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1 Introduction

The perfect crystal structure is an idealization of the atomic arrangements in real crystalline

materials. After a brief introduction of several common perfect crystal structures, we start our

study of imperfections in crystals with some remarks about why so much attention is focused

on these defects. The central reason is that perfect crystals, without imperfections, would be

relatively uninteresting materials, without most of the useful properties with which we are all

familiar. We consider some of the physical properties that crystals would have or not have if they

were perfect. Through this thought experiment, we show that most of the useful engineering

properties of crystalline materials are defect controlled and thus depend on the properties and

behavior of imperfections.

1.1 Perfect crystal structures

1.1.1 Single crystals and polycrystals

The word “crystal” usually brings to mind large mineral (e.g. quartz) blocks on display in

museums, or the shiny diamond on a wedding ring. Their faceted surfaces and often distinct

geometric shape give rise to a sense of beauty not found in other more “common” materials.

As an example, Fig. 1.1a shows a photograph of a ruby crystal. However, crystalline materials

are easily found in our everyday life. In fact, most engineering materials are crystalline. Metals,

semiconductors, and ceramics are all crystalline materials, even though they may not have

faceted surfaces.

The distinction between a large ruby crystal and an engineering metallic alloy is that the

former is a single crystal and the latter is usually a polycrystal. A polycrystal is an aggregate

of many small single crystals (called grains), each with a diferent orientation. As an example,

Fig. 1.1b shows a micrograph of a nickel-based superalloy (where the word “super” refers to

its superior mechanical properties). The size of each single crystal grain in this superalloy is

on the order of 10 to 100 micrometers (µm), too small to be seen by the naked eye. That is

why the shape of a piece of metal does not seem faceted to the eye; the facets can be observed

with the aid of a microscope.
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Figure 1.1. (a) A ruby single crystal (Al2O3 doped with Cr
3+ ions). (b) Electron back-scatter difraction map

of a polycrystalline Ni-based superalloy, with a stereographic triangle showing the orientations of the diferent
grains. Courtesy ofMichael D. Uchic,Materials andManufacturingDirectorate, Air Force Research Laboratory,
and used with permission. For clarity see color igures on the book website.

If we examine crystalline materials at a length scale smaller than individual grains, then a

superalloy and a ruby crystal have something in common. The atoms inside each single crystal

grain are arranged in an impressively ordered, periodic array. The distance between each atom

and its nearest neighbors are nearly the same everywhere in the crystal. Furthermore, there is

long-range order in each crystal grain, meaning that if we know the local orientation of a cluster

of atoms at one side of the grain, we can accurately predict the local orientation of another

cluster of atoms at the other side of the grain, even if the two clusters may be millions of atomic

distances apart. Such long-range order is unique in crystalline solids, and is not present in non-

crystalline (i.e. amorphous) solids such as glass or typical polymers (plastics). It is certainly

lacking in luids (except liquid crystals).

Themathematical idealization to describe the long-range order in crystals is the perfect crystal

structure. In the following, we describe a few common perfect crystal structures. The description

here is meant to be elementary and readers knowledgeable of perfect crystal structures andMiller

indices notation may skip on to Section 1.2. However, it should be emphasized that real crystals

deviate from this idealization due to the presence of various types of defects, to be introduced

later in this chapter. For more discussion of the lattice and crystal structures see [1].

1.1.2 Cubic crystals with simple basis

Simple cubic crystals
The simplest way to construct a perfect crystal structure is to irst imagine a simple cubic lattice

and then place the same type of atom at every lattice point. The result is a simple cubic crystal

structure, as shown in Fig. 1.2.
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Figure 1.2. A perfect simple cubic crystal structure.

The location of all lattice points can be described by the following expression,

�R = a(uêx + vêy + wêz), (1.1)

where a is the lattice constant, u, v, w are arbitrary integers, and êx, êy, êz are unit vectors along
the x, y, and z axes. Therefore, any vector or line direction connecting lattice points (i.e. crystal-
lographic directions) can be speciied by three integers.1 In theMiller indices notation, the three
numbers, u, v, w, are surrounded by square brackets. For example, [2 3 4] (reads “two three-bar

four”) represents the vector (2êx − 3êy + 4êz), where it is customary to write the minus sign as a

bar on top of the number. Therefore, every point in the simple cubic lattice can be represented

by Miller indices as

�R = a[u v w]. (1.2)

Angular brackets are used to represent a family of directions that have the same length and are

related by symmetry (e.g. relection). For example, 〈2 3 4〉 represents the family of directions:

[2 3 4], [2 3 4], [2 3 4], [2 3 4], [2 3 4], . . . .

