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1

Random Graphs

Graph theory is a vast subject in which the goals are to relate various
graph properties i.e. proving that Property A implies Property B for various
properties A,B. In some sense, the goals of Random Graph theory are to prove
results of the form “Property A almost always implies Property B.” In many
cases Property A could simply be “Graph G has m edges.” A more interesting
example would be the following: property A is “G is an r-regular graph, r ≥ 3”
and Property B is “G is r-connected.” This is proved in Chapter 10.

Before studying questions such as these, we need to describe the basic
models of a random graph.

1.1 Models and Relationships

The study of random graphs in their own right began in earnest with the
seminal paper of Erdős and Rényi [276]. This paper was the first to exhibit
the threshold phenomena that characterize the subject.

Let Gn,m be the family of all labeled graphs with vertex set V = [n] =
{1,2, . . . ,n} and exactly m edges, 0 ≤ m ≤ (n2). To every graph G ∈ Gn,m, we
assign a probability

P(G)=
((n

2

)
m

)−1

.

Equivalently, we start with an empty graph on the set [n], and insert m edges
in such a way that all possible

((n2)
m

)
choices are equally likely. We denote such

a random graph by Gn,m = ([n],En,m) and call it a uniform random graph.
We now describe a similar model. Fix 0 ≤ p ≤ 1. Then for 0 ≤ m ≤ (n2),

assign to each graph G with vertex set [n] and m edges a probability

P(G)= pm(1− p)(
n
2)−m,
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4 Random Graphs

where 0 ≤ p ≤ 1. Equivalently, we start with an empty graph with vertex set
[n] and perform

(n
2

)
Bernoulli experiments inserting edges independently with

probability p. We call such a random graph, a Binomial random graph and
denote it by Gn,p = ([n],En,p). This was introduced by Gilbert [367].

As one may expect there is a close relationship between these two models
of random graphs. We start with a simple observation.

Lemma 1.1 A random graph Gn,p, given that its number of edges is m, is

equally likely to be one of the
((n2)

m

)
graphs that have m edges.

Proof Let G0 be any labeled graph with m edges. Then since

{Gn,p = G0} ⊆ {|En,p| = m}
we have

P(Gn,p = G0 | |En,p| = m)= P(Gn,p = G0, |En,p| = m)

P(|En,p| = m)

= P(Gn,p = G0)

P(|En,p| = m)

= pm(1− p)(
n
2)−m((n2)

m

)
pm(1− p)(

n
2)−m

=
((n

2

)
m

)−1

.

�
Thus Gn,p conditioned on the event {Gn,p has m edges} is equal in distribu-

tion to Gn,m, the graph chosen uniformly at random from all graphs with m
edges.

Obviously, the main difference between those two models of random graphs
is that in Gn,m we choose its number of edges, while in the case of Gn,p the
number of edges is the Binomial random variable with the parameters

(n
2

)
and

p. Intuitively, for large n random graphs Gn,m and Gn,p should behave in a
similar fashion when the number of edges m in Gn,m equals or is “close” to the
expected number of edges of Gn,p, i.e. when

m =
(

n

2

)
p ≈ n2p

2
, (1.1)

or, equivalently, when the edge probability in Gn,p

p ≈ 2m

n2
. (1.2)
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1.1 Models and Relationships 5

Throughout the book, we use the notation f ≈ g to indicate that f = (1+o(1))g,
where the o(1) term depends on some parameter going to 0 or ∞.

We next introduce a useful “coupling technique” that generates the random
graph Gn,p in two independent steps. We then describe a similar idea in relation
to Gn,m. Suppose that p1 < p and p2 is defined by the equation

1− p = (1− p1)(1− p2), (1.3)

or, equivalently,

p = p1 + p2 − p1p2.

Thus an edge is not included in Gn,p if it is not included in either of Gn,p1 or
Gn,p2 .

It follows that

Gn,p =Gn,p1 ∪Gn,p2 ,

where the two graphs Gn,p1 ,Gn,p2 are independent. So when we write

Gn,p1 ⊆Gn,p,

we mean that the two graphs are coupled so that Gn,p is obtained from Gn,p1

by superimposing it with Gn,p2 and replacing eventual double edges by a
single one.

We can also couple random graphs Gn,m1 and Gn,m2 where m2 ≥ m1 via

Gn,m2 =Gn,m1 ∪H.

Here H is the random graph on vertex set [n] that has m = m2 − m1 edges
chosen uniformly at random from

([n]
2

) \En,m1 .
Consider now a graph property P defined as a subset of the set of all

labeled graphs on vertex set [n], i.e. P ⊆ 2(
n
2). For example, all connected

graphs (on n vertices), graphs with a Hamiltonian cycle, graphs containing a
given subgraph, planar graphs, and graphs with a vertex of given degree form
a specific “graph property.”

We state below two simple observations that show a general relationship
between Gn,m and Gn,p in the context of the probabilities of having a given
graph property P .

