COST–BENEFIT ANALYSIS FOR PROJECT APPRAISAL

Written by two leading experts, this is a compact guide to the key tools and methods necessary to carry out cost–benefit analysis (CBA). The authors use modern economic tools to obtain general equilibrium cost–benefit rules that can be used to evaluate small projects, as well as large and even megaprojects. Intertemporal issues like discounting, the shadow price of capital, and the treatment of risk are covered, and a state-of-the-art summary of available methods for the valuation of unpriced commodities is also included. In addition, the book provides detailed expositions of the marginal cost of public goods (MCPF), the marginal excess burden of taxes (MEB), and second-best evaluation rules, and shows how these concepts are interrelated. The importance of undertaking due diligence in evaluations is highlighted. This is an excellent toolkit for graduate students learning about the principles of CBA, and is a useful guide for government officials and policy makers.

BENGT KRISTRÖM is Professor of Resource Economics and Head of the Department of Forest Economics at the Swedish University of Agricultural Sciences, Umeå. He has been a consultant to the Swedish Government and to the OECD on many occasions, and has been a member of the Prime Minister’s Commission on Sustainability and Chair of the Expert Group on Environmental Studies at the Ministry of Finance.
COST–BENEFIT ANALYSIS FOR
PROJECT APPRAISAL

PER-OLOV JOHANSSON AND BENGT KRISTRÖM
Let’s go to work
Contents

List of illustrations xi
List of tables xii
Preface xiii

1 Introduction 1

2 The basic cost–benefit (C–B) model 9
 2.1 A quick refresher course in micro 9
 2.2 Simple general equilibrium C–B rules 13
 2.3 Some further results 19
 2.4 Public goods and bads 21
 2.5 Non-use values 24
 2.6 Cross-border externalities 26
 2.7 Appendix: further derivations 28

3 Market distortions 31
 3.1 Monopoly 31
 3.2 Monopsony 33
 3.3 Taxes in general equilibrium 34
 3.4 The marginal cost of public funds and the excess burden of taxes 39
 3.5 Second-best evaluations and optimal taxes 42
 3.6 Permit markets 44
 3.7 Market imbalances 47
 3.7.1 Classical unemployment 47
 3.7.2 Keynesian unemployment 49
 3.7.3 On the (tiny) empirical evidence 50
 3.7.4 Excess demand in a market 52
 3.8 Appendix 54
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>3.8.1</td>
<td>Impact of price changes</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>3.8.2</td>
<td>Labor market constraints</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>Net present values, internal rates of return, and benefit–cost ratios</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>4.2</td>
<td>A brief introduction to optimal control theory</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
<td>A simple dynamic cost–benefit rule</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
<td>Social discount rate</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>On opportunity cost and shadow prices of capital</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>Timing of an investment</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>4.7</td>
<td>A useful discrete-time model</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>Appendix: the Inada–Uzawa condition</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>Nonrenewable resources</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>5.2</td>
<td>Renewable resources</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>Forestry</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>5.4</td>
<td>A dynamic CBA rule in the presence of an externality</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>On second-best solutions</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>Taylor series approximations</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>On Marshallian and Hicksian measures of consumer surplus</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>Large projects and line integrals</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>A simple illustration of the approach</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>6.5</td>
<td>On the properties of income-compensated measures</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>6.6</td>
<td>On the dangers of benefit transfers</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>6.7</td>
<td>Small might be large</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>Megaprojects and CGE models</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>6.9</td>
<td>Appendix</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>6.9.1</td>
<td>Line integrals</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>6.9.2</td>
<td>Expenditure functions</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>Social welfare functions</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>7.2</td>
<td>A few aggregation rules</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>7.3</td>
<td>Taxation</td>
<td>124</td>
</tr>
<tr>
<td>7</td>
<td>7.4</td>
<td>On practical approaches</td>
<td>127</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>On the approach to distribution in three major manuals</td>
<td>131</td>
</tr>
<tr>
<td>7</td>
<td>7.6</td>
<td>Appendix: measurability and comparability of utility</td>
<td>134</td>
</tr>
</tbody>
</table>
Contents

8 Appraisal in a risky world
 8.1 Some simple rules 137
 8.2 On the value of flexibility 141
 8.3 A simple illustration of the Black–Scholes model 143
 8.4 A stochastic cost–benefit rule 145
 8.5 The value of preventing a fatality 147
 8.6 On the risk of doomsday in CBA 151
 8.7 Evaluating disasters. A sketch 154
 8.8 Appendix 158
 8.8.1 Concavity and quasi-concavity 158
 8.8.2 A discrete-time random walk with drift 159
 8.8.3 L'Hôpital’s rule 159
 8.8.4 An illustration of a VPF function 160

9 Notes on estimation techniques 161
 9.1 Contingent valuation 162
 9.2 Conjoint analysis and discrete choice experiments 166
 9.3 The travel-cost model 169
 9.4 Hedonic models 173
 9.5 Weak complementarity and household production functions 176
 9.6 Benefit transfer 179
 9.7 Heterogeneity and aggregation 181
 9.8 Cost estimation 183
 9.9 Appendix: weak complementarity 187

10 A smörgåsbord of further topics 190
 10.1 On the empirical discount rate evidence 190
 10.2 Wider economic benefits 194
 10.3 The current approach versus Drèze–Stern 195
 10.4 On behavioral and happiness economics and CBA 198
 10.5 CEA/CUA, multi-criteria analysis, and economic impact analysis 201

11 Robustness checks and due diligence in evaluations 205
 11.1 Deterministic sensitivity analysis 205
 11.2 Risk analysis 207
 11.3 Due diligence and evaluations 211

