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CHAPTER 1

Basic Concepts of Random Sets

In this chapter we lay the foundation for our analysis of econometric models

based on random set theory. In particular, we formally define random closed

sets and their distributions and connect these concepts with the corresponding

ones for random variables and random vectors.

1.1 RANDOM CLOSED SETS

Realizations of a Random Set

The first step in defining a random element is to describe the family of its

values. For a random set, the values will be subsets of a certain carrier space X,

which is often taken to be the Euclidean space Rd, but may well be different,

e.g., a cube in Rd, a sphere, a general discrete set, or an infinite-dimensional

space like the space of (say, continuous) functions. It is always assumed that X

has the structure of a topological space.

The family of all subsets of any reasonably rich space is immense, and

it is impossible to define a non-trivial distribution on it. In view of this, one

typically considers certain families of sets with particular topological proper-

ties, e.g., closed, compact, or open sets, or with some further properties, most

importantly convex sets. The conventional theory of random sets deals with

random closed sets. An advantage of this approach is that random points (or

random sets that consist of a single point, also called singletons) are closed,

and so the theory of random closed sets then includes the classical case of

random points or random vectors.

Denote by F the family of closed subsets of the carrier space X and by F

a generic closed set. Recall that the empty set and the whole X are closed and

so belong to F . The set F is closed if it contains the limit of each convergent

sequence of its elements, i.e., if xn ∈ F and xn → x as n → ∞, then the limit

x belongs to F. For a general set A ⊆ X, denote by cl(A) its closure – that is,

the smallest closed set that contains A. The complement of each closed set is

open.
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2 Basic Concepts

In the following, fix a probability space (Ω,A,P), where all random ele-

ments (and random sets) will be defined, so that Ω is the space of elementary

events equipped with σ-algebra A and probability measure P. For simplicity,

assume that the σ-algebra A is complete – that is, for all A ∈ A with P(A) = 0

and all A′ ⊂ A one has A′ ∈ A.

Measurability and Traps

A random closed set is a measurable map X : Ω �→ F . Its measurability is

defined by specifying the family of functionals of X that are random variables.

A possible idea would be to require that the indicator function 1u∈X (which

equals 1 if u ∈ X and equals 0 otherwise) is a stochastic process, i.e., each of

its values is a random variable. However, this does not work well for random

sets X that are “thin,” e.g., for X = {x} being a random singleton. For instance,

if x is a point in the Euclidean space with an absolutely continuous distribution,

then {u ∈ X} = {u = x} has probability zero, so the measurability condition of

the indicator function

1u∈X = 1x=u

does not impose any extra requirement on x (given that the underlying σ-

algebra A is complete). The same problem arises if X is a segment or a curve

in the plane.

Hence, a definition of measurability based on indicators of points is not

suitable for the purpose of defining a random closed set. Note that too strict

measurability conditions unnecessarily restrict the possible examples of ran-

dom sets. On the other hand, too weak measurability conditions do not ensure

that important functionals of a random set become random variables. The mea-

surability of a random closed set is therefore defined by replacing 1x∈X with the

indicator of the event {X∩K � ∅} for some test sets K. In other words, the aim

is to “trap” a random set X using a trap given by K. If K is only a singleton,

then such a trap can be too meager to catch a thin set, and so is replaced by

larger traps, being general compact sets. Let K be the family of all compact

subsets of X and let K be a generic compact set. In X = Rd, compact sets are

the closed and bounded ones.

Definition 1.1 A map X from a probability space (Ω,A,P) to the family F

of closed subsets of a locally compact second countable Hausdorff space X is

called a random closed set if

X−(K) = {ω ∈ Ω : X(ω) ∩ K � ∅} (1.1)

belongs to the σ-algebra A on Ω for each compact set K in X.

Many spaces of interest, most importantly the Euclidean space Rd and

discrete spaces, are locally compact second countable Hausdorff (see the

chapter notes for a short mathematical explanation of this property). Unless
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1.1 Random Closed Sets 3

X(ω)

Ω

Figure 1.1 Random interval as function of ω ∈ Ω.

stated otherwise, the carrier space X is assumed to be locally compact second

countable Hausdorff. Random closed sets in more general spaces are consid-

ered in Theorem 2.10. In the following, we mostly assume that the carrier space

X is the Euclidean space Rd with the Euclidean metric d(·, ·), norm ‖ · ‖, and

the Borel σ-algebra B(Rd).

