Measurement Techniques for Radio Frequency Nanoelectronics

Connect basic theory with real-world applications with this practical, crossdisciplinary guide to radio frequency measurement of nanoscale devices and materials.

- Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two-dimensional materials such as transition metal dichalcogenides.
- Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy.
- Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materials.

Featuring numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to the field of radio frequency nanoelectronics.

T. Mitch Wallis is a physicist in the Applied Physics Division at the National Institute of Standards and Technology, Boulder, Colorado. He is also the Chair of the IEEE Microwave Theory and Techniques Society's Technical Committee on Radio Frequency Nanotechnology.

Pavel Kabos is a physicist in the Applied Physics Division at the National Institute of Standards and Technology. He is the author of *Magnetostatic Waves and Their Applications* (Chapman and Hall, 1993) and a fellow of the IEEE.

The Cambridge RF and Microwave Engineering Series

Series Editor

Steve C. Cripps, Distinguished Research Professor, Cardiff University

Editorial Advisory Board

James F. Buckwalter, UCSB Jenshan Lin, University of Florida John Wood, Maxim Integrated Products Peter Aaen, Jaime Plá, and John Wood, Modeling and Characterization of RF and Microwave Power FETs Dominique Schreurs, Máirtín O'Droma, Anthony A. Goacher, and Michael Gadringer (Eds.), RF Amplifier Behavioral Modeling Fan Yang and Yahya Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering Enrico Rubiola, Phase Noise and Frequency Stability in Oscillators Earl McCune, Practical Digital Wireless Signals Stepan Lucyszyn, Advanced RF MEMS Patrick Roblin, Nonlinear RF Circuits and the Large-Signal Network Analyzer Matthias Rudolph, Christian Fager, and David E. Root (Eds.), Nonlinear Transistor Model Parameter Extraction Techniques John L. B. Walker (Ed.), Handbook of RF and Microwave Solid-State Power Amplifiers Anh-Vu H. Pham, Morgan J. Chen, and Kunia Aihara, LCP for Microwave Packages and Modules Sorin Voinigescu, High-Frequency Integrated Circuits Richard Collier, Transmission Lines Valeria Teppati, Andrea Ferrero, and Mohamed Sayed (Eds.), Modern RF and Microwave Measurement Techniques Nuno Borges Carvalho and Dominique Schreurs, Microwave and Wireless Measurement Techniques David E. Root, Jason Horn, Jan Verspecht, and Mihai Marcu, X-Parameters Earl McCune, Dynamic Power Supply Transmitters Hossein Hashemi and Sanjay Raman (Eds.), Silicon mm-Wave Power Amplifiers and Transmitters Isar Mostafanezhad, Olga Boric-Lubecke, and Jenshan Lin (Eds.), Medical and Biological Microwave Sensors T. Mitch Wallis and Pavel Kabos, Measurement Techniques for Radio Frequency Nanoelectronics

Forthcoming

Richard Carter, Microwave and RF Vacuum Electronic Power Sources

José Carlos Pedro, David Root, Jianjun Xu, and Luis Cótimos Nunes, Nonlinear Circuit Simulation and Modeling

Giovanni Ghione and Marco Pirola, Microwave Electronics

Michael Schröter and Martin Claus, Carbon Nanotube Electronics for Analog Radio-Frequency Applications

> "This book represents a state-of-the-art look at measurement techniques of nanoelectronic devices in the RF and microwave frequency range. This field is of growing importance because of higher CMOS clock speeds approaching the GHz range as well as shrinking device dimensions, down to the 10 nm scale and below. The fundamental physical challenges of measuring and characterizing devices with these length scales, which approach atomic dimensions, are clearly laid out and presented in this book. The book begins with fundamental network analysis theory based on Maxwell's equations for radiation and transmission lines, progresses to on-wafer semiconductor device characterization in the RF and microwave to mm-wave frequency range, and progresses to apply these fundamentals to an increasingly challenging set of measurements. High impedance devices (up to and greater than the resistance quantum) are covered in detail, with the latest on-wafer calibration procedures laid out clearly. Scanning microwave microscopy as a complementary technique for high impedance devices is also covered. Materials characterization, including the beginnings of a new field of scanning microwave microscopy for tomography (a nanoscale version of synthetic aperture radar), is also covered. Applications to nanowires, nanotubes, and 2D materials such as graphene and WS2, in both passive and active modes, are clearly presented. I expect this book will be of great interest to beginning graduate students and senior undergraduates entering the field, as well as senior researchers with an interest in the latest techniques for measuring these tiny devices, which tend to have high impedances due to the quantum nature of electricity at this atomic length scale."

