
1 Introduction to MATLAB

1.1 Quick Overview

This chapter is not intended to be a comprehensive manual of MATLAB�. Our sole
aim is to provide sufficient information to give you a good start. If you are familiar with
another computer language, and we assume that you are, it is not difficult to pick up the
rest as you go.
MATLAB is a high-level computer language for scientific computing and data visu-

alization built around an interactive programming environment. It is becoming the pre-
miere platform for scientific computing at educational institutions and research estab-
lishments. The great advantage of an interactive system is that programs can be tested
and debugged quickly, allowing the user to concentrate more on the principles behind the
program and less on programming itself. Because there is no need to compile, link, and
execute after each correction, MATLAB programs can be developed in a much shorter
time than equivalent FORTRAN or C programs. On the negative side, MATLAB does
not produce stand-alone applications – the programs can be run only on computers that
have MATLAB installed.
MATLAB has other advantages over mainstream languages that contribute to rapid

program development:

� MATLAB contains a large number of functions that access proven numerical libraries,
such as LINPACK and EISPACK. This means that many common tasks (e.g., solution
of simultaneous equations) can be accomplished with a single function call.

� Extensive graphics support allows the results of computations to be plotted with a few
statements.

� All numerical objects are treated as double-precision arrays. Thus there is no need to
declare data types and carry out type conversions.

� MATLAB programs are clean and easy to read; they lack the syntactic clutter of some
mainstream languages (e.g., C).

The syntax of MATLAB resembles that of FORTRAN. To get an idea of the similari-
ties between these programming languages, let us compare the codes written in the two
languages for solution of simultaneous equations Ax = b by Gauss elimination (do not

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

2 Introduction to MATLAB

worry about understanding the inner workings of the programs). Here is the subroutine
in FORTRAN 90:

subroutine gauss(A,b,n)

use prec_mod

implicit none

real(DP), dimension(:,:), intent(in out) :: A

real(DP), dimension(:), intent(in out) :: b

integer, intent(in) :: n

real(DP) :: lambda

integer :: i,k

! --------------Elimination phase--------------

do k = 1,n-1

do i = k+1,n

if(A(i,k) /= 0) then

lambda = A(i,k)/A(k,k)

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n)

b(i) = b(i) - lambda*b(k)

end if

end do

end do

! ------------Back substitution phase----------

do k = n,1,-1

b(k) = (b(k) - sum(A(k,k+1:n)*b(k+1:n)))/A(k,k)

end do

return

end subroutine gauss

The statement use prec_mod tells the compiler to load the module prec_mod (not
shown here), which defines the word length DP for floating-point numbers. Also note the
use of array sections, such as a(k,k+1:n), a very useful feature that was not available
in previous versions of FORTRAN.
The equivalent MATLAB function is (MATLAB does not have subroutines):

function b = gauss(A,b)

n = length(b);

%-----------------Elimination phase-------------

for k = 1:n-1

for i = k+1:n

if A(i,k) ~= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);

b(i)= b(i) - lambda*b(k);

end

end

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

1.1 Quick Overview 3

end

%--------------Back substitution phase-----------

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

Simultaneous equations can also be solved in MATLAB with the simple command
A\b (see later).
MATLAB can be operated in the interactive mode through its command window,

where each command is executed immediately upon its entry. In this mode, MATLAB
acts like an electronic calculator. Following is an example of an interactive session for
the solution of simultaneous equations:

>> A = [2 1 0; -1 2 2; 0 1 4]; % Input 3 x 3 matrix.