Miller indices can also be used to represent the crystallographic planes. These indices are

found by irst determining the intercepts that the planes make with the crystallographic axes,

dividing each by the lattice constant along that axis, taking the reciprocals and, if necessary, mul-

tiplying all of the resulting quantities by the smallest integer to remove any fractions that may

have been created. This creates a set of integer Miller indices, h, k, l , for the plane in question,

commonly surrounded by parenthesis (h k l ). With this notation any crystallographic plane in

a cubic solid can be described by the linear equation hx + ky + l z = a. The normal vector

extending from the origin to the plane in question is then a[h k l ]/(h2 + k2 + l 2); thus the
crystallographic direction [u v w] is perpendicular to the plane (h k l ) if u = h, v = k, w = l .
That is, crystallographic directions and planes with the same indices are perpendicular to each

other in the cubic crystal system. In addition, it can be shown that the perpendicular distance

from the origin to the plane can be expressed as

dhkl =
a

√
h2 + k2 + l 2

, (1.3)

which is the spacing between such crystallographic planes. For crystallographic planes, braces

are used to represent a family of planes related by symmetry. For example, {2 3 4} represents the
family of planes: (2 3 4), (2 3 4), (2 3 4), (2 3 4), (2 3 4), . . . .

1 These numbers may also be fractional numbers for lattices other than the simple cubic lattice.
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Figure 1.3. (a) The unit cell of a simple cubic lattice. (b) The unit cell of a face-centered cubic (FCC) lattice.
(c) The unit cell of a body-centered cubic (BCC) lattice [2].

It is common to deine three lattice vectors �a = aêx, �b = aêy, �c = aêz, which are the vectors

connecting a lattice point to its neighbors. For the simple cubic lattice, �a, �b, �c are orthogonal
to each other, and all have the same length. These three vectors can be used to construct a cell,

which is a cube for the simple cubic lattice, as shown in Fig. 1.3a. In every three-dimensional

lattice, we can ind such a representative cell that, when repeated, spans all space with no gaps.

The smallest possible cell of this type is called the primitive cell ; each primitive cell contains only

one lattice point. However, the lattice is often represented by the unit cell, which may have a

larger volume than the primitive cell, and hence may contain more than one lattice point. The

unit cell is chosen to show the symmetry of the lattice more clearly. For the simple cubic lattice,

the unit cell is the same as the primitive cell, which is a cube with lattice points occupying the

corners of the cube, as shown in Fig. 1.3a.

It is useful to compute the average volume occupied by each lattice point in the simple cubic

lattice, which is the same as the average volume occupied by each atom in the simple cubic

crystal structure. Figure 1.3a shows that each unit cell is associated with eight lattice points.

However, each lattice point is also shared by eight neighboring unit cells. Therefore, each unit

cell contains 8 × 1
8

= 1 lattice point, and the average volume per lattice point is

�simple cubic =
a3

8 × 1
8

= a3. (1.4)

Face-centered cubic crystals
While a simple cubic crystal structure is easy to imagine, it is rare to ind a crystal in nature with

that structure. The most common crystal structures in engineering materials are based on the

face-centered cubic (FCC) lattice and the body-centered cubic (BCC) lattice.

The FCC lattice can be visualized by its unit cell, shown in Fig. 1.3b. In addition to placing

a point at each of the eight corners of the cube, we also place a point at the center of each of

the six faces of the cube. Mathematically, every lattice point in an FCC lattice is given by one

of the following expressions in terms of Miller indices:

�R = a[u v w]

�R = a[u + 0.5 v + 0.5 w]
(1.5)

�R = a[u + 0.5 v w + 0.5]

�R = a[u v + 0.5 w + 0.5].

Gold (Au), silver (Ag), aluminum (Al), and copper (Cu) are all FCC metals.
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1.1 PERFECT CRYSTAL STRUCTURES 5

Figure 1.3b shows that each FCC unit cell is associated with eight lattice points at the corners

and six lattice points at the face centers. However, each corner point is shared by eight neighbor-

ing unit cells and each face center point is shared by two neighboring unit cells. Therefore, each

unit cell contains 8 × 1
8

+ 6 × 1
2

= 4 lattice points, and the average volume per lattice point is

�FCC =
a3

8 × 1
8

+ 6 × 1
2

=
a3

4
. (1.6)

This is also the average volume occupied by each atom in the FCC crystal structure. Because

the unit cell of the FCC lattice contains more than one lattice point, it is not the primitive cell.