Definition 1.1 yields that a random closed set is a measurable map from

the given probability space to the family of closed sets equipped with the σ-

algebra generated by the families of closed sets {F ∈ F : F ∩ K � ∅} for all

K ∈ K , where K denotes the family of compact subsets of X. In what follows,

ω is usually omitted, so that {X∩K � ∅} is a shorthand for {ω : X(ω)∩K � ∅}.

Random closed sets are usually denoted by bold capital letters X,Y, Z.

Figure 1.1 shows a random closed set (specifically, a random interval) as a

function of ω. The function X : Ω �→ F is an example of a set-valued function,

and X−(K) is said to be the inverse of X. In the same way it is possible to define

measurability of any set-valued function with closed values that does not have

to be defined on a probability space.

A random compact set is a random closed set that is compact with proba-

bility one, so that almost all values of X are compact sets. A random convex

closed set is defined similarly, so that X(ω) is a convex closed set for almost

all ω. An almost surely non-empty random convex compact set in Rd is often

called a random convex body.

Consider the random set X = [x,∞) on the real line (see Example 1.3) and

take K = {t} being a singleton. Then

{X ∩ K � ∅} = {x ≤ t}.

It is well known that for a random variable x, the measurability of the events

{x ≤ t} for all t is equivalent to the measurability of the events {x < t} for all t.

This is shown by approximation, namely

{x < t} =

∞
⋃

n=1

{

x ≤ t − n−1
}

.

A similar logic can be applied to random sets. The measurability of hitting

events for compact sets can be extended to hitting events for open sets and even

Borel sets. The ultimate property of such extension is the content of the Fun-

damental Measurability theorem (Theorem 2.10). Our topological assumptions
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4 Basic Concepts

on X (that it is locally compact second countable Hausdorff) guarantee that any

open set G can be approximated by compact sets, so that Kn ↑ G for a sequence

of compact sets Kn, n ≥ 1. Then

{X ∩G � ∅} =
⋃

n≥1

{X ∩ Kn � ∅} (1.2)

is a random event for each open set G. In one rather special case, the set G

is the whole space, say Rd, and {X ∩ Rd
� ∅} = {X � ∅} means that X is

non-empty. Furthermore, for any closed set F,

{X ⊆ F} = {X ∩ Fc
= ∅}

is also a measurable event, since the complement Fc is an open set.

Examples of Random Sets Defined by Random Points

Example 1.2 (Random singleton) Random elements in X are defined as mea-

surable maps from (Ω,A,P) to the space X equipped with its Borel σ-algebra

B(X). Then the singleton X = {x} is a random closed set. Indeed,

{X ∩ K � ∅} = {x ∈ K} ∈ A

for each compact set K.

Example 1.3 (Random half-line) If x is a random variable on the real line

R, then the half-lines X = [x,∞) and Y = (−∞, x] are random closed sets on

X = R. Indeed,

{X ∩ K � ∅} = {x ≤ sup K} ∈ A,

{Y ∩ K � ∅} = {x ≥ inf K} ∈ A,

for each compact set K. This example is useful for relating the classical notion

of the cumulative distribution function of random variables to more general

concepts arising in the theory of random sets.

Example 1.4 (Random ball) Let X be equipped with a metric d. A random

ball X = By(x) with center x and radius y is a random closed set if x is a

random vector and y is a non-negative random variable. Then

{X ∩ K � ∅} = {y ≥ d(x,K)},

where d(x,K) is the distance from x to the nearest point in K. Since both y and

d(x,K) are random variables, it is immediately clear that {X ∩ K � ∅} ∈ A.

If the joint distribution of (x, y) depends on a certain parameter, we obtain a

parametric family of distributions for random balls.

Example 1.5 (Finite random sets) The set of three points X = {x1, x2, x3} is

a random closed set if x1, x2, x3 are random elements in X. Indeed,
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1.1 Random Closed Sets 5

{X ∩ K � ∅} =

3
⋃

i=1

{xi ∈ K} ∈ A.

It is also possible to consider a random finite set X formed by an arbitrary

number N of (possibly dependent) random elements in X. The cardinality N of

X may be a random variable. In this case it is typical to call X a finite point

process.

Example 1.6 (Random polytopes) A random triangle Y = ∆x1,x2,x3
obtained as

the convex hull of X = {x1, x2, x3} in Rd is also a random closed set. However,

it is difficult to check directly that Y is measurable, since it is rather cum-

bersome to express the event {Y ∩ K � ∅} in terms of the vertices x1, x2, x3.