References 215
Index 230
Illustrations

2.1 Illustration of market equilibrium, where price is such that supply equals aggregate demand. \(p^e = SMC^p \) \(\text{page 15} \)

2.2 The considered firm’s optimal production level is such that \(p^e = SMC^p \). \(\text{16} \)

2.3 The firm’s optimal production level when it also supplies a non-priced service. \(\text{22} \)

2.4 The firm’s optimal production level when it causes a negative externality. \(\text{22} \)

3.1 The case where the firm buys an input from a monopolist. \(\text{32} \)

3.2 The case where the firm sells its output to a monopsony. \(\text{33} \)

3.3 Illustration of the case where private sector production is displaced, where \(x^s(.) \) refers to the supply and \(x^d(.) \) demand of the commodity, and the arrow indicates a small shift to the left of the supply curve. \(\text{35} \)

3.4 Illustration of the case where only leisure time is displaced, where the arrow is meant to illustrate a small shift to the right of labor supply \(L^t \). \(\text{36} \)

3.5 A market for permits. \(\text{46} \)

3.6 Disequilibrium in a labor market due to a wage that is fixed above the equilibrium level. \(\text{48} \)

3.7 Disequilibrium in a goods market due to a price that is fixed below the equilibrium level. \(\text{53} \)

4.1 The ratio between an exponential and a hyperbolic discount function as a function of time \((t) \) and the magnitude of the parameter \(\xi \) when \(\xi = r = 0.05 \). \(\text{68} \)

4.2 Optimal timing of an investment. \(\text{75} \)

5.1 Growth function for a renewable resource. \(\text{84} \)

6.1 A policy increasing supply of a good. \(\text{95} \)

6.2 Using different paths to evaluate large changes in two markets. \(\text{100} \)

6.3 Illustration of a tax wedge. \(\text{Note: not drawn to scale.} \) \(\text{109} \)

6.4 A schematic circular flow diagram. \(\text{113} \)

7.1 A Lorenz curve. \(\text{130} \)

8.1 A WTP locus. \(\text{140} \)

8.2 Illustration of the WTP for a large risk reduction and a measure (denoted \(CV^s \)) based on the slope of the indifference curve. \(\text{149} \)

9.1 A survivor function for a logistic model with \(\Delta v = 2 - 0.5a \). \(\text{165} \)
List of illustrations

9.2 The value of a change in the quality attributes of a commodity (shaded area), where $h^1(.)$ refers to a Hicksian demand function. 177
9.3 The societal cost (shaded areas) of an increase in demand by Δx^0 units. 186
11.1 A Tornado diagram. 206
11.2 The cost of capital (C^k) as a function of the proportion of displaced private investment (a) and the number of years the loss of return remains (T). 207
11.3 Illustration of probability density function and cost–benefit acceptability curve with outcome in million SEK assuming a Gumbel distribution. 208
11.4 Illustration of a joint probability density function, where $B (C)$ denotes present value benefits (costs). 209
Tables

6.1 Benefits of water pollution control regulation in the US; USD billion (1985).

9.1 Product in Swiss study: a protective shell worn along with underwear, that is, a hip protector.

10.1 Social discount rates used by a selection of European countries. CF = Cohesion Fund.

Preface

The background to this manual is multifaceted. The authors publish on theoretical issues and teach graduate courses in cost–benefit analysis (CBA) and similar techniques, both domestically and internationally. They have also been involved in a considerable number of empirical cost–benefit studies: forestry, labor market policies, plant relocations, alternative fuels for vehicles, river re-regulation, and so on. In addition, the authors have been members of academic panels reviewing cost–benefit manuals produced by different national and international organizations and banks. Over time, our interest in putting together our experiences on theoretical and empirical appraisals of CBA has evolved. In particular, tools are available to today’s cost–benefit practitioners that were unavailable a decade or so ago. The world is also different, with flexible exchange rates (for some, but not for others), deregulated capital markets, liberalized trade flows, and so on, in comparison to what it was a few decades ago when the classic cost–benefit manuals were written. In addition, environmental concerns and concerns for the sustainability of resource stocks play a much more central role today. These are some of the reasons for providing a compact manual for CBA drawing on recent research results. We believe that a manual of this kind could be useful for graduate students in economics and for those evaluating projects and policies at governments, international organizations, and consulting firms. In particular, the manual provides a very straightforward toolkit that should be useful to the practitioner, particularly since virtually every actual evaluation provides the appraiser with surprises and effects that are not covered by existing “cookbooks.”

We are grateful to Martin Hill for providing us with references to computable general equilibrium (CGE) studies that are of relevance for CBA, and to Ginés de Rus for providing suggestions with respect to the measurement of benefits in transport studies. Karl-Gustaf Löfgren read an earlier draft and provided many useful comments and suggestions. Thanks to Maria Hedvall for pointing out an embarrassing error in an earlier draft of the manuscript. Three anonymous referees...
provided detailed comments and suggestions that were very helpful in revising
the manuscript. We are also grateful to our editor at the CUP, Phil Good, for
continuous support during the publication process. Thanks are also due to the
Journal of Benefit–Cost Analysis, its Editor-in-Chief Scott Farrow, and the authors
Lisa Robinson and James Hammitt for allowing us to reproduce some advice for
cost–benefit practitioners from their article Behavioral economics and the con-
duct of benefit–cost analysis: towards principles and standards. Chandra Kiran B.
Krishnamurthy not only read an earlier draft but also provided us with valuable
comments and suggestions. We acknowledge financial support from the Swedish
Energy Agency, Project 36619-1. The project financed the polishing of the lan-
guage of the final version of the manuscript by Rachel Siegel at CambridgeEditors.
Finally, any remaining errors and other flaws are our own responsibility.

Stockholm and Umeå

Per-Olov Johansson
Bengt Kriström