> > Peter Burke, University of California, Irvine

"This is a remarkable reference on high frequency nanoelectronics measurements and scanning microwave microscopy that includes applications for nano-devices and advanced materials. The basics of radio frequency (RF) measurements for extreme impedances and nanoscale-sized RF probes are laid out very well, as well as advanced concepts in modeling and RF calibration. This accessible book will be useful for a wide readership, including researchers and students in microwave engineering, semiconductor electronics, materials science, and microscopy."

Ferry Kienberger, Keysight Laboratories, Keysight Technologies Inc.

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

Measurement Techniques for Radio Frequency Nanoelectronics

T. MITCH WALLIS

National Institute of Standards and Technology, Boulder

PAVEL KABOS

National Institute of Standards and Technology, Boulder

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India 79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107120686 DOI: 10.1017/9781316343098

© Cambridge University Press 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

This book is the work of United States Government employees, and is therefore not subject to copyright protection in the United States pursuant to Title 17 United States Code Section 105.

First published 2017

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-12068-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

Contents

Ack List	nowledgments of Abbreviations	pag
Lisi	0j 1100/cviutions	
An li	ntroduction to Radio Frequency Nanoelectronics	
1.1	Radio Frequency Nanoelectronics	
1.2	Measurement Problems in RF Nanoelectronics	
1.3	Measurement Techniques for RF Nanoelectronics	
Refe	erences	
Core	Concepts of Microwave and RF Measurements	
2.1	Introduction	
2.2	Maxwell's Equations	
	2.2.1 Macroscopic Equations	
	2.2.2 Vector and Scalar Potentials	
	2.2.3 Hertz Vector Potentials	
	2.2.4 Transition from Fields to Transmission Lines	
2.3	Transmission Line Theory	
2.4	Impedance, Admittance, and Scattering Matrixes	
2.5	Signal Flow Graphs	
2.6	Device De-embedding and Calibration	
	2.6.1 De-embedding	
	2.6.2 Multiline TRL and Other Calibration Techniques	
	2.6.3 On-Wafer Calibration	
2.7	Multimode Calibration	
2.8	Calibration of a Scanning Microwave Microscope and Other	
	One-Port Systems	
Refe	erences	
Extr	eme Impedance Measurements	
3.1	The Impedance Matching Challenge in RF Nanoelectronics	
3.2	An Introduction to Extreme Impedance Measurements	