Measurability will be shown later by an application of the Fundamental Mea-

surability theorem (Theorem 2.11 in the next chapter). Similarly, it is possible

to consider random polytopes that appear as convex hulls of any (fixed or

random) number of random points in the Euclidean space.

Example 1.7 (Finite carrier space) Let X be a finite set that is equipped with

the discrete metric meaning that all its subsets are closed and compact. Then

X is a random closed set if and only if {u ∈ X} is a random event for all u ∈ X.

Random Sets Related to Deterministic and Random Functions

Example 1.8 (Deterministic function at random level) Let f : Rd �→ R be a

deterministic function, and let x be a random variable. If f is continuous, then

X = {x : f (x) = x} is a random closed set called the level set of f .

If f is upper semicontinuous, i.e.,

f (u) ≥ lim sup
v→u

f (v) (1.3)

for all x, then Y = {u : f (u) ≥ x} is closed and defines a random closed set

(called the upper excursion set). Indeed,

{Y ∩ K � ∅} =
{

sup
u∈K

f (u) ≥ x
}

∈ A,

since x is a random variable. The distributions of X and Y are determined

by the distribution of x and the choice of f . Both X = f −1({x}) and Y =

f −1([x,∞)) can be obtained as inverse images. Note that f is called lower

semicontinuous if (− f ) is upper semicontinuous.

Example 1.9 (Excursions of random functions) Let x(t), t ∈ R, be a real-

valued stochastic process. If this process has continuous sample paths, then

{t : x(t) = c} is a random closed set for each c ∈ R. For instance, if x(t) =

zntn
+ · · · + z1t + z0 is the polynomial of degree n in t ∈ R with random

coefficients, then X = {t : x(t) = 0} is the random set of its roots.
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6 Basic Concepts

If x has almost surely lower semicontinuous sample paths, then the lower

excursion set X = {t : x(t) ≤ c} and the epigraph

Y = epi x = {(t, s) ∈ R ×R : x(t) ≥ s}

are random closed sets. For instance,

{X ∩ K � ∅} =
{

inf
t∈K

x(t) ≤ c
}

∈ A.

In view of this, statements about the supremum of a stochastic process

can be formulated in terms of the corresponding excursion sets. The same

construction works for random functions indexed by multidimensional argu-

ments. Lower excursion sets appear as solutions to inequalities or systems of

inequalities in partial identification problems (see Section 5.2).

Example 1.10 (Half-space) Let

X = {u ∈ Rd : y⊤u ≤ 1}

be a random half-space determined by a random vector y in Rd – that is, X

is the solution to a random linear inequality. We consider all vectors in Rd as

columns, so that

y⊤u =

d
∑

i=1

yiui

denotes the scalar product of y and u. Note that the right-hand side of the

inequality is set to 1 without loss of generality, since the scaling can be incor-

porated into y. This definition of X may be considered a special case of

Example 1.9 for the excursion set of a linear function. If A is a random matrix

and y is a random vector, then the solution of the random linear equations

{u ∈ Rd : Au ≤ y} is a random closed set.

Examples of Random Sets in Partial Identification

Example 1.11 (Random interval) Interval data is a commonplace problem

in economics and the social sciences more generally. Let Y = [yL, yU] be a

random interval on R, where yL and yU are two (dependent) random variables

such that yL ≤ yU almost surely. If K = [a, b], then

{Y ∩ K � ∅} = {yL < a, yU ≥ a} ∪ {yL ∈ [a, b]} ∈ A,

because yL and yU are random variables. If K ⊂ R is an arbitrary compact set,

then {Y ∩ K = ∅} if and only if Y is a subset of the complement of K. The

complement of K is the union of an at most countable number of disjoint open

intervals, so it suffices to note that {Y ⊂ (a, b)} = {a < yL ≤ yU < b} is a

measurable event.
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1.1 Random Closed Sets 7

Example 1.12 (Revealed preferences) Suppose that an individual chooses an

action from a finite ordered choice set D = {d1, d2, d3}, with d1 < d2 < d3, to

maximize her utility function, which for simplicity is assumed to equal

U(di) = −xi − ψdi,

where for i = 1, 2, 3, xi is a random variable, observable by the researcher,

which characterizes action di, and ψ ∈ Ψ ⊂ R is an individual-specific prefer-

ence parameter with Ψ a compact set. Then the values of ψ consistent with the

model and observed choices form a random closed set. To see this, note that, if,

for example, the individual chooses action d2, revealed preference arguments

yield

x2 − x3

d3 − d2

≤ ψ ≤
x1 − x2

d2 − d1

.

