters 1–3), discusses
fluid properties, representative magnitudes of velocities and forces, and certain kinds
of design. The information in these chapters is largely empirical. After surveying gas
and liquid properties, Chapter 1 introduces dimensional analysis and the several uses of
dimensionless groups, with an emphasis on groups that indicate the relative importance of
different kinds of forces. Chapter 2 focuses on pressure–flow relationships in long pipes
or other conduits. Chapter 3 discusses drag forces, terminal velocities of particles, porous
media, packed beds, and fluidized beds. While presenting various experimental results
and explaining certain engineering calculations, Chapters 2 and 3 introduce phenomena
and relationships that are revisited later from more fundamental viewpoints.

Part II, “Fundamentals of Fluid Dynamics” (Chapters 4–6), lays the groundwork for
predictive modeling. Chapter 4, on static fluids, explains the interactions among pressure,
gravity, and surface tension and begins to make force calculations more precise. Chapter 5
introduces the continuity equation (the differential equation that embodies conservation
of mass), the concept of rate of strain, and other aspects of kinematics, the description of
fluid motion. Chapter 6 provides a general description of viscous stresses and combines
that with conservation of linear momentum. The main result is the Navier–Stokes equa-
tional, the differential equation that ordinarily governs momentum changes within fluids.
As aspects of vectors, tensors, and analytical geometry become relevant, the reader is
referred to specific sections of the Appendix.

Part III, “Microscopic Analysis” (Chapters 7–10), illustrates how to use the governing
equations of Chapter 6 to predict velocity and pressure fields, and how then to calculate
fluid forces and torques. Chapter 7 is devoted to unidirectional flow, the simplest set
of applications. Chapter 8 discusses how to anticipate and justify simplifications of the
Navier–Stokes equation when viscous stresses are much more important than the inertia
of the fluid. Introduced there are the lubrication, creeping flow, and pseudosteady approxi-
mations. Chapter 9 extends the discussion of approximations to laminar flows where iner-
tia is prominent, as in boundary layers. Concepts unique to turbulent flow (Kolmogorov
scales, time-smoothing, Reynolds stress, and mixing lengths) are presented in Chapter 10.
Numerous connections are made between results derived in Part III and the experimental
observations in Part I.

Part IV, “Macroscopic Analysis” (Chapters 11–12), focuses on flow problems that
are too complex for the approaches in Part III, but where a less detailed kind of analysis
is useful. Integral forms of the conservation equations are derived in Chapter 11
and simplified to algebraic equations that are practical for applications, such as the engi-
neering Bernoulli equation. Key assumptions are justified by referring to the microscopic
results of Part III. The simplified macroscopic balances are applied to a variety of systems
in Chapter 11. Chapter 12 revisits pipe flow, including new resistances due to entrance
regions and pipe fittings. It concludes with an introduction to compressible flow.
Preface

Although proofs of all key theoretical results are provided, some derivations are put in “additional notes” at the ends of sections. Any subsection so labeled can be skipped without loss of continuity. In contrast, all the examples illustrate core material and merit study. Many of the end-of-chapter problems present additional theoretical or experimental results or describe new kinds of applications. It is recommended that all the problem statements be read as part of the chapter, even if solutions are not to be worked out.

In manuscript form, the book has been used successfully as the text in a one-semester course for chemical engineering undergraduates. In a fast-paced course with four contact hours per week over 14 weeks, approximately 80% of the material was covered. Overall, the content provides a reasonable foundation for practicing chemical engineers and good preparation for graduate-level study of fluid mechanics. If supplemented by a comparable introduction to heat and mass transfer, it would be good preparation for graduate study of transport phenomena.

ACKNOWLEDGMENTS

Some of the examples and problems originated with MIT colleagues or faculty elsewhere. I have identified such unpublished sources with footnotes that state “this problem was suggested by,” a phrase intended to give credit without blame. I have revised what others had written in homework or exam problems, often extensively, or elaborated on what they and I discussed, and therefore take all responsibility for errors or confusion.

I have learned a great deal over the years from MIT faculty with whom I have taught fluid mechanics or otherwise discussed the subject. Among those present or former colleagues are Robert C. Armstrong, Martin Z. Bazant, Robert A. Brown, Fikile R. Brushett, Arup K. Chakraborty, Patrick S. Doyle, Kenneth A. Smith, James W. Swan, and Preetinder S. Virk. As a graduate student at Stanford long ago, I was inspired by a course in viscous flow theory taught by Andreas Acrivos. My education has been advanced no less by interactions with generations of MIT students, who have always impressed me with their curiosity and determination to learn. Responding to their questions has continually sharpened my own understanding of the subject.

Although undertaken after retirement, the writing of this book was supported in part by the Carbon P. Dubbs Chair in the Department of Chemical Engineering at MIT. I am appreciative of that support and the other encouragement I have received from the Department.

Last but not least are those at Cambridge University Press who helped improve the book and make it a reality, including acquisition editor Michelle Carey, copy-editor Steven Holt, and production editor Charles Howell.

