Contents

About the Author ... page xi
Foreword by Dr. Woodrow W. Clark II ... xiii
Preface .. xvii
Disclaimer Note .. xxiii
Acknowledgments .. xxv
Peer Review of Solar Power Generation Problems, Solutions,
and Monitoring ... xxvii

1 Types of Energy Sources and Energy Production and Use 1
 Introduction .. 1
 Conservation of Energy ... 1
 First and Second Laws of Thermodynamics 2
 Life and Entropy .. 5
 The Concept of Energy in Various Scientific Fields 8

2 Significance of Large-Scale Photovoltaic Solar Power Energy
 Production .. 12
 A Brief History of the Photoelectric Phenomenon 12
 The Use of the Photovoltaic Principle in Solar Power Systems 12
 Solar Power Technologies and Their Significance as Viable Sources of
 Electrical Energy .. 13
 Issues Associated with Conventional Energy Production Systems 17
 The Electrical Power Grid .. 19
 Specific Nature of Photovoltaic Technology 20
 Main Objectives for Installing Large-Scale Grid-Connected Solar Power
 Systems .. 23
 Third-Party Solar Power Providers ... 24

3 Concentrator Photovoltaic Technology 27
 Introduction .. 27
Contents

Multijunction Photovoltaic Cells ... 28
Concentrator Design for Passively Cooled Modules 32
Field Installation and Performance 33
Benefits of CPV Solar Power Systems 35
Engineering Design Process .. 40

4 Issues and Problems Associated with Large-Scale Solar Power Systems .. 42
Introduction ... 42
The Problems ... 42
Solar Power System Construction Process and Associated Issues 43
Net Outfall of Solar Power Subcontracting 44
Solar Power System Life Safety and Fire Hazards 45
Ground-Fault Protection Blind Spot 50

5 How to Design and Specify Large-Scale Solar Power Systems 61
Introduction ... 61
Shading Analysis and Solar Energy Performance Multiplier 61
Importance of Solar Power Feasibility Study 62
Designing Large-Scale Solar Power Systems 64
Solar Power System Essential Design Considerations and Computations 65
Entrance Service Power Considerations for Grid-Connected Solar Power Systems .. 79
Photovoltaic System Power Output Rating 81
Solar Power Project Cost Analysis 87
Conclusion ... 89

6 Solar Power Construction and Project Management 90
Introduction ... 90
What Is Special about Large-Scale Solar Power Construction? 90
Study and Evaluation of Engineering Plans and Documents 90
Construction Supervisory Tasks and Responsibilities 92
How to Perform Dynamic Field Test and Integration 94
System Integration Test and Commissioning 96
Importance of Troubleshooting Procedures 99
Customer Training Curriculum ... 100

7 Solar Power Financing .. 102
Introduction ... 102
California Solar Initiative Rebate Program 102
Incentive Payments ... 112
California Solar Initiative Reservation Form Calculations 113
An Overview of Solar Power Project Financing 118
Solar Power System Ownership .. 125
Feed-In Tariffs ... 129
Contents

1. **Effects of Feed-In Tariff on Electricity Rates** .. 131
2. **Grid Parity** .. 131
3. **Large-Scale Solar Power System Legal Issues** 133
 - Introduction ... 133
 - Long-Term Industrial Project Financing 133
 - Engineering Procurement Construction (EPC) and Contractual
 Documents ... 134
 - Shareholder Agreement ... 136
 - PPA Contracts and Legal Issues .. 141
 - Advantages of Power Purchase Agreements (PPAs) 141
 - Preparation for PPA Proposal ... 142
 - PPA Legal Language and Contract Language 143
4. **Proposed Advanced Photovoltaic Solar Power System Technology** ... 177
 - Requirements .. 177
 - Technology Feature and Capability Requirements 177
 - Control and Communication Features 177
 - Econometric Analytics Software ... 180
 - PV Module Submetering Technology .. 181
 - Remote Data Acquisition and Control System Software Architecture 188
 - Data Normalization Algorithms .. 189
 - Anomaly Detection Software .. 190
 - Examples of PV System Energy Production 191
 - Principal Functions of the Proposed Intelligent Combiner Box Technology 193
 - Solar Power System Construction and Integration Phases 196
 - Solar Power System Fault Detection and Diagnostics 197
 - Solar Power Output Performance Monitoring 199
 - Data Acquisition and Display User Interface and Econometric
 Analytical Features .. 200
5. **Microinverters and Peak Power Tracking (PPT) Technologies** 205
 - Microinverter Technologies ... 205
 - String Inverter and Microinverter Comparison 213
 - String Inverter .. 216
 - Microinverter Pros and Cons ... 219
 - Disadvantages of Peak Power Tracking (PPT) Technologies 221
6. **Advanced Solar Power Generation and Integration with Smart Grid** ... 231
 - Introduction ... 231
 - Transitioning to Smart Grid Systems ... 232
 - Electrical Energy Demand and Supply Control 233
 - Smart Grid Technology Challenges .. 234
 - The United States Unified Smart Grid 235
 - Principal Function and Architecture of Smart Grid Systems 238
12 Large-Scale Energy Storage Systems 251
 Introduction .. 251
 Forms of Energy Storage .. 251
 Importance of Grid Energy Storage 252
 Renewable Energy Storage 252
 Energy Storage Methods 252
 Modern Energy Storage Technologies 253
 Pumped-Water Storage Systems 253
 Electrochemical Battery Technologies 255
 Short-Term Thermal Heat and Cold Storage Systems 255
 Energy Storage in Chemical Fuels 255
 Advanced Storage Technologies 256
 Compressed-Air Energy Storage 257
 Gravitational Potential Energy Storage 258
 Electrochemistry .. 258
 Quantitative Electrolysis and Faraday’s Laws 259
 First Law of Electrolysis 259
 Second Law of Electrolysis 260
 Oxidation and Reduction 260
 Acidic Medium .. 261
 Basic Medium .. 262
 Electrochemical Cells .. 263
 Electromotive Force .. 264
 Standard Electrode Potential 264
 Electrical Storage Battery 265
 Lead-Acid Battery Electrolysis Principle 265
 Corrosion ... 266
 Sacrificial Anodes .. 267
 Application of Redox Process in Electrolysis 267
 Electrolysis of Water ... 268
 Electrochemical Rechargeable Battery Technologies 269
 Lead-Acid Battery ... 269
 Nickel–Cadmium (NiCd) Battery 269
 Foam Lead-Acid Battery Technology 270
 Battery Development Challenges and Objectives 271
 Conventional Lead-acid Battery Failure Modes 271
 Cycle Life ... 272
 Foam-Based Battery Technology 273
Contents

Commercial Introduction ... 274
3D Technology .. 274
3D Technology Energy and Power Performance Attributes 275
Utilization and Spatial Efficiency 275
Low and High Temperature Advantages 277
Hot Temperature Operation .. 279
Dramatic Life Cycle Improvements 279
Performance Summary of Foam-Based Battery Technology 281
Recent Firefly Battery Advancements 282
Lithium-Ion Battery .. 282
Flow Battery Technologies .. 283
Reduction-Oxidation (REDOX) Process 285
Vanadium Redox Battery (VRB) Technology 285
Zinc Bromine (ZnBr) Battery Technology 287
Flow Battery System Cost Comparison 288
Importance of Flow Battery Use in Solar Power Systems 289
Super-Capacitors ... 289
Double-Layer Capacitance ... 290
Pseudo-Capacitance .. 290
Hybrid Capacitors ... 290
Super-Capacitor Technology Operational Principles 291
Capacitance Distribution .. 292
Super-Capacitor Electrical Charge Storage Principles 292
Electrostatic Double-Layer Capacitance 293
Fabrication of Super-Capacitors ... 294
Electrodes Material ... 296
Ultra-Battery Technologies .. 297
Energy Storage and Harvesting .. 300
Application ... 301
Specific Advantages of Ultra-Batteries 301
Application of Ultra-Battery in Microgrids 301
Ultra-Battery Unique Properties 302

Appendix A Glossary: Solar Energy Power Terms 303
Appendix B Feasibility Study and Example 339
Feasibility Study ... 339
Solar Power Site Survey Guide and Logs 340
Solar Power System Preliminary Design Consideration 352
Guideline ... 352
Shading Analysis and Solar Energy Performance 354
Multiplier .. 354
Project Preliminary Cost Estimating Example 362
Solar Power Array Shading .. 369
Appendix C Solar Power System Tests 375
 Dynamic Solar Power Output Performance Measurement Procedure . 375
 Ground Insulation Test Requirements 376
 Power Output Measurement Tests 377
 Solar Power String Test .. 378
 String Isc Measurements ... 382
 Inverter Startup Test Sequence 386

Appendix D Bakersfield, California, Solar Power Fire 391

Appendix E U.S. Statewide Solar Initiative Programs and International Tariffs 395

Appendix F Alternative and Solar Power Engineering Studies Program 437

Appendix G Historical Timeline of Solar Power Energy 457

Index ... 465