Australian Vegetation
Third Edition

Australian Vegetation has been an essential reference for students and researchers in botany, ecology and natural resource management for over 35 years. Now fully updated and with a new team of authors, the third edition presents the latest insights on the patterns and processes that shaped the vegetation of Australia. The first part of the book provides a synthesis of ecological processes that influence vegetation traits throughout the continent, using a new classification of vegetation. New chapters examine the influences of climate, soils, fire regimes, herbivores and aboriginal people on vegetation, in addition to completely revised chapters on evolutionary biogeography, quaternary vegetation history and alien plants. The book’s second half presents detailed ecological portraits for each major vegetation type and offers data-rich perspectives and comparative analysis presented in tables, graphs, maps and colour illustrations. This authoritative book will inspire readers to learn and explore firsthand the vegetation of Australia.

David A. Keith is Professor of Botany in the Centre for Ecosystem Science at the University of New South Wales Australia and the NSW Office of Environment and Heritage. He won the Australian Ecology Research Award in 2013 and led the team awarded the 2015 Eureka Prize for Environmental Research. He is the author of the award-winning book Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT.
Australian Vegetation

DAVID A. KEITH
University of New South Wales, Sydney
New South Wales Office of Environment and Heritage, Sydney
Australian Long Term Ecological Research Network, Canberra

Third Edition
To Roger Carolin, Peter Myerscough
and Doug Benson,
who inspired appreciation and learning in botany,
ecology and conservation.
## CONTENTS

Contributors ix

Foreword  Richard H. Groves  xiv

Acknowledgements  xx

### PART I: Ecological Processes  1

1. Girt: A Continental Synthesis of Australian Vegetation
   David A. Keith and Mark G. Tozer  3

2. Evolutionary Biogeography of the Australian Flora in the Cenozoic Era
   Peter H. Weston and Gregory J. Jordan  40

3. Quaternary Vegetation in Australia
   Scott D. Mooney, Kale Sniderman, A. Peter Kershaw, Simon Haberle and Jessica Roe  63

4. Aboriginal People and Australia’s Vegetation: Past and Current Interactions
   Emilie Ens, Fiona Walsh and Philip Clarke  89

5. Fire and Australian Vegetation
   Ben P. Miller and Brett P. Murphy  113

6. Direct and Indirect Effects of Herbivore Activity on Australian Vegetation
   David J. Eldridge, Samantha K. Travers, Adrian D. Manning and Philip Barton  135

7. Soils and the Below-ground Interactions that Shape Australian Vegetation
   Mark C. Brundrett, Pauline F. Grierson, Lauren T. Bennett and Christopher J. Weston  156

8. Climatic Influence over Vegetation Pattern and Process
   Mark K.J. Ooi, Tony D. Auld, Linda J. Beaumont and Ross A. Bradstock  182

9. Invasive Plants and Pathogens in Australia
   Michelle R. Leishman, Rachael V. Gallagher, Jane A. Catford, Tony Grice, John W. Morgan and Samantha Setterfield  207

10. Plant Life Cycles Above- and Below-ground
    Tony D. Auld and Mark K.J. Ooi  230

### PART II: Vegetation Types  255

11. Rainforests and Vine Thickets
    Daniel J. Metcalfe and Peter T. Green  257

12. Wet Sclerophyll Forests
    Grant Wardell-Johnson, John Neldner and Jayne Balfner  281

    Mark G. Tozer, Christopher C. Simpson, Isaac B. Jansens and David A. Keith  314

14. Heathlands and Associated Shrublands
    Byron B. Lamont and David A. Keith  339
### Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Australia's Tropical Savannas: Vast, Ancient and Rich Landscapes</td>
<td>Richard J. Williams, Garry D. Cook, Adam C. Liedloff and William J. Bond</td>
<td>368</td>
</tr>
<tr>
<td>16</td>
<td>Brigalow Forests and Associated Eucalypt Woodlands of Subtropical Eastern Australia</td>
<td>Rod J. Fensham, Andrew J.W. Biggs, Don W. Butler and Harry J. MacDermott</td>
<td>389</td>
</tr>
<tr>
<td>17</td>
<td>Temperate Eucalypt Woodlands</td>
<td>Suzanne M. Prober, Carl R. Gosper, Louise Gilfedder, Tom D. Harwood, Kevin R. Thiele, Kristen J. Williams and Colin J. Yates</td>
<td>410</td>
</tr>
<tr>
<td>18</td>
<td>Australian Tussock Grasslands</td>
<td>John W. Morgan, Rod J. Fensham, Robert Godfree and Paul W. Foreman</td>
<td>438</td>
</tr>
<tr>
<td>19</td>
<td>Alpine, Sub-alpine and Sub-Antarctic Vegetation of Australia</td>
<td>Susanna Venn, Jamie Kirkpatrick, Keith McDougall, Neville Walsh, Jennie Whinam and Richard J. Williams</td>
<td>461</td>
</tr>
<tr>
<td>21</td>
<td>Forests and Woodlands of Australia's Rivers and Floodplains</td>
<td>Megan Good, Rhiannon Smith and Neil Pettit</td>
<td>516</td>
</tr>
<tr>
<td>22</td>
<td>Coastal Halophytic Vegetation</td>
<td>Kerrylee Rogers, Paul Boon, Catherine Lovelock and Neil Saintilan</td>
<td>544</td>
</tr>
<tr>
<td>23</td>
<td>Mallee Woodlands and Shrublands: The Mallee, Muruk/Muert and Maalok Vegetation of Southern Australia</td>
<td>Colin J. Yates, Carl R. Gosper, Stephen D. Hopper, David A. Keith, Suzanne M. Prober and Mark G. Tozer</td>
<td>570</td>
</tr>
<tr>
<td>24</td>
<td>The Chenopod Shrublands</td>
<td>David J. Eldridge, Samantha K. Travers, Agustín F. Facelli, José M. Facelli and David A. Keith</td>
<td>599</td>
</tr>
<tr>
<td>25</td>
<td>Arid Shrublands and Open Woodlands of Inland Australia</td>
<td>Catherine Nano, Peter Jobson and Glenda M. Wardle</td>
<td>626</td>
</tr>
<tr>
<td>26</td>
<td>Hummock Grasslands: <em>Triodia</em>-dominated Grasslands in Arid Australia</td>
<td>Glenda M. Wardle and Catherine Nano</td>
<td>651</td>
</tr>
</tbody>
</table>

PART III: Conclusion 675

| 27      | Conservation of Australian Vegetation                               | David A. Keith and Tony D. Auld                                      | 677  |

Index 711

The colour plates are to be found between pages 338 and 339
CONTRIBUTORS

TONY D. AULD
Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia; Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; and NSW Office of Environment and Heritage, Hurstville, NSW, Australia

JAYNE BALMER
Department of Primary Industries, Water, Parks and Environment, Hobart, TAS, Australia; and School of Land and Food, University of Tasmania, Hobart, TAS, Australia

PHILIP BARTON
Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia

LINDA J. BEAUMONT
Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia

LAUREN T. BENNETT
School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, VIC, Australia

ANDREW J.W. BIGGGS
Department of Natural Resources and Mines, Toowoomba, QLD, Australia

WILLIAM J. BOND
South African Environmental Observation Network, National Research Foundation, Claremont, South Africa; and Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa

PAUL BOON
Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC, Australia

ROSS A. BRADSTOCK
Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia

MARK C. BRUNDRETT
Department of Parks and Wildlife, Swan Region, WA, Australia and School of Plant Biology, University of Western Australia, Perth, WA, Australia

DON W. BUTLER
Queensland Herbarium, Toowong, QLD, Australia

SAMANTHA J. CAPON
Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

JANE A. CATFORD
Centre for Biological Sciences, University of Southampton, Southampton, UK; and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA

PHILIP CLARKE
Griffith and Federation Universities, Brisbane, QLD, Australia and South Australian Museum, Adelaide, SA, Australia

GARRY D. COOK
CSIRO Ecosystem Sciences, Winnellie, NT, Australia

MICHAEL M. DOUGLAS
School of Earth and Environment, University of Western Australia, Perth, WA, Australia
Contributors

DAVID J. ELDRIDGE
Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia

EMILIE ENS
Department of Environmental Sciences, Macquarie University, Sydney, NSW, Australia

AGUSTÍN F. FACELLI
Department of Environment, Water and Natural Resources of South Australia, Adelaide, SA, Australia

JOSÉ M. FACELLI
Department of Ecology and Environmental Sciences, The University of Adelaide, Adelaide, SA, Australia

ROD J. FENSHAM
School of Biological Sciences, Department of Ecology and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia; and Queensland Herbarium, Toowong, QLD, Australia

PAUL W. FOREMAN
Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, Australia

RAY H. FROEND
School of Natural Sciences, Edith Cowan University, Joondalup, WA, Australia

RACHAEL V. GALLAGHER
Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia

LOUISE GILFEDDER
Discipline of Geography and Spatial Sciences, School of Land and Food, University of Tasmania, Hobart, TAS, Australia

ROBERT GODFREE
CSIRO, National Collections and Marine Infrastructure, Canberra, ACT, Australia

MEGAN GOOD
Federation University, Ballarat, VIC, Australia

CARL R. GOSPER
CSIRO Land and Water, Floreat, WA, Australia; and Science and Conservation Division, Department of Parks and Wildlife, Kensington, WA, Australia

PETER T. GREEN
Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, Australia; and Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Canberra, ACT, Australia

TONY GRICE
School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia

PAULINE F. GRIERSON
School of Biological Sciences, University of Western Australia, Perth, WA, Australia

SIMON HABERLE
Department of Archaeology and Natural History, Australian National University, Canberra, ACT, Australia

TOM D. HARWOOD
CSIRO Land and Water, Canberra, ACT, Australia

STEPHENV D. HOPPER
Centre of Excellence in Natural Resource Management and School of Biological Sciences, The University of Western Australia, Albany, WA, Australia

ISAAC B. JANSSENS
NSW Office of Environment and Heritage, Hurstville, NSW, Australia

PETER JOBSON
Flora and Fauna Division, Department of Land Resource Management, Northern Territory Government, Alice Springs, NT, Australia
MARK K.J. OOI
Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia; and Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia

NEIL PETTIT
University of Western Australia, Perth, WA, Australia; and Edith Cowan University, Joondalup, WA, Australia

SUZANNE M. PROBER
CSIRO Land and Water, Floreat, WA, Australia

JANE ROBERTS
Institute of Applied Ecology, University of Canberra, Canberra, ACT, Australia

JESSICA ROE
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia; and UNSW Learning, Design and Development Service, University of New South Wales, Sydney, NSW, Australia

KERRYLEE ROGERS
School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, Australia

NEIL SAINTILAN
Department of Environmental Sciences, Macquarie University, Sydney, NSW, Australia

SAMANTHA SETTERFIELD
Faculty of Science, University of Western Australia, Perth, Australia

CHRISTOPHER C. SIMPSON
NSW Office of Environment and Heritage, Hurstville, NSW, Australia; and Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia

RHIANNON SMITH
University of New England, Armidale, NSW, Australia

KALE SNIDERMAN
School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia

KEVIN R. THIELE
School of Plant Biology, The University of Western Australia, Crawley, WA, Australia

MARK G. TOZER
NSW Office of Environment and Heritage, Hurstville, NSW, Australia; and Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia

SAMANTHA K. TRAVERS
Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia

SUSANNA VENN
Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia

FIONA WALSH
CSIRO, Land and Water, Alice Springs, NT, Australia
Contributors

NEVILLE WALSH
Royal Botanic Gardens Victoria, South Yarra, VIC, Australia

GRANT WARDELL-JOHNSON
School of Science, Curtin University, Perth, WA, Australia

GLENDA M. WARDLE
Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia; and Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Canberra, ACT, Australia

CHRISTOPHER J. WESTON
School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, VIC, Australia

PETER H. WESTON
National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia

JENNIE WHINAM
Discipline of Geography and Spatial Sciences, School of Land and Food, University of Tasmania, Hobart, TAS, Australia

KRISTEN J. WILLIAMS
CSIRO Land and Water, Canberra, ACT, Australia

RICHARD J. WILLIAMS
CSIRO Land and Water, Winnellie, NT, Australia; and Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Canberra, ACT, Australia

SARAS M. WINDECKER
School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia

COLIN J. YATES
Science and Conservation Division, Department of Parks and Wildlife, Kensington, WA, Australia
Attempts to classify and name the various major types of Australian vegetation have a long history. The Aboriginal peoples who first settled the continent recognised some different plant assemblages and assigned them descriptive words in their own languages, such as brigalow, kwongan, mallee, mulga and wallum, all of which remain in general use by Australians today. On 6 August 1699, William Dampier wrote of the vegetation at Shark’s Bay in Western Australia:

The Grass grows in great Tufts, as big as a Bushel, here and there a Tuft: Being intermix’d with much Heath. [. . .] Of Trees or Shrubs here are divers Sorts; but none above 10 Foot high: There Bodies about 3 Foot about, and 5 or 6 Foot high. [. . .] There were also beside some Plants, Herbs, and tall Flowers, some very small Flowers, growing on the Ground, that were sweet and beautiful, and for the most part unlike any I had seen elsewhere.

Spencer (1981, p. 108)

This is most likely the first description of an Australian vegetation type. Subsequent early European collectors, such as Robert Brown, or visitors such as Charles Darwin, were also intrigued by the different types of Australian vegetation they encountered, and especially by the eucalypt forests. The predominant emphasis over this early period was, however, on collecting, naming and describing the indigenous flora. It was really only in the late nineteenth century with the development of the new discipline of ecology in the northern hemisphere that European botanists and plant geographers began to describe vegetation types and attempt to classify them systematically (see e.g. Schimper 1903; Diels 1906; Warming 1909). Resident Australian botanists soon followed this development (Osborn 1914; Andrews 1916; Adamson and Osborn 1924) and some notable regional accounts of natural and modified vegetation were published subsequently (Wood 1937; Beadle 1948; Moore 1953a, b; Costin 1954).

To map the vegetation at a national scale, however, a consensual and rigorous classification of vegetation types was necessary; a terminological need met initially by Wood (1939), Beadle and Costin (1952) and Wood and Williams (1960), and subsequently by Specht (1970, 1981). Specht’s classification used a matrix of two structural aspects – namely, life-form and foliage projective cover of the tallest stratum – to characterise 28 major vegetation types of Australia (Table F.1). It was this 1970 classification that Carnahan (1976) used to map the natural vegetation of Australia and subsequently to map the present vegetation types (Carnahan 1990). Specht’s 1970 classification also largely formed the basis of accounts of the major vegetation types in the two earlier editions of this book (Groves 1981, 1994), although less so in other accounts, either national (Beadle 1981) or regional (Beard 1976; Kirkpatrick and Dickinson 1984; Keith 2004).
Table F.1 Structural formations of Australian vegetation omitting the littoral and alpine complexes, and salt lakes (abridged from Specht 1970).