A similar argument holds for the case that the individual chooses d1 or d3.

Measurability follows from Example 1.11.

Example 1.13 (Treatment response) Consider a classic selection problem in

which an individual may receive a treatment t ∈ {0, 1} and let y : {0, 1} �→ Y

denote a (random) response function mapping treatments t ∈ {0, 1} into out-

comes y(t) ∈ Y, withY a compact set in R. Without loss of generality, assume

that minY = 0 and maxY = 1, so that Y contains both 0 and 1. Let z ∈ {0, 1}

be a random variable denoting the treatment received by the individual. The

researcher observes the tuple (z, y) of treatment received and outcome expe-

rienced by the individual and is interested in inference on functionals of the

potential outcome y(t), e.g., its expectation E(y(t)) or the distribution Py(t). For

z = t, the outcome y(t) = y(z) = y is realized and observable; for t � z the

outcome y(t) is counterfactual and unobservable. Hence, one can summarize

the information embodied in this structure through a random set

Y(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{y} if t = z,

Y if t � z.

Measurability for all compact sets K ⊆ Y follows because

{Y(t) ∩ K � ∅} = {y ∈ K, z = t} ∪ {Y ⊆ K, z � t} ∈ A.

One may observe that, when Y = [0, 1], this example is a special case of

Example 1.11, with yL = y1z=t and yU = y1z=t + 1z�t.

Example 1.14 (Binary endogenous variable in a binary model) Consider the

model

y1 = 1ℓ(y2)<u,

where ℓ(·) is an unknown function, y1, y2 are binary random variables taking

values in {0, 1}, the marginal distribution of the random variable u is uniform
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8 Basic Concepts

on [0, 1], but u’s distribution conditional on y2 is otherwise unrestricted. The

tuple (y1, y2) is observed, while u is unobserved. Then

U = U(y1, y2; ℓ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[ℓ(y2), 1] if y1 = 1,

[0, ℓ(y2)] if y1 = 0

is a random set that collects, for given y1, y2 and hypothesized function ℓ(·),

the values of u consistent with the model. In the definition of the function

U(y1, y2; ℓ), we used that P
{

u = ℓ(y2)
}

= 0 because u is uniformly distributed.

For given compact set K ⊂ R, we then have

{

U(y1, y2; ℓ) ∩ K � ∅
}

=

{

[ℓ(y2), 1] ∩ K � ∅, y1 = 1
}

∪
{

[0, ℓ(y2)] ∩ K � ∅, y1 = 0
}

.

Measurability follows from Example 1.11.

Example 1.15 (Entry game) Consider a two-player entry game where each

player j can choose to enter the market (y j = 1) or stay out of the market

(y j = 0). Let ε1, ε2 be two random variables, and let θ1 ≤ 0 and θ2 ≤ 0 be two

parameters. Assume that the players’ payoffs are given by

π j = y j(θ jy3− j + ε j), j = 1, 2.

Each player enters the game if and only if π j ≥ 0. Then, for given val-

ues of θ1 and θ2, the set of pure strategy Nash equilibria, denoted Yθ, is

depicted in Figure 1.2 as a function of ε1 and ε2. The figure shows that, for

(ε1, ε2) � [0,−θ1) × [0,−θ2), the equilibrium of the game is unique, while, for

(ε1, ε2) ∈ [0,−θ1) × [0,−θ2), the game admits multiple equilibria and the cor-

responding realization of Yθ has cardinality 2. An equilibrium is guaranteed to

exist because we assume θ1 ≤ 0, θ2 ≤ 0. To see that Yθ is a random closed set,

notice that, in this example, one can take X = {(0, 0), (1, 0), (0, 1), (1, 1)}, and

that all its subsets are compact (see Example 1.7). Then

{(0, 1)}

{(0, 0)} {(1, 0)}

{(0, 1), (1, 0)}

{(1, 1)}

ε2

ε1

–θ2

–θ1

Figure 1.2 The set of pure strategy Nash equilibria of a two-player entry game

as a function of ε1 and ε2.
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1.1 Random Closed Sets 9

{Yθ ∩ K � ∅} = {(ε1, ε2) ∈ GK} ∈ A,

where GK is a set determined by the chosen K. This set gives the val-

ues of (ε1, ε2) such that an equilibrium from K is feasible. For example, if

K = {(0, 0)}, then GK = (−∞, 0)× (−∞, 0). If K = {(1, 1)}, then GK = [θ1,∞) ×

[θ2,∞). Measurability follows because ε1 and ε2 are random variables.