Lemma 1.2 Let P be any graph property and p = m/
(n

2

)
where m =

m(n),
(n

2

)−m →∞. Then, for large n,

P(Gn,m ∈P)≤ 10m1/2P(Gn,p ∈P).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-11850-8 - Introduction to Random Graphs
Alan Frieze and Michał Karoński
Excerpt
More information

http://www.cambridge.org/9781107118508
http://www.cambridge.org
http://www.cambridge.org


6 Random Graphs

Proof By the law of total probability,

P(Gn,p ∈P)=
(n2)∑
k=0

P(Gn,p ∈P | |En,p| = k)P(|En,p| = k)

=
(n2)∑
k=0

P(Gn,k ∈P)P(|En,p| = k)

≥ P(Gn,m ∈P)P(|En,p| = m).

Recall that the number of edges |En,p| of a random graph Gn,p is a random
variable with the Binomial distribution with parameters

(n
2

)
and p. Applying

Stirling’s formula:

k! = (1+ o(1))

(
k

e

)k √
2πk, (1.4)

and putting N = (n2), we get

P(|En,p| = m)=
(

N

m

)
pm(1− p)(

n
2)−m

= (1+ o(1))
NN

√
2πN pm(1− p)N−m

mm(N −m)N−m 2π
√

m(N −m)
(1.5)

= (1+ o(1))

√
N

2πm(N −m)
.

Hence,

P(|En,p| = m)≥ 1

10
√

m
,

so
P(Gn,m ∈P)≤ 10m1/2P(Gn,p ∈P).

�
We call a graph property P monotone increasing if G ∈ P implies G +

e ∈ P , i.e. adding an edge e to a graph G does not destroy the property. For
example, connectivity and Hamiltonicity are monotone increasing properties.
A monotone increasing property is non-trivial if the empty graph K̄n /∈P and
the complete graph Kn ∈P .

A graph property is monotone decreasing if G ∈ P implies G − e ∈ P ,
i.e. removing an edge from a graph does not destroy the property. Properties
of a graph not being connected or being planar are examples of monotone
decreasing graph properties. Obviously, a graph property P is monotone
increasing if and only if its complement is monotone decreasing. Clearly not
all graph properties are monotone. For example, having at least half of the
vertices having a given fixed degree d is not monotone.
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1.1 Models and Relationships 7

From the coupling argument it follows that if P is a monotone increasing
property then, whenever p< p′ or m<m′,

P(Gn,p ∈P)≤ P(Gn,p′ ∈P), (1.6)

and
P(Gn,m ∈P)≤ P(Gn,m′ ∈P), (1.7)

respectively.
For monotone increasing graph properties we can get a much better upper

bound on P(Gn,m ∈ P), in terms of P(Gn,p ∈ P), than that given by
Lemma 1.2.

Lemma 1.3 Let P be a monotone increasing graph property and p= m
N . Then,

for large n and p such that Np,N(1− p)/(Np)1/2 →∞,

P(Gn,m ∈P)≤ 3P(Gn,p ∈P).

Proof Suppose P is monotone increasing and p = m
N , where N = (n2). Then

P(Gn,p ∈P)=
N∑

k=0

P(Gn,k ∈P)P(|En,p| = k)

≥
N∑

k=m

P(Gn,k ∈P)P(|En,p| = k).

However, by the coupling property we know that for k ≥ m,

P(Gn,k ∈P)≥ P(Gn,m ∈P).

The number of edges |En,p| in Gn,p has the Binomial distribution with
parameters N,p. Hence,

P(Gn,p ∈P)≥ P(Gn,m ∈P)

N∑
k=m

P(|En,p| = k)

= P(Gn,m ∈P)

N∑
k=m

uk, (1.8)

where

uk =
(

N

k

)
pk(1− p)N−k.

Now, using Stirling’s formula,

um = (1+ o(1))
NNpm(1− p)N−m

mm(N −m)N−m(2πm)1/2
= 1+ o(1)

(2πm)1/2
.
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8 Random Graphs

Furthermore, if k = m+ t where 0 ≤ t ≤ m1/2 then

uk+1

uk
= (N − k)p

(k+ 1)(1− p)
= 1− t

N−m

1+ t+1
m

≥ exp

{
− t

N −m− t
− t+ 1

m

}
= 1− o(1),

after using Lemma 21.1(a), (b) to obtain the first inequality and our
assumptions on N,p to obtain the second.

It follows that
m+m1/2∑

k=m

uk ≥ 1− o(1)

(2π)1/2

and the lemma follows from (1.8). �
Lemmas 1.2 and 1.3 are surprisingly applicable. In fact, since the Gn,p model

is computationally easier to handle than Gn,m, we repeatedly use both lemmas
to show that P(Gn,p ∈ P)→ 0 implies that P(Gn,m ∈ P)→ 0 when n →∞.
In other situations we can use a stronger and more widely applicable result.
The theorem below, which we state without proof, gives precise conditions
for the asymptotic equivalence of random graphs Gn,p and Gn,m. It is due to
Łuczak [535].

Theorem 1.4 Let 0 ≤ p0 ≤ 1, s(n) = n
√

p(1− p) → ∞, and ω(n) → ∞
arbitrarily slowly as n →∞.