viii

Contents

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

	3.3	Impedance Matching Networks	40
	3.4	Reflectometer Methods for One-Port Devices	42
		3.4.1 Implementation with a Power Splitter	42
		3.4.2 Implementation with a Hybrid Coupler	43
	3.5	Statistical Measurements	45
		3.5.1 Use of Redundant Measurements in the Reflectometer Method	45
		3.5.2 Use of Redundant Measurements to Characterize a Power Splitter	r 46
	3.6	Interferometer with Active Signal Injection	48
	Refei	rences	50
4	On-W	afer Measurements of RF Nanoelectronic Devices	52
	4.1	Broadband Characterization of RF Nanoelectronic Devices	52
	4.2	Practical Considerations for On-Wafer Measurements	53
	4.3	Wheatstone Bridge Approach	57
		4.3.1 The Wheatstone Bridge	57
		4.3.2 Bridge-Based Measurements of a Nanoelectronic Device	58
	4.4	Empty Device Approach	61
	4.5	Fabrication of Impedance-Matched On-Wafer Devices	64
	Refei	rences	65
5	Mode	ling and Validation of RF Nanoelectronic Devices	67
	5.1	Introduction	67
	5.2	Modeling and Validation of Measurement Methods	68
		5.2.1 Electromagnetic Properties of Nanoscale Conductors	68
		5.2.2 An Overview of Validation	70
		5.2.3 Validation with Finite-Element Models	71
		5.2.4 Validation with Circuit Models	74
	5.3	Extracting Circuit Parameters from Measurements	75
		5.3.1 Nanowire Device Parameters	75
		5.3.2 Full-Wave, Finite-Element Approach	76
		5.3.3 Transmission Line Approach	77
		5.3.4 Lumped Element Approach	80
		5.3.5 Modeling and Parameter Extraction for CNT Devices	83
	D.C	5.3.6 Iterative Optimization Approach	85
	Refei	rences	8/
6	Chara	acterization of Nanofiber Devices	90
	6.1	The Measurement Problem	90
	6.2	Device Geometry and Fabrication	91
	6.3	Calibrated On-Wafer Measurements	93
	6.4	Uncertainty Analysis	97
	6.5	Extraction of Parameters from Circuit Models	100
	Refei	rences	102

	Cont	tents	ix
7	Inst	rumentation for Near-Field Scanning Microwave Microscopy	104
•	7.1		101
	/.1	Introduction Historical Development	104
	7.2	Probe and Sample Motion	104
	1.5	7.3.1 Distance-Following Mechanisms	100
		7.3.2 Probe and Sample Positioning	111
	74	Microwave Probes and Circuits	111
	/.1	7.4.1 Aperture Probes versus Tip Probes	111
		7.4.2 Resonant Probes versus Nonresonant Probes	114
	7.5	Other Aspects of Near-Field Scanning Microwave Microscope	
		Instrumentation	118
	Refe	erences	120
8	Prob	pe-Based Measurement Systems	123
	8.1	An Overview of Probe-Based Measurement Systems	123
	8.2	Simple Tip-Sample Models	124
		8.2.1 General Considerations	124
		8.2.2 Coupling Capacitance: Parallel Plate Model	125
		8.2.3 Coupling Capacitance: Spherical and Conical Tip Shapes	126
		8.2.4 Coupling Capacitance: Elementary Antenna Approach	128
	8.3	Calibration Procedures for Microwave Scanning Probe Microscopes	130
		8.3.1 Calibration of Near-Field Scanning Microwave Microscopes	
		Operating in Reflection Mode	130
		8.3.2 Calibration of an Interferometric Scanning Microwave Microscope	138
		8.3.3 Time-Domain Approaches in Scanning Microwave Microscopy	141
		8.3.4 Calibration of Evanescent Microwave Magnetic Probes	143
		8.3.5 Evanescent Microwave Microscopes in Transmission Mode	144
	Refe	erences	145
9	Rad	io Frequency Scanning Probe Measurements of Materials	149
	9.1	Electromagnetic Characterization of Materials: Fundamental Concepts	149
	9.2	Impedance Circuit Models of Probe-Sample Interactions	153
		9.2.1 Toward Materials Characterization with Near-Field Scanning	
		Microwave Microscopy	153
		9.2.2 Near-Field, Lumped-Element Models	153
		9.2.3 Transmission Line Models	156
	9.3	Resonant Cavity Models and Methods	158
		9.3.1 Resonant-Cavity-Based, Near-Field Scanning Microwave	
		Microscopy	158
		9.3.2 Resonant Cavity Measurements with Swept Frequency	159
		9.3.3 Calibration, Uncertainty, and Sensitivity	163
		9.3.4 Resonant Cavity Measurements of Semiconductors	165
		9.3.5 Nonlinear Dielectric Microscopy of Materials	171