Example 1.16 (English auction) Consider an English auction where M bid-

ders have continuously and independently distributed valuations ṽ1, . . . , ṽM of

an item conditional on auction characteristics z = z, with strictly increasing

cumulative distribution function denoted Fṽ(v|z). Suppose there is no min-

imum reserve price or minimum bid increment. Let v = (v1, . . . , vM) and

y = (y1, . . . , yM) denote respectively ordered valuations and ordered final bids

so that almost surely v1 ≤ v2 ≤ · · · ≤ vM and y1 ≤ y2 ≤ · · · ≤ yM . Note that yi

need not be the bid made by the bidder with valuation vi. In this example, the

random vector y is observable but the random vector v is not. Let ũ ∈ [0, 1]M

be M mutually independent uniform random variables with ũ independent with

z, and denote its order statistics u = (u1, . . . ,uM). By the strict monotonicity

of Fṽ(v|z) in v, ordered valuations can be expressed as functions of these uni-

form order statistics as vm = F
−1
ṽ (um|z), m = 1, . . . ,M. Assume that (1) no one

bids more than their valuations, and (2) no one allows an opponent to win at

a price they are willing to beat. It can be shown that these two assumptions

imply vm ≥ ym for all m and yM ≥ vM−1. We can express these conditions as

Fṽ(yM |z) ≥ uM−1, Fṽ(ym|z) ≤ um ∀ m ∈ {1, . . . ,M}.

The random vector u is supported on Ru, the orthoscheme of the unit M-cube

in which u1 ≤ u2 ≤ · · · ≤ uM . Given z = z, the collection of values for

(u1,u2, . . . ,uM) consistent with the observed vector of final bids and the model

is

U = U(y1, . . . , yM; Fṽ(·|z))

=

{

u ∈ Ru : Fṽ(yM |z) ≥ uM−1, Fṽ(ym|z) ≤ um ∀m ∈ {1, . . . ,M}
}

.

This is a random closed set, and measurability follows as a special case of

Example 1.10.

Example 1.17 (Confidence set) Suppose a researcher observes an i.i.d. sample

of random vectors x1, . . . , xn and is interested in a parameter vector θ ∈ Θ ⊆

Rd that determines the relationship between the variables of interest. Consider

a confidence set for θ defined as the level set of a non-negative sample criterion

function Tn(x1, . . . , xn; θ),

CSn =
{

θ ∈ Θ : Tn(x1, . . . , xn; θ) ≤ cn

}

,

with cn a properly chosen critical level. Suppose that Tn(x1, . . . , xn; ·) : Θ �→

R+ is lower semicontinuous. It follows from Example 1.9 that CSn is a random

closed set.
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10 Basic Concepts

Random Variables Associated with Random Sets

The imposed measurability definition implies that a number of important

functionals of X are random variables.

Example 1.18 (Norm) As a first example of such functionals, define the norm

of a non-empty set X in the Euclidean space Rd endowed with the Euclidean

norm ‖ · ‖ as

‖X‖ = sup
{

‖x‖ : x ∈ X
}

.

This definition allows for an infinite value of ‖X‖, which appears if X is not

bounded. In order to show that ‖X‖ is a random variable (with values in the

extended real line), note that

{‖X‖ ≤ t} = {X ⊆ Bt(0)} ∈ A

for all t ≥ 0, where Bt(0) is the closed ball of radius t centered at the origin. In

other words, ‖X‖ is the radius of the smallest centered (at the origin) ball that

contains X.

Example 1.19 (Support function) For given vector u ∈ Rd and random closed

set X, consider

hX(u) = sup{x⊤u : x ∈ X}, u ∈ Rd,

which is called the support function of X. The support function may take infi-

nite values: if X is empty, its support function is set to be −∞. The argument u

is often restricted to belong to the unit sphere in Rd,

S
d−1
= {u ∈ Rd : ‖u‖ = 1}.

To show that hX(u) is a random variable (with values in the extended real line),

note that, for all t ≥ 0,

{hX(u) ≤ t} = {X ⊆ Ht(u)} ∈ A,

where Ht(u) is the half-space defined as Ht(u) = {w : w⊤u ≤ t}.

Example 1.20 (Distance function) Another important random variable related

to random closed sets in Rd is the distance function d(u, X) given by the

infimum of the Euclidean distance between u ∈ Rd and points from X. Then

{d(u, X) ≤ t} = {X ∩ Bt(u) � ∅}

is a measurable event for all t ≥ 0, meaning that d(u, X) is a non-negative

random variable.
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