<table>
<thead>
<tr>
<th>Life form and height of tallest stratum</th>
<th>Foliage projective cover of tallest stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–70%</td>
<td>Tall closed-forest</td>
</tr>
<tr>
<td>70–30%</td>
<td>Tall open-forest</td>
</tr>
<tr>
<td>30–10%</td>
<td>Tall woodland</td>
</tr>
<tr>
<td>&lt;10%</td>
<td>Tall open-woodland</td>
</tr>
<tr>
<td>Tall trees &gt; 30 m</td>
<td>Tall closed-forest</td>
</tr>
<tr>
<td>10–30 m</td>
<td>Tall open-forest</td>
</tr>
<tr>
<td>&lt;10 m</td>
<td>Tall woodland</td>
</tr>
<tr>
<td>Tall shrubs &gt; 30 m</td>
<td>Tall open-shrubland</td>
</tr>
<tr>
<td>Shrub closed 0.25–2 m</td>
<td>Closed heath</td>
</tr>
<tr>
<td>Shrub &lt; 0.25 m</td>
<td>Open heath</td>
</tr>
<tr>
<td>Hummock grasses</td>
<td>Hummock grassland</td>
</tr>
<tr>
<td>&lt; 2 m</td>
<td>Open-fellfield</td>
</tr>
<tr>
<td>Graminoids, herbs, ferns, etc.</td>
<td>Grassland</td>
</tr>
<tr>
<td></td>
<td>Open-grassland</td>
</tr>
</tbody>
</table>

1 A tree is defined as a woody plant usually with a single stem; a shrub is a woody plant with many stems arising at or near the base.

Current descriptions of major Australian vegetation types reflect this century-long history of attempts to classify vegetation types and usually comprise a mixture of structural and floristic nomenclature, as implicit in terms such as chenopod shrublands (Chapter 24). In this current edition, some environmental descriptors are added, e.g. ‘dry’ sclerophyll forest, even when this assemblage of sclerophyllous trees and shrubs may grow in moderately moist conditions, though without the prominence of ferns which seems to characterise so-called ‘wet’ sclerophyll forest (see Chapters 12 and 13). Both ‘dry’ and ‘wet’ sclerophyll forests are open forests in Specht’s 1970 terminology (Table F.1). So-called ‘desert’ vegetation is common over extensive areas of central Australia, but is really a mixture of hummock grassland (Chapter 26), Acacia open-woodland and shrubland (Chapter 25), and low eucalypt open-woodland (Chapter 23) in varying proportions and is not an ecologically valid term for this admixture of several vegetation types that characterise Australian arid environments. At the other extreme from Specht’s structural classification, Bridgewater (1994) presented a system for classifying Australian vegetation on a solely floristic basis. Each of his 26 divisions was defined by a suite of ‘character genera’ (see Groves (1999) for a further discussion of this floristic classification). Whatever the nomenclatural usages and bases for classification by individual botanists, Australian vegetation has increasingly captured the attention of plant ecologists over the last century or more, especially since the first edition of this book was published in 1981.
Despite the contemporary strength of Australian vegetation studies (as evidenced in the chapters that follow), I wish to introduce a few advances in vegetation science over the 35-year period since the earlier editions of this book were published. I shall also point to some deficiencies in coverage of earlier strengths as I perceive them.

The first advance seems to me to be the linking of vegetation type and functionality, as implicit in the title to Part I of this book and Chapter 1. An initially descriptive science of studying vegetation patterns at a continental scale now includes a consideration of functional aspects, such as seasonal water usage and nutrient cycling, as drivers of the dynamics of a vegetation type and, ultimately, its distribution nationally.

A second and allied advance is the enhanced study of fire effects on the distribution of a range of vegetation types. Gill (1975) introduced the concept of a ‘fire regime’ to begin to refine studies of fire ecology in Australia and elsewhere, but especially in relation to adaptive traits shown by plant species and, indeed, by sclerophyll vegetation generally, in responding to fires in Mediterranean-climate ecosystems (Gill 1977). The concept of the fire regime (a function of the frequency, intensity and season of fire) unified understanding of previous local descriptions of wild fires and enabled a recent attempt to predict the effects of changing fire regimes on the responses of woody plants at a continental scale (Clarke et al. 2015; Chapter 5).