(C) in this web service Cambridge University Press

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

X	Contents	
	 9.4 Measurements of Thin Films and Low-Dimensional Materials 9.4.1 Materials for RF Nanoelectronics 9.4.2 Dielectric Film Characterization 9.4.3 Measurements of Graphene 9.4.4 Measurements of Transition Metal Dichalcogenides References 	173 173 173 174 179 182
10	Measurement of Active Nanoelectronic Devices	187
	 10.1 Applications of RF Nanoelectronics 10.2 Modeling and Measurement of Active Devices 10.2.1 Small-Signal Models of Conventional Transistors 10.2.2 Microwave Measurements of Conventional Transistors 10.3 Determination of Equivalent Circuit Parameters for a Nanotransistor References 	187 189 189 190 192 201
11	Dopant Profiling in Semiconductor Nanoelectronics	203
	 11.1 Introduction 11.2 Tip-Sample Models for Semiconductor Samples 11.2.1 Capacitive Models 11.2.2 Metal-Semiconductor Models 11.2.3 Metal-Oxide-Semiconductor Model 11.3 Dopant Profiling with Scanning Capacitance Microscopy 11.4 Dopant Profiling with Near-Field Scanning Microwave Microscopy 11.5 Dopant Characterization with Other Microscopy Techniques References 	203 204 204 206 207 210 213 218 219
12	Depth Profiling	222
	 12.1 Introduction to Nanoscale Depth Profiling 12.2 Theoretical Foundation of Depth Profiling 12.2.1 Near-Fields and Tomography 12.2.2 Near-Field of an Elementary Dipole 12.2.3 Near-Field Scattering at a Sub-wavelength Aperture 12.2.4 Solution to the Forward Problem 12.2.5 Solution to the Inverse Problem 12.2.6 Linear Inverse Problem Solutions from Frequency Shift Measurements 12.2.7 Inverse Problem Solutions from Multifrequency or Multipoint Scattering Field Data 12.2.8 Inverse Problem Solutions from Multifrequency Scattering Field Data 12.2.9 Inverse Problem Solutions from Multifrequency or Multipoint 	222 223 224 225 227 230 231 233 235
	Scattering Reflection Coefficient Data	241

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

	Contents	xi
	12.3 Experimental Subsurface Tomography with Near-Field Microwave	
	Microscopes	242
	References	248
13	Dynamics of Nanoscale Magnetic Systems	251
	13.1 Introduction to Magnetization Dynamics	251
	13.2 Measurements of Linear Dynamics in Microscale and Nanoscale	
	Magnetic Systems	255
	13.2.1 Mechanical Measurement of Magnetization Dynamics	255
	13.2.2 Time- and Frequency-Domain Measurements of Magnetization	
	Dynamics	262
	13.2.3 Measurements of Magnetization Dynamics in Layered Structures	264
	13.3 Scanning Probe Measurements of Magnetization Dynamics	269
	References	274
14	Nanoscale Electromagnetic Measurements for Life Science Applications	279
	14.1 High-Resolution Optical Microscopy of Nanoscale Biological Systems	279
	14.1.1 Far-Field Techniques	279
	14.1.2 Near-Field Techniques	281
	14.2 Electrical Characterization of Biological Systems	282
	14.2.1 The Measurement Problem	282
	14.2.2 Microwave Antenna Probes	282
	14.2.3 Multilaver Systems	287
	14.2.4 Heterogeneous, Liquid Systems	290
	14.3 Electrical Scanning Probe Microscopy of Biological Systems	293
	14.3.1 General Considerations	293
	14.3.2 Electrostatic Force Microscopy	293
	14.3.3 Near-Field Scanning Microwave Microscopy of Biological	
	Systems	296
	14.3.4 Topographic Artifacts in Microwave Microscopy	296
	14.3.5 Scanning Probe Microscopy at the Cellular Level	301
	References	304
	Index	307