The primitive cell of the FCC lattice is a parallelpiped with edges formed by vectors: a
2
[1 1 0],

a
2
[1 0 1], a

2
[0 1 1]. The cubic symmetry of the FCC lattice is not immediately apparent from its

primitive cell.

Body-centered cubic crystals
The unit cell of the BCC lattice is shown in Fig. 1.3c, where a point is placed at the center of

the cube, in addition to the eight corners of the cube. Mathematically, the lattice points in a

BCC lattice are given by one of the following relations:

�R = a[u v w]
(1.7)

�R = a[u + 0.5 v + 0.5 w + 0.5].

Tungsten (W), molybdenum (Mo), and tantalum (Ta) are BCC metals. Pure iron (Fe) is also a

BCC metal at room temperature.2

Figure 1.3(c) shows that each BCC unit cell is associated with eight lattice points at the

corners and one lattice point at the body center. While each corner point is shared by eight

neighboring unit cells, the point at the body center is not shared with any other unit cells.

Therefore, each unit cell contains 8 × 1
8

+ 1 = 2 lattice points, and the average volume per

lattice point is

�BCC =
a3

8 × 1
8

+ 1
=

a3

2
. (1.8)

This is also the average volume occupied by each atom in the BCC crystal structure. Because the

unit cell of the BCC lattice contains more than one lattice point, it is not the primitive cell. The

primitive cell of the BCC lattice is a parallelpiped with edges formed by vectors: a[1 1 1]/2,
a[1 1 1]/2, a[1 1 1]/2. The cubic symmetry of the BCC lattice is not immediately apparent

from its primitive cell.

The SC, FCC, and BCC lattices, as speciied by Eq. (1.2), Eq. (1.5), and Eq. (1.7), respec-

tively, are three types of lattices with diferent symmetries. The symmetries of ininite, periodic

lattices were studied by Auguste Bravais, and these lattices are called Bravais lattices. In three

dimensions, there are only 14 distinct types of Bravais lattices, which are classiied into seven

lattice systems [3]. The three lattices (SC, FCC, BCC) introduced here form the cubic lattice

system. The hexagonal lattice to be introduced in Section 1.1.4 forms its own (hexagonal) lattice

system.

2 However, Fe changes to the FCC structure at high temperature, and common stainless steel (an
iron–nickel–chromium alloy) also has an FCC structure.
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a a

Figure 1.4. (a) The unit cell of the diamond cubic crystal structure. (b) The unit cell of the Zincblende crystal
structure. The light and dark spheres represent atoms of two diferent chemical species. In both (a) and (b), the
separation between the two atoms in the basis is a

4
[1 1 1].

1.1.3 Cubic crystals with complex basis

The crystal structures we have considered so far can be obtained by placing one and the same

type of atom at every point of a given lattice. A multi-atom “motif ” or “tiling” can be introduced

at every lattice point to create more complex crystal structures. Therefore, even though there

are only 14 diferent types of 3D Bravais lattices, the number of possible crystal structures is

ininite.

The atomic “motif ” placed at each lattice point is called the basis of the crystal structure. The
basis can be arbitrarily chosen, but exactly the same basis must be placed on every lattice point

(no rotation or changing of chemical species is allowed).

For example, a diamond (on a wedding ring) has the diamond cubic (DC) structure, which

is created by placing a two-carbon basis at each lattice point of the FCC lattice. Elemental

semiconductors such as silicon (Si) and germanium (Ge) have the DC structure. The unit cell

of the DC structure is shown in Fig. 1.4a.

Because the DC structure has a two-atom basis, the average volume occupied by each atom

in the DC structure is half of that in the FCC structure of the same lattice constant, i.e.

�DC =
�FCC

2
=

a3

8
. (1.9)

Closely related to the DC structure is the Zincblende structure, which is the structure of

many Group III–V and II–VI compound semiconductors, such as GaAs, InP, ZnSe, CdTe, etc.

The Zincblende structure is formed by placing a basis consisting of two diferent atoms, such

as Ga and As, at every lattice point of the FCC lattice. The unit cell of the Zincblende structure

is shown in Fig. 1.4b. Because FCC, DC, and Zincblende crystal structures are all based on the

FCC lattice, the types of dislocations (line defects) in these types of crystals are very similar (see

Chapter 12).

The sum of the average volume of the two atomic species in the Zincblende structure, e.g.

Ga and As, equals the average volume occupied by each lattice point in the FCC lattice, i.e.

