Cambridge University Press

978-1-107-11752-5 - The Expanding Universe: A Primer on Relativistic Cosmology
William D. Heacox

Excerpt

More information

Part I

Conceptual foundations
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Newtonian cosmology

While General Relativity (GR) is the only theory of gravitation that can describe
the Universe on large scales, Newtonian gravitation provides an illuminating
approximation to relativistic cosmology. It is thus worthwhile to briefly consider
classical, non-relativistic Newtonian gravitation and its application to cosmology,
before diving into the complexity and abstraction of the general relativistic
version.

I.I Newtonian gravitation

Newton’s theory of gravitation has been spectacularly successful in application to
all sorts of problems over the last 300+ years. But it has conceptual shortcomings
at its roots that render it inapplicable to all but the simplest approximations to
reality when applied to strong gravitational fields, or on the scales encountered in
cosmology.

First, the theory includes no mechanism for the transmittal of gravitational
force from one mass to another. The theory was criticized for this ‘action at a
distance’ requirement during Newton’s lifetime, but he brushed off the criticisms
with the observation that the theory worked even if we did not know exactly how.
The large distances encountered in cosmological applications, however, require a
theoretical underpinning that accommodates the transmittal of gravitational forces
over billions of light years; and the apparent instantaneous nature of Newtonian
gravitation over such distances seems suspect at best.

Second, Newtonian gravitation offers no explanation for the equality of grav-
itational and inertial mass. The gravitational force exerted by a mass M on a
massive test object located a distance d away is

MH’Z(G)

F=-G e

d,
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4 Newtonian cosmology

where by m ) is meant the gravitational mass of the test object, that appearing in
Newton’s law of gravitation (above). The dynamical response of the test object is
the acceleration

-

ém — i — —Gﬂ@
ma) d* mq
where my is the 1nert1al mass of the object, that appearing in Newton’s second
law of mechanics, F = ma. It is a well-observed fact that mgy = mq to a high
degree of precision for all massive objects, so
S M -
n=—God.
independent of the object’s mass: a gravitational field accelerates all massive
objects at the same rate, irrespective of their mass (or anything else).! Gravitation
is the only fundamental force for which this is true, and Newton’s theory offers
no suggestion as to why this is so.

Third, Newtonian dynamics (including gravitation) is based on concepts of
absolute space and time. Newton’s second law (F = ma), for instance, only works
in inertial reference frames, those experiencing no acceleration. But acceleration
relative to what? If you’re the only thing in the Universe, how do you know if
you’re accelerating or not? The nineteenth century Austrian physicist Ernst Mach
had an interesting answer to such questions, since embodied in Mach’s Principle:?
that the origin of inertia lay in the combined gravitation of all the Universe’s
contents, and that space of itself had no existence as a thing. This principle was
an important one in Einstein’s thinking leading to GR, but has since fallen out of
favor with modern physicists who include fields as properties of space itself.

But for Newton the only answer was that there was an absolute space relative
to which all accelerations could be measured. Similarly (if not quite so obviously),
there must be an absolute time that applies to all of space. Einstein’s Theory of
Special Relativity (SR) showed that both of these absolute concepts were erro-
neous, thus largely undermining the fundamentals of Newtonian gravitation.

Fourth, Newton’s theory of gravitation is manifestly incorrect in applications
to strong gravitational fields. At the time Einstein took on the task of developing
its successor the most worrisome and well-established discrepancy in Newtonian

! The subject of Galileo’s (possibly apocryphal) experiment of dropping objects of different
weights from the Leaning Tower of Pisa, to see if they hit the piazza below at the same time.
A more compelling version of the experiment, without the complication of air resistance,
was performed by Apollo astronauts on the Moon using a rock hammer and a feather as test
objects.

2 See, e.g., Sciama (1969), Graves (1971), Rindler (1977), Peebles (1993), and Ghosh (2000)
for analysis of Mach’s Principle and discussions of its relation to GR and its present standing
in modern physics and cosmology.
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1.2 Universal expansion 5

gravitation had to do with the orbit of Mercury. That elliptical and inclined
orbit, embedded deep within the Sun’s gravitational field, precesses at a rate of
A = 5599”.74 £ 0".40 per century, due mostly to the gravitational perturbations
of other planets. But all attempts to model the precession from Newtonian
gravitation fell short by about 43" per century, a figure two orders of magnitude
larger than the estimated observational uncertainty. By the beginning of the
twentieth century this apparent failure of Newtonian gravitation had become
sufficiently worrisome as to prompt several attempts to modify the theory
itself. Einstein’s demonstration that his General theory of Relativity successfully
predicted this anomalous precession was an important factor in its reception by
the scientific community. Observations during the intervening ~ 100 years have
since revealed several other areas in which GR gives a correct answer where
Newtonian gravitation does not (think: black holes!).

1.2 Universal expansion

Yet another problem with Newtonian gravitation arises in application to dynam-
ical models of the Universe as a whole; i.e., cosmology. A gravitationally
mediated expansion characterized by densities of gravitating matter and energy
can be described by two sets of equations: one or more field equations relating
mass/energy densities to gravitational potentials, and the resulting equation of
motion for a test particle in that potential. In Newtonian mechanics these are,
respectively,

Newtonian Gravitation

Field (Poisson’s) Equation: Vi = 4w Gp , (L.1)
Equation of motion: i=-Vo, (1.2)

where p is the mass density, ® is the Newtonian gravitational potential, and a
is the acceleration of a test particle in the gravitational potential. But Newtonian
gravitational potentials cannot be unambiguously defined in an infinite, homoge-
neous medium where, by symmetry, the potential must be the same everywhere.
Since ® has no gradient under such conditions, there can be no gravitational
dynamics. And since current observations strongly support the world-view of an
effectively infinite and homogeneous® Universe — as did conventional thinking

3 Homogeneous on sufficiently large scales.
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6 Newtonian cosmology

prior to the development of GR and modern astronomical observations — this
constitutes a serious obstacle to applying Newtonian gravitation to cosmology.

The matter can be finessed by suitable adjustments to the Newtonian theory,
usually in terms of changes to Poisson’s Equation.* But for purposes of illustration
and comparison with the relativistic model to be derived in Chapter 8, it suffices
to confine the analysis to finite universes with centers and to employ a classical
energy analysis. Thus: the total mechanical energy E of a mass m a distance d
from a fixed, central mass M is

E=U+Kk=-c""  L.p
= = —U———- — M ,
d 2

“ M
= d° =2G— +2(E/m) .

We can cast this into a cosmological context by (1) re-introducing the universal
expansion function