Acknowledgments

In many ways, this book represents the culmination of our collaborative work in the field of RF nanoelectronics over the past thirteen years. During that span of time, we have had the good fortune to work with many talented engineers and scientists. First and foremost, we are grateful to the students and postdoctoral associates that have contributed time and effort to our work in RF nanoelectronics at the National Institute of Standards and Technology (NIST): Sam Berweger, Joe Brown, Chien-Jen Chiang, Jonathan Chisum, Alex Curtin, Kristen Genter, Atif Imtiaz, Kichul Kim, Simone Lee, Sang-Hyun Lim, and Joel Weber. We also thank our NIST collaborators in the GaN nanowire growth project: Kris Bertness, Norman Sanford, Paul Blanchard, Matt Brubaker, Todd Harvey, Lorelle Mansfield, Alexana Roshko, and Bryan Spann. We are also grateful to many other past and present NIST colleagues, including Kevin Coakley, Dazhen Gu, Joe Kopanski, Paul Rice, Stephen Russek, and Karl Stupic. Finally, we wish to thank Professors Victor Bright, Dejan Filipovic, Zoya Popovic, and Y.-C. Lee at the University of Colorado, Boulder.

In preparing this manuscript, we have benefitted from the insights of many colleagues. We appreciate the helpful comments and suggestions of all our colleagues who read the manuscript: Joel Weber, Paul Blanchard, Ron Ginley, Bill Riddle, Sam Berweger, Arek Lewandowski, Haris Votsi, Peter Aaen, Jan Obrzut, Abhishek Sahu, Matt Brubaker, Dazhen Gu, Chris Long, Jason Killgore, Andrew Gregory, Yaw Obeng, Johannes Hoffmann, Claude Weil, Jim Randa, Matt Pufall, Mike Schneider, Georg Gramse, Marco Farina, Joe Dragavon, Kris Bertness, and Norman Sanford. We also appreciate the guidance of Julie Lancashire, Karyn Bailey, and Heather Brolly at Cambridge.

Abbreviations

2DEGs	Two-dimensional electron gases
AFM	Atomic force microscopes
AM-EFM	Amplitude-modulated, electrostatic force microscopy
CNT	Carbon nanotubes
CPW	Coplanar waveguide
DOS	Density of states
DUT	Device under test
EPR	Electron paramagnetic resonance
ESR	Electron spin resonance
FEM	Finite-element modeling
FET	Field effect transistors
FMR	Ferromagnetic resonance
GaN	Gallium nitride
GPR	Ground penetrating radars
GS	Ground-signal
GSG	Ground-signal-ground
LRM	Line-reflect-match
LRRM	Line-reflect-reflect-match
MEMS	Microelectromechanical systems
MESFET	Metal semiconductor field effect transistor
MFM	Magnetic force microscope
MIS	Metal-insulator-semiconductor
MOS	Metal-oxide-semiconductor
MRFM	Magnetic resonance force microscopy
NMR	Nuclear magnetic resonance
NSMM	Near-field scanning microwave microscope
NSOM	Near-field scanning optical microscopy
PALM	Photoactivated localization microscopy
RF	Radio Frequency
SCM	Scanning capacitance microscope
SEM	Scanning electron microscope
SiO ₂	Silicon dioxide
SKPM	Scanning kelvin probe microscope

Cambridge University Press 978-1-107-12068-6 — Measurement Techniques for Radio Frequency Nanoelectronics T. Mitch Wallis , Pavel Kabos Frontmatter <u>More Information</u>

xiv Abbreviations

SOLT	Short-open-line-thru
SSRM	Scanning spreading-resistance microscope
STED	Stimulated emission depletion
STM	Scanning tunneling microscope
STS	Scanning tunneling spectroscopy
SUT	Sample under test
TE	Transverse electric
TEM wave	Transverse electromagnetic wave
TIRF	Total internal reflection fluorescent microscopy
ТМ	Transverse magnetic
TMD	Transition metal dichalcogenides
TRL	Thru-reflect-line
VED	Vertical electric dipole
VNA	Vector network analyzer
YIG	Yttrium iron garnet