�Ga + �As = �FCC =
a3

4
. (1.10)

However, the individual contribution of �Ga and �As can only be determined by the volume

change of the crystal when the mole fraction of Ga and As deviates from the perfect value (50%),

i.e. when defects are introduced to the crystal. This will be discussed in Chapter 6.
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Figure 1.5. (a) The unit cell of the B2 (CsCl) crystal structure. (b) The unit cell of the L12 (Cu3Au) crystal
structure.

Intermetallic compounds are other types of crystals withmulti-atom bases. For example, NiAl

has the so-called B2 structure, which is also the structure of CsCl and FeAl. It is obtained by

placing a Ni–Al basis at each lattice point of the simple cubic lattice. One atom (say Ni) is placed

on the corner of the cube, and the other atom (say Al) is placed at the cube center. The unit cell

of the B2 structure is shown in Fig. 1.5a. Note that the B2 structure does not have the BCC

lattice, because we are not allowed to place diferent types of atoms on equivalent lattice points.

The average volumes occupied by each Ni atom and Al atom in the NiAl (B2) crystal structure

satisfy the relation

�Ni + �Al = �SC = a3. (1.11)

Ni3Al has the so-called L12 structure, which is also the structure of Cu3Au and Fe3Al. It is

obtained by placing a four-atom basis (three Ni and one Al) at each lattice point of the simple

cubic lattice. The three Ni atoms are placed at the face centers of the cube, and the Al atom is

placed at the corner of the cube. The unit cell of the L12 structure is shown in Fig. 1.5b. The

L12 structure does not have the FCC lattice, for the same reason that the B2 structure does not

have the BCC lattice. The average volumes occupied by each Ni atom and Al atom in the Ni3Al

(L12) crystal structure satisfy the relation

3�Ni + �Al = �SC = a3. (1.12)

1.1.4 Hexagonal close-packed structure

The hexagonal close-packed (HCP) crystal structure also has a multi-atom basis. Furthermore,

it has a hexagonal lattice, instead of a cubic lattice. The unit cell of the hexagonal lattice is shown
in Fig. 1.6a.

The lattice points of the hexagonal lattice can be described by the relation

�R = i�a + j�b+ k�c, (1.13)

where i, j, k are arbitrary integers. This is similar to the expression for the simple cubic lattice.

The diference here is that the lattice repeat vectors �a and �b are at 120◦ relative to each other,

and �c does not have the same length as �a and �b. Vectors �a and �b still have the same length,

and vector �c is perpendicular to both �a and �b. The basis of the HCP crystal structure contains

two atoms of the same chemical species. The unit cell of the HCP crystal structure is shown in
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Figure 1.6. (a) The hexagonal lattice, whose unit cell is outlined by thick lines. (b) The hexagonal close-packed
(HCP) crystal structure, whose unit cell is outlined by thick lines. One of the two atoms in the basis occupies
the lattice point. The other atom in the basis lies immediately above the center of the triangle formed by three
lattice points below.

Fig. 1.6b. Magnesium (Mg), titanium (Ti), zinc (Zn), and cobalt (Co) are some of the HCP

metals.

The average volume occupied by each lattice point in the hexagonal lattice is

�hex. latt. =
√
3

2
a2c, (1.14)

where a = |�a| = |�b|, and c = |�c|. The average volume occupied by each atom in theHCP crystal

structure is half of that,

�HCP =
�hex. latt.

2
=

√
3

4
a2c. (1.15)

The HCP crystal structure is closely related to the FCC crystal structure. Both FCC and

HCP crystal structures are close-packed structures, meaning that they provide the maximum

packing density if we imagine packing hard spheres of uniform radius into a pile. When an

FCC crystal is viewed along the cubic diagonal direction n̂ = 1√
3
[1 1 1], it can be considered

as three types of triangular lattices A, B, C , stacked on top of each other in the sequence of

ABCABC . . . (see Section 11.1). If the stacking sequence is changed to ABABAB . . . , we get

the HCP crystal structure instead (see Section 11.2.2). Therefore the FCC and HCP crystal

structures can be transformed to each other by shear deformation.

1.2 Defect-controlled properties of crystals

While the perfect crystal structure captures the long-range order that exists in crystals, it would

be a mistake to think of a real crystal as a collection of atoms located exactly according to

the perfect crystal structure. Deviation from the perfect structure, i.e. imperfections, are vital

to the physical, chemical, and electronic properties of the crystal. In order to emphasize the

imperfection of real crystals, J. Frenkel in the opening chapter of his classic book, Kinetic Theory
of Liquids, argues that crystalline solids actually have a lot in common with liquids (except for

the long-range order, of course). In this section, we imagine how a crystal would behave if all

atoms were located at their perfect crystal positions.
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Figure 1.7. Band gap engineering – controlling the electronic band gaps in semiconductors by controlling the
composition (point defect concentration). Band gap energy and lattice constant of various III–V semiconduc-
tors at room temperature. Figure adapted from one kindly provided by Professor James S. Harris of Stanford
University and used with permission.