Mapping and classification of Australian vegetation types has advanced greatly with the development of computers and geographic information systems (GIS). The initial intuitive classification of Australian rainforests of Webb (1959) was developed further only 10 or more years later into a computerised numerical analysis of field data (Webb et al. 1970, 1976) that enabled classification of a range of structural subtypes of rainforest and their different environmental relationships. So too the use of GIS methods to generate computer-enabled maps of Australian vegetation, such as that of the National Vegetation Information System (NVIS) of the Department of the Environment and Energy (2007), the products of which now replace the earlier hard-copy maps of Carnahan (1976, 1990). The latest NVIS version (4.2) maps 79 subgroups of native vegetation types in terms of both structure and floristics, e.g. Banksia woodlands, Callitris open woodlands, and 6 subgroups of non-native vegetation.

Some earlier strengths of Australian vegetation science have not advanced commensurately as the three topics I have pointed to above, however. In the first edition of this book, I noted that pollination biology was an aspect ‘greatly in need of more research’ and this need continues 35 years later. A further deficiency is the apparent lack of newly initiated long-term field studies of vegetation change of the type initiated by the Botany Department of the University of Adelaide at Koonamore (Hall et al. 1964; Sinclair 2005) in 1926 or on the Bogong High Plains initiated by the Botany Department of the University of Melbourne in 1947 (Carr and Turner 1959; Wahren et al. 1994). Although these are ongoing (Foulkes et al. 2014; Williams et al. 2014), some important long-term studies have fallen dormant, such as vegetation monitoring over 20 years the since cessation of grazing of alpine and sub-alpine plots in Kosciusko National Park (Wimbush and Costin 1979a, b). A notable exception to this apparent decline in the effects of time on grazed vegetation is the recent account of floristic changes over a 46-year period in mulga (Acacia aneura) vegetation in arid Western Australia by Davies et al. (2015).
Each edition of *Australian Vegetation* contains a chapter on the vegetation history of Australia (see Chapters 2 and 3). And yet it seems to me that currently there is a decline in studies of the important and longer-term effects of time on the dynamics of Australian vegetation types. The current absence of studies of long-term changes in vegetation type of the sort evidenced by the earlier studies of Singh at Lake George, New South Wales, and Kershaw on the Atherton Tableland, Queensland is especially significant (Singh et al. 1981). The results of both studies show an alternation between sclerophyll and rainforest vegetation with changing climates and the incidences of fires over a period as long as the last 100,000 years. Such studies offer valuable perspectives on recent vegetation history over much of eastern Australia and the effects of changing climates on vegetation distribution; they also provide clues to the resilience of such vegetation to human-induced climate change in future time.

I conclude that Australian studies in vegetation science have advanced considerably, both in number and in quality, since 1980. There have been some obvious strengths and weaknesses in research coverage and I have pointed to a few examples in each category. Previous editions of this book provide markers of where the science was at in both 1981 and in 1994, as seen through the eyes of the many contributors to both editions and this former editor. So too will the chapters in this third edition and the personal predilections of the present editor and the authors of the 27 chapters that follow this Foreword. I trust this third edition will continue to provide stimulus to graduate students in botany and visitors to this country who wish to learn more of the structural, floristic and functional aspects of Australian vegetation. I can attest personally to a continuing fascination with the diversity and beauty of the vegetation of Australia, especially as evoked by its eucalypt forests, its sclerophyll shrublands (heaths) and its natural grasslands.

R. H. Groves

CSIRO Honorary Research Fellow, Canberra

References


I am indebted to Richard Groves, who first suggested that I might continue the valuable legacy that he established with two seminal editions of *Australian Vegetation* in 1981 and 1994. Some considerable time later, Alan Crowden pursued me through conference crowds to secure an agreement. Both Richard and Alan provided invaluable and realistic advice on the challenge ahead. I am grateful to Lindsey Tate, Judith Shaw and Geetha Williams who managed production, copy editing and typesetting, respectively. Max McMaster produced a meticulous and comprehensive index.