>> b = [1; 2; 3]; % Input column vector

>> soln = A\b % Solve A*x = b by ’left division’

soln =

0.2500

0.5000

0.6250

The symbol � is MATLAB’s prompt for input. The percent sign (%)marks the begin-
ning of a comment. A semicolon (;) has two functions: it suppresses printout of inter-
mediate results and separates the rows of a matrix. Without a terminating semicolon, the
result of a command would be displayed. For example, omission of the last semicolon
in the line defining the matrix A would result in the following:

>> A = [2 1 0; -1 2 2; 0 1 4]

A =

2 1 0

-1 2 2

0 1 4

Functions and programs can be created with the MATLAB editor/debugger and saved
with the .m extension (MATLAB calls them M-files). The file name of a saved function
should be identical to the name of the function. For example, if the function for Gauss
elimination is saved as gauss.m, it can be called just like any MATLAB function:

>> A = [2 1 0; -1 2 2; 0 1 4];

>> b = [1; 2; 3];

>> soln = gauss(A,b)

soln =

0.2500

0.5000

0.6250

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

4 Introduction to MATLAB

1.2 Data Types and Variables

Data Types

The most commonly used MATLAB data types, or classes, are double, char, and
logical, all of which are considered by MATLAB as arrays. Numerical objects belong
to the class double, which represents double-precision arrays; a scalar is treated as a
1 × 1 array. The elements of a char type array are strings (sequences of characters),
whereas a logical type array element may contain only 1 (true) or 0 (false).
Another important class is function_handle, which is unique to MATLAB. It con-

tains information required to find and execute a function. The name of a function handle
consists of the character @ followed by the name of the function, for example, @sin.
Function handles are used as input arguments in function calls. For example, suppose
that we have a MATLAB function plot(func,x1,x2) that plots any user-specified
function func from x1 to x2. The function call to plot sin x from 0 to π would be
plot(@sin,0,pi).
There are other data types, such as sparse (sparse matrices), inline (inline objects),

and struct (structured arrays), but we seldom come across them in this text. Additional
classes can be defined by the user. The class of an object can be displayed with the class
command, for example,

>> x = 1 + 3i % Complex number

>> class(x)

ans =

double

Variables

Variable names, which must start with a letter, are case sensitive. Hence xstart and
XStart represent two different variables. The length of the name is unlimited, but only
the first N characters are significant. To find N for your installation of MATLAB, use
the command namelengthmax:

>> namelengthmax

ans =

63

Variables that are defined within a MATLAB function are local in their scope. They
are not available to other parts of the program and do not remain in memory after exit-
ing the function (this applies to most programming languages). However, variables can
be shared between a function and the calling program if they are declared global. For
example, by placing the statement global X Y in a function as well as the calling pro-
gram, the variables X and Y are shared between the two program units. The recommended
practice is to use capital letters for global variables.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

1.2 Data Types and Variables 5

MATLAB contains several built-in constants and special variables, most important of
which are

ans Default name for results
eps Smallest number for which 1 + eps > 1

inf Infinity
NaN Not a number
i or j

√−1
pi π

realmin Smallest usable positive number
realmax Largest usable positive number

Following are a few examples:

>> warning off % Suppresses print of warning messages

>> 5/0

ans =

Inf

>> 0/0

ans =

NaN

>> 5*NaN % Most operations with NaN result in NaN

ans =

NaN

>> NaN == NaN % Different NaN’s are not equal!

ans =

0

>> eps

ans =

2.2204e-016

Arrays

Arrays can be created in several ways. One way is to type the elements of the array
between brackets. The elements in each row must be separated by blanks or commas.
Following is an example of generating a 3 × 3 matrix:

>> A = [2 -1 0

-1 2 -1

0 -1 1]

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

6 Introduction to MATLAB

A =

2 -1 0

-1 2 -1

0 -1 1

The elements can also be typed on a single line, separating the rows with semicolons:

>> A = [2 -1 0; -1 2 -1; 0 -1 1]

A =

2 -1 0

-1 2 -1

0 -1 1

Unlike most computer languages, MATLAB differentiates between row and column
vectors (this peculiarity is a frequent source of programming and input errors). For
example,

>> b = [1 2 3] % Row vector

b =

1 2 3

>> b = [1; 2; 3] % Column vector

b =

1

2

3

>> b = [1 2 3]’ % Transpose of row vector

b =

1

2

3

The single quote (’) is the transpose operator in MATLAB; thus b’ is the transpose
of b.
The elements of a matrix, such as