Consider an absolutely perfect crystal with all of the atoms sitting exactly on their respective

lattice points, such as the one shown in Fig. 1.2, and all of the electrons in their lowest energy

states. In such a perfect crystal there would be no lattice vibrations or phonons and thus no

thermal conductivity. Nor would there be any heat capacity, as the constituent atoms would

not be able to store thermal energy in their vibrations.

In addition, for such a perfect crystal, there would be no way to accomplish compositional

changes by difusion because there would be no atomic point defects. This would prevent us

from making transistors by difusion of dopants into silicon or do any other kind of alloying by

solid-state difusion.

Solid solution alloys are also needed for band gap engineering, which leads to semiconductor

compounds with diferent electronic band gaps. As shown in Fig. 1.7, various Group III–V semi-

conductors (with Zincblende crystal structure, see Section 1.1.3) have diferent lattice constants

as well as diferent band gaps. The band gap is the energy diference of the electrons between

the top of the (illed) valance band and the bottom of the (empty) conduction band. The band

gap is directly related to the wavelength of the light that the semiconductor can absorb or emit.

By mixing two diferent semiconductors, e.g. GaAs and InAs, thus creating an imperfect crystal,

the lattice constant of the crystal can be tuned between the two limits. The elastic strain on the

lattice is coupled to the electronic band structure so that the band gap can also be tuned. The

lattice constant and band gap of the impure crystal formed by mixing GaAs and InAs follow

the curve connecting GaAs and InAs in Fig. 1.7. Band gap engineering enables, for example,

the development of lasers at speciic wavelengths for which the absorption in an optical iber or

in air is particularly low. Band gap engineering is made possible only by imperfect crystals.

If we only have perfect crystals to work with, it would not be possible to plastically deform a

metal, preventing metal forming, and making it all but impossible to make such things as trains,

tractors, airplanes, automobiles, and so on. Such perfect materials would be extremely strong but
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Na
+ Cl

e

Figure 1.8. F-center in a NaCl crystal.

you could never change their shape by plastic deformation because crystal dislocations would

not exist.

You would also not have transformers for changing voltage and current in everyday applica-

tions. Transformer cores depend on easy magnetization and demagnetization by the movements

of defects in the magnetic structure of the crystals in the cores.

These are but a few examples of the useless properties that crystalline materials would have if

they were composed of perfect crystals. Virtually all of the interesting properties that crystalline

materials display arise from imperfections.

The control of imperfections in crystalline materials lies at the heart of materials science.

Indeed, the very deinition of materials science can be stated as: the synthesis of useful engineering
materials and the control of their properties through the control of composition and microstruc-
ture. For crystalline materials the control of microstructure involves the control of crystal

imperfections.

It is also worth noting that the most technologically important properties of crystalline mate-

rials are defect controlled. While elasticity does not involve defects, strength and plasticity do

and so do most of the other engineering properties of interest.

Although one does not usually think of color as a property that can be controlled, for ceramic

crystals color is very much defect controlled. Consider corundum or Al2O3, which is colorless

in its pure state. We call this sapphire. If just 1% of the Al atoms in the crystal lattice are replaced

by Cr atoms we have a red crystal called ruby. Alternatively, if 1% of the Al atoms are replaced

by Ti or Fe atoms we have a blue crystal called blue sapphire.

Another example involves the color of alkali halide crystals, like KCl and NaCl. When these

crystals are pure and relatively perfect they are colorless. By shining X-rays onto these crystals,

lattice defects called F-centers,3 which are anion (Cl−) vacancies containing a trapped electron,

are created (see Fig. 1.8). Such defects cause KCl to turn blue and NaCl to turn yellow. The

color is controlled by the energy level of the electron that is trapped in the vacancy. Thus the

color of ceramic crystals can be controlled by the control of atomic point defects.

Even though defects control most of the important properties of crystalline materials, typi-

cally only a very tiny fraction of all of the atoms in the crystal are involved in defects. Further-

more, defects must be well separated in the crystal lattice in order to have individual properties

3 The F stands for Farbe (German for color), so that F-center is also called color center.
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