It’s been a great pleasure and privilege to work with 80 of Australia’s leading botanists who responded to the call and produced something special in these pages. A much larger network of our colleagues were influential on the contents of the chapters through their published work and discussion of ideas. I especially thank the lead authors who responded to my suggestions, criticisms and threats in good spirit. Equally important, are those who contributed peer reviews of submitted manuscripts. Thanks to all those listed below for making this a better work.

The compilation of enormous volumes of map data has been one of the pivotal, but largely unseen tasks that differentiates this edition from previous ones. Chris Simpson provided indispensable GIS expertise in making order from many thousands of pieces that were sent down the wire. In the end, he fled to the ski fields.

Chantel Benbow proofread the entire manuscript and maintained sanity, composure and a truly meticulous eye for consistency and detail to the last word.

I am deeply grateful to my family for their support and understanding when I disappeared into the place in my head where this book took shape, and for their faith that ‘he’ll be back some day’.

Finally, to the subject itself. How lucky we are to live amongst it.

**Scientific reviewers**

Associate Professor Paul Adam, University of New South Wales  
Dr Alan Andersen, CSIRO Land and Water  
Dr Tony Auld, New South Wales Office of Environment and Heritage  
Dr Teresa Ayre, Queensland Herbarium  
Dr Jayne Balmer, Department of Primary Industries, Water and Environment, Tasmania  
Dr Margaret Brock, University of Tasmania  
Dr Elisabeth Bui, CSIRO Land and Water  
Associate Professor Tina Bell, University of Sydney  
Dr Margaret Byrne, Department of Parks and Wildlife, Western Australia  
Dr James Camac, Macquarie University
Acknowledgements

Dr Samantha Capon, Griffith University
Dr Jane Catford, University of Minnesota
Professor Carla Catterall, Griffith University
Dr Will Cornwell, University of New South Wales
Professor John Dodson, Australian Nuclear Science and Technology Organisation
Mr Michael Doherty, CSIRO Land and Water
Dr Josh Dorough, Natural Regeneration Australia
Professor David Eldridge, University of New South Wales
Dr Rod Fensham, Queensland Herbarium
Dr Rachael Gallagher, Macquarie University
Dr Neil Gibson, Department of Parks and Wildlife, Western Australia
Dr Carl Gosper, CSIRO Land and Water and Department of Parks and Wildlife, Western Australia
Professor Bob Hill, University of Adelaide
Professor Rod Keenan, University of Melbourne
Professor Peter Kershaw, Monash University
Professor Richard Kingsford, University of New South Wales
Associate Professor Andrew Le Brocque, University of Southern Queensland
Dr Steven Leonard, La Trobe University
Mr Berin MacKenzie, New South Wales Office of Environment and Heritage
Dr Sue McIntyre, Australian National University
Dr John Morgan, La Trobe University
Dr Steve Morton, CSIRO Land and Water
Professor Laco Mucina, University of Western Australia
Professor Adrienne Nicotra, Australian National University
Dr Mark Ooi, University of New South Wales
Dr Neil Pettit, University of Western Australia
Dr Owen Price, University of Wollongong
Dr Lynda Prior, University of Tasmania
Dr Suzanne Prober, CSIRO Land and Water
Dr Maurizio Rossetto, National Herbarium of New South Wales
Professor Peter Saenger, Southern Cross University
Dr David Tng, James Cook University
Mr Mark Tozer, New South Wales Office of Environment and Heritage
Associate Professor Peter Vesk, University of Melbourne
Dr John Virtue, Primary Industries and Regions, South Australia
Dr Paul Williams, James Cook University
Dr Boyd Wright, Alice Springs Herbarium