(i) Suppose that P is a graph property such that P(Gn,m ∈P)→ p0 for all

m ∈
[(

n

2

)
p−ω(n)s(n),

(
n

2

)
p+ω(n)s(n)

]
.

Then P(Gn,p ∈P)→ p0 as n →∞.
(ii) Let p− = p−ω(n)s(n)/n3 and p+ = p+ω(n)s(n)/n3. Suppose that P is

a monotone graph property such that P(Gn,p− ∈ P)→ p0 and P(Gn,p+ ∈
P)→ p0. Then P(Gn,m ∈P)→ p0, as n →∞, where m = �(n2)p�.

1.2 Thresholds and Sharp Thresholds

One of the most striking observations regarding the asymptotic properties of
random graphs is the “abrupt” nature of the appearance and disappearance
of certain graph properties. To be more precise in the description of this
phenomenon, let us introduce threshold functions (or just thresholds) for

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-11850-8 - Introduction to Random Graphs
Alan Frieze and Michał Karoński
Excerpt
More information

http://www.cambridge.org/9781107118508
http://www.cambridge.org
http://www.cambridge.org


1.2 Thresholds and Sharp Thresholds 9

monotone graph properties. We start by giving the formal definition of a
threshold for a monotone increasing graph property P .

Definition 1.5 A function m∗ =m∗(n) is a threshold for a monotone increasing
property P in the random graph Gn,m if

lim
n→∞P(Gn,m ∈P)=

{
0 if m/m∗ → 0,

1 if m/m∗ →∞,

as n →∞.

A similar definition applies to the edge probability p = p(n) in a random
graph Gn,p.

Definition 1.6 A function p∗ = p∗(n) is a threshold for a monotone increasing
property P in the random graph Gn,p if

lim
n→∞P(Gn,p ∈P)=

{
0 if p/p∗ → 0,

1 if p/p∗ →∞,

as n →∞.

It is easy to see how to define thresholds for monotone decreasing graph
properties and therefore we leave this to the reader.

Notice also that the thresholds defined above are not unique, since any
function which differs from m∗(n) (resp. p∗(n)) by a constant factor is also
a threshold for P .

A large body of the theory of random graphs is concerned with the search
for thresholds for various properties, such as containing a path or cycle of
a given length, or, in general, a copy of a given graph, or being connected
or Hamiltonian, to name just a few. Therefore the next result is of special
importance. It was proved by Bollobás and Thomason [150].

Theorem 1.7 Every non-trivial monotone graph property has a threshold.

Proof Without loss of generality assume that P is a monotone increasing
graph property. Given 0< ε < 1 we define p(ε) by

P(Gn,p(ε) ∈P)= ε.
Note that p(ε) exists because

P(Gn,p ∈P)=
∑

G∈P

p|E(G)|(1− p)N−|E(G|
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10 Random Graphs

is a polynomial in p that increases from 0 to 1. This is not obvious from the
expression, but it is obvious from the fact that P is monotone increasing and
that increasing p increases the likelihood that Gn,p ∈P .

We will show that p∗ = p(1/2) is a threshold for P . Let G1,G2, . . . ,Gk be
independent copies of Gn,p. The graph G1 ∪ G2 ∪ . . . ∪ Gk is distributed as
Gn,1−(1−p)k . Now 1− (1− p)k ≤ kp, and therefore by the coupling argument

Gn,1−(1−p)k ⊆Gn,kp,

and so Gn,kp /∈P implies G1,G2, . . . ,Gk /∈P . Hence,

P(Gn,kp /∈P)≤ [P(Gn,p /∈P)]k.

Let ω be a function of n such that ω→∞ arbitrarily slowly as n →∞, ω�
log logn. (We say that f (n)� g(n) or f (n)= o(g(n)) if f (n)/g(n)→ 0 as n →
∞. Of course in this case we can also write g(n)� f (n).) Suppose also that
p = p∗ = p(1/2) and k = ω. Then

P(Gn,ωp∗ /∈P)≤ 2−ω = o(1).

On the other hand for p = p∗/ω,

1

2
= P(Gn,p∗ /∈P)≤ [P(Gn,p∗/ω /∈P)

]ω
.

So
P(Gn,p∗/ω /∈P)≥ 2−1/ω = 1− o(1).

�
In order to shorten many statements of theorems in the book we say that a

sequence of events En occurs with high probability (w.h.p.) if

lim
n→∞P(En)= 1.

Thus the statement that says p∗ is a threshold for a property P in Gn,p is the
same as saying that Gn,p �∈P w.h.p. if p� p∗, while Gn,p ∈P w.h.p. if p� p∗.

In many situations we can observe that for some monotone graph properties
more “subtle” thresholds hold. We call them “sharp thresholds.” More
precisely,

Definition 1.8 A function m∗ = m∗(n) is a sharp threshold for a monotone
increasing property P in the random graph Gn,m if for every ε > 0,

lim
n→∞P(Gn,m ∈P)=

{
0 if m/m∗ ≤ 1− ε
1 if m/m∗ ≥ 1+ ε.

A similar definition applies to the edge probability p = p(n) in the random
graph Gn,p.
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