W. M. D.
Symbols

Following is a list of the more commonly used symbols. Omitted are coordinates (defined in Section A.5) and many quantities that appear in just one chapter. In general, scalars are italic Roman or Greek (e.g., \( a \) or \( \delta \)), vectors are bold Roman (e.g., \( \mathbf{v} \)), and tensors are bold Greek (e.g., \( \tau \)). Magnitudes of vectors and tensors are denoted usually by the corresponding italic letter (e.g., \( v \) or \( \tau \)), and vector and tensor components are represented using subscripted italics (e.g., \( v_x \) or \( \tau_{yx} \)). Natural and base-10 logarithms are written as “ln” and “log,” respectively.

**ROMAN LETTERS**

- **A**: Surface area or cross-sectional area.
- **Ar**: Archimedes number.
- **Bo**: Bond number.
- **C_D**: Drag coefficient [Eq. (3.2-1)].
- **C_f**: Friction factor or drag coefficient for a flat plate [Eq. (3.2-13)].
- **Ca**: Capillary number.
- **D**: Diameter (also \( d \)).
- **D_H**: Hydraulic diameter [Eq. (2.4-1)].
- **e_i**: Unit vector associated with coordinate \( i \).
- **E_c**: Rate of mechanical energy loss due to compression [Eq. (11.4-2)].
- **E_v**: Rate of mechanical energy loss due to viscous dissipation [Eq. (11.4-3)].
- **f**: Friction factor for a tube or other conduit [Eq. (2.2-4)].
- **F_D**: Drag force.
- **F**: Force vector.
- **F_0**: Force due to static pressure variations.
- **F_B**: Net buoyancy force, \( F_0 - F_G \).
- **F_G**: Gravitational force.
- **F_P**: Pressure force.
- **F_p**: Flow-dependent part of pressure force.
- **F_r**: Viscous force.
- **F_r**: Froude number.
- **g**: Gravitational acceleration vector.
- **G**: Torque vector.
- **h**: Height (usually).
- **k**: Wall roughness parameter (usually) or Darcy permeability (Chapter 3).
- **K_i**: Loss coefficient for event or device \( i \) [Eq. (12.3-1)].
- **L**: Length as a dimension.
List of symbols

$L$ Object length or characteristic length.
$L_E$ Entrance length for tubes or other conduits.
$m$ Mass.
$M$ Mass as a dimension.
$Ma$ Mach number.
$n$ Unit vector normal to a surface, directed outward from a control volume or from phase 1 to phase 2.
$P$ Absolute or thermodynamic pressure.
$\Phi$ Dynamic pressure (also called modified pressure or equivalent pressure).
$q$ Volume flow rate per unit width in two-dimensional flows.
$\dot{Q}$ Volume flow rate.
$r$ Position vector.
$R$ Radius (usually) or universal gas constant (Sections 1.2, 12.4, and 12.5).
$Re$ Reynolds number.
$s$ Stress vector.
$S$ Surface area.
$t$ Time.
$t$ Unit vector tangent to a surface.
$T$ Absolute temperature.
$T$ Time as a dimension.
$u$ Interfacial velocity (Chapter 6), turbulent velocity fluctuation (Chapter 10), or control-surface velocity (Chapter 11).
$u_r$ In boundary-layer flows, the outer velocity evaluated at the surface (Chapters 9 and 10).
$u_*$ Characteristic velocity, usually a mean fluid velocity or particle velocity.
$v_b$ Superficial velocity [Eq. (3.4-1)].
$v$ Fluid velocity.
$V$ Volume (usually) or velocity.
$w$ Mass flow rate (Chapters 11 and 12).
$\omega$ Vorticity vector.
$W_m$ Rate of work done on a system by moving surfaces (shaft work).

GREEK LETTERS

$\alpha$ Contact angle at a three-phase contact line.
$\beta$ At a contraction or expansion, the smaller diameter divided by the larger one.
$\delta$ Boundary-layer thickness (usually).
$\delta_{ij}$ Kronecker delta [Eq. (A.3-6)].
$\delta$ Identity tensor.
$\Delta$ Difference along the direction of flow (downstream value minus upstream value) or differential change.
$\varepsilon$ Volume fraction of fluid (void fraction) in porous media or packed beds.
$\varepsilon_{ijk}$ Permutation symbol [Eq. (A.3-15)].
$\phi$ Volume fraction of solids in porous media (Chapter 3) or velocity potential (Chapters 5 and 9).
$\Gamma$ Rate-of-strain tensor [Eq. (6.5-1)].
$\gamma$ Surface tension (usually) or heat-capacity ratio [Eq. (12.4-1)].
$\mu$ Viscosity.
List of symbols

ν  Kinematic viscosity, \( \mu / \rho \).
ρ  Density.
σ  Total stress tensor.
τ  Viscous stress tensor.
\( \tau_w \) Shear stress at a wall or other solid surface (also \( \tau_0 \)).
Ω  Vorticity tensor [Eq. (6.5-3)].
ψ  Stream function.

SPECIAL SYMBOLS

\( D / Dt \)  Material derivative, \( \partial / \partial t + \mathbf{v} \cdot \nabla \).
\( \nabla \)  Gradient operator.
\( \nabla^2 \)  Laplacian operator, \( \nabla \cdot \nabla \).
\( \sim \)  Order-of-magnitude (OM) equality.