A =
⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

can be accessed with the statement A(i,j), where i and j are the row and column
numbers, respectively. A section of an array can be extracted by the use of colon notation.
Following is an illustration:

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

1.2 Data Types and Variables 7

>> A = [8 1 6; 3 5 7; 4 9 2]

A =

8 1 6

3 5 7

4 9 2

>> A(2,3) % Element in row 2, column 3

ans =

7

>> A(:,2) % Second column

ans =

1

5

9

>> A(2:3,2:3) % The 2 x 2 submatrix in lower right corner

ans =

5 7

9 2

Array elements can also be accessed with a single index. Thus A(i) extracts the ith
element of A, counting the elements down the columns. For example, A(7) and A(1,3)
would extract the same element from a 3 × 3 matrix.

Cells

A cell array is a sequence of arbitrary objects. Cell arrays can be created by enclosing
their contents between braces { }. For example, a cell array c consisting of three cells
can be created by

>> c = {[1 2 3], ’one two three’, 6 + 7i}

c =

[1x3 double] ’one two three’ [6.0000+ 7.0000i]

As seen, the contents of some cells are not printed to save space. If all contents are to
be displayed, use the celldisp command:

>> celldisp(c)

c{1} =

1 2 3

c{2} =

one two three

c{3} =

6.0000 + 7.0000i

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

8 Introduction to MATLAB

Braces are also used to extract the contents of the cells:

>> c{1} % First cell

ans =

1 2 3

>> c{1}(2) % Second element of first cell

ans =

2

>> c{2} % Second cell

ans =

one two three

Strings

A string is a sequence of characters; it is treated byMATLAB as a character array. Strings
are created by enclosing the characters between single quotes. They are concatenated
with the function strcat, whereas the colon operator (:) is used to extract a portion of
the string, for example,

>> s1 = ’Press return to exit’; % Create a string

>> s2 = ’ the program’; % Create another string

>> s3 = strcat(s1,s2) % Concatenate s1 and s2

s3 =

Press return to exit the program

>> s4 = s1(1:12) % Extract chars. 1-12 of s1

s4 =

Press return

1.3 Operators

Arithmetic Operators

MATLAB supports the usual arithmetic operators:

+ Addition
− Subtraction
∗ Multiplication

ˆ Exponentiation

When applied to matrices, they perform the familiar matrix operations:

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> A + B % Matrix addition

ans =

8 10 12

4 6 8

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

1.3 Operators 9

>> A*B’ % Matrix multiplication

ans =

50 8

122 17

>> A*B % Matrix multiplication fails

??? Error using ==> * % due to incompatible dimensions

Inner matrix dimensions must agree.

There are two division operators in MATLAB:

/ Right division
\ Left division

If a and b are scalars, the right division a/b results in a divided by b, whereas the left
division is equivalent to b/a. In the case where A and B are matrices, A/B returns the
solution of X*A = B and A\B yields the solution of A*X = B.
Often we need to apply the *, /, and ^ operations to matrices in an element-by-element

fashion. This can be done by preceding the operator with a period (.), as follows:

.* Element-wise multiplication

./ Element-wise division

.^ Element-wise exponentiation

For example, the computation Ci j = Ai j Bi j can be accomplished with

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> C = A.*B

C =

7 16 27

0 5 12

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These operators
are as follows:

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

The comparison operators always act element-wise on matrices; hence they result in a
matrix of logical type, for example,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

10 Introduction to MATLAB

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> A > B

ans =

0 0 0

1 1 1

Logical Operators

The logical operators in MATLAB are as follows:

& AND
| OR

~ NOT

They are used to build compound relational expressions, an example of which
follows:

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> (A > B) | (B > 5)

ans =

1 1 1

1 1 1

1.4 Flow Control

Conditionals

if, else, elseif
The if construct

if condition
block

end

executes the block of statements if the condition is true. If the condition is false,
the block skipped. The if conditional can be followed by any number of elseif

constructs:

if condition
block

elseif condition
block

...
end

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12057-0 - Numerical Methods in Engineering with Matlab®: Third Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107120570
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107120570:

