Contents

Preface
ix

1 **Auxiliary results**
1.1 Introduction
1.2 The rank of a matrix product
1.3 Compound matrices and Jacobi’s theorem
1.4 Singular value decomposition
1.5 Joint diagonalization of hermitian matrices
1.6 Sylvester’s law of inertia
1.7 Row and column-reduced polynomial matrices
1.8 Some key results in the theory of equations
1.9 Optimality and the classical Riccati equation
1.10 Appendix
1.11 References
1

2 **Transforms and passivity**
2.1 Description
2.2 Transforms
2.3 Passive 1-ports
2.4 Properties of positive-real functions
2.5 References
29

3 **Some classical passive 1-port synthesis**
3.1 Preliminary mathematical background
3.2 Brune synthesis
3.3 Transformerless Bott–Duffin synthesis
3.4 A broader proof of Corollary 1 of Theorem 3
3.5 References
43

4 **Tellegen’s Theorem and 2-element 1-ports**
4.1 The RCLM and Tellegen’s Theorem
76
Contents

4.2 Lossless passive 1-ports 79
4.3 Scaling and other 2-element 1-ports 96
4.4 Magnetic coupling and 2-winding transformers 102
4.5 References 107

5 Elements of filters and reactance-ladders 108
5.1 Fundamentals of insertion-loss filter design 108
5.2 Reactance-ladders 116
5.3 Low-pass reactance-ladders 125
5.4 Concluding remarks 142
5.5 References 143

6 Passive n-ports 144
6.1 Foundations 144
6.2 Operational significance of $S(s)$ 154
6.3 The McMillan degree of a rational matrix 159
6.4 Gyrators and reciprocity 172
6.5 References 176

7 Procedures of passive n-port synthesis 177
7.1 Counting reactances, resistances, and gyrators 177
7.2 Factorizing parahermitian-positive matrices 180
7.3 n-port synthesis via resistance extraction 194
7.4 Paraunitary matrices 219
7.5 Non-tight embeddings 226
7.6 n-port synthesis via reactance extraction 240
7.7 Numerical considerations 254
7.8 n-port synthesis via gyrator extraction 265
7.9 Auxiliary techniques 279
7.10 References 288

8 Basic design of reactance 2-ports 289
8.1 The Belevitch description of a reactance 2-port 289
8.2 Darlington equivalents 293
8.3 Symmetric and antimetric filters 297
8.4 References 309

9 Cascade synthesis of passive 1-ports 310
9.1 Transmission zeros of a p.r. function 310
9.2 On the extraction of transmission zeros 313
9.3 Designing with the indices of $\tau(s)$ 326
9.4 Overview 331
9.5 References 332

10 A theory of broadband matching 333
10.1 Fundamentals 333
10.2 Single broadband matching 337
10.3 Double broadband matching 352
10.4 Numerical interlude 368
10.5 The restrictions in integral form 371
10.6 References 383

11 Stability and complex normalization 384
11.1 The role of stability 384
11.2 Stability and steady-state 392
11.3 Complex normalization 393
11.4 Measuring the elements of $S(j\omega)$ 395
11.5 The concept of exchangeable power 400
11.6 References 401

12 Design of passive multiplexers 402
12.1 The standard configuration 402
12.2 Standard magnitude and phase multiplexers 408
12.3 The general case 412
12.4 Reactance-ladder diplexers 421
12.5 Optimal reactance-ladder diplexer design 422
12.6 Concluding remarks 428
12.7 References 428

13 Selected topics 429
13.1 All-s normalization 429
13.2 Special results 436
13.3 Bisection of symmetric and antymmetric filters 439
13.4 2-port synthesis from partial data 448
13.5 Compatible impedances 455
13.6 The Garloff–Wagner (GW) Theorem 466
13.7 Addenda 477
13.8 References 480

14 Multiconductor TEM transmission lines 481
14.1 Introduction 481
14.2 Analytical formulation 481
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3</td>
<td>The telegrapher’s equations</td>
<td>486</td>
</tr>
<tr>
<td>14.4</td>
<td>The TEM line transducer</td>
<td>489</td>
</tr>
<tr>
<td>14.5</td>
<td>Decoupling the telegrapher’s equations</td>
<td>494</td>
</tr>
<tr>
<td>14.6</td>
<td>Transient performance</td>
<td>497</td>
</tr>
<tr>
<td>14.7</td>
<td>Appendix</td>
<td>516</td>
</tr>
<tr>
<td>14.8</td>
<td>References</td>
<td>523</td>
</tr>
<tr>
<td>15</td>
<td>The ideal TEM 2-port</td>
<td>525</td>
</tr>
<tr>
<td>15.1</td>
<td>Preliminaries</td>
<td>525</td>
</tr>
<tr>
<td>15.2</td>
<td>Commensurate 2-port ideal TEM-line synthesis</td>
<td>528</td>
</tr>
<tr>
<td>15.3</td>
<td>Design of TEM-line transformers and filters</td>
<td>535</td>
</tr>
<tr>
<td>15.4</td>
<td>The quest for optimal power gains</td>
<td>538</td>
</tr>
<tr>
<td>15.5</td>
<td>Key properties of Tchebycheff polynomials</td>
<td>541</td>
</tr>
<tr>
<td>15.6</td>
<td>The LLN-ideal TEM-line τ-cascade</td>
<td>552</td>
</tr>
<tr>
<td>15.7</td>
<td>Appendix</td>
<td>563</td>
</tr>
<tr>
<td>15.8</td>
<td>References</td>
<td>570</td>
</tr>
<tr>
<td>16</td>
<td>Single frequency n-port geometry</td>
<td>571</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>571</td>
</tr>
<tr>
<td>16.2</td>
<td>n-port tuning via 2n-port embedding</td>
<td>573</td>
</tr>
<tr>
<td>16.3</td>
<td>Geometry of the cross-ratio matrix</td>
<td>576</td>
</tr>
<tr>
<td>16.4</td>
<td>Canonic forms</td>
<td>580</td>
</tr>
<tr>
<td>16.5</td>
<td>Invariants of noisy linear n-ports</td>
<td>590</td>
</tr>
<tr>
<td>16.6</td>
<td>Overview</td>
<td>598</td>
</tr>
<tr>
<td>16.7</td>
<td>Appendix</td>
<td>603</td>
</tr>
<tr>
<td>16.8</td>
<td>References</td>
<td>606</td>
</tr>
<tr>
<td>17</td>
<td>Immittances of n-terminal networks</td>
<td>608</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>608</td>
</tr>
<tr>
<td>17.2</td>
<td>Analysis</td>
<td>609</td>
</tr>
<tr>
<td>17.3</td>
<td>Direct admittance measurement of Y</td>
<td>614</td>
</tr>
<tr>
<td>17.4</td>
<td>The indefinite loop impedance matrix</td>
<td>616</td>
</tr>
<tr>
<td>17.5</td>
<td>References</td>
<td>619</td>
</tr>
<tr>
<td>18</td>
<td>Two-state passive devices</td>
<td>620</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>620</td>
</tr>
<tr>
<td>18.2</td>
<td>Preliminaries</td>
<td>620</td>
</tr>
<tr>
<td>18.3</td>
<td>Analysis, lemmas, and theorems</td>
<td>621</td>
</tr>
<tr>
<td>18.4</td>
<td>Performance</td>
<td>628</td>
</tr>
<tr>
<td>18.5</td>
<td>Appendix: Derivation of (18.110)</td>
<td>637</td>
</tr>
<tr>
<td>18.6</td>
<td>References</td>
<td>638</td>
</tr>
</tbody>
</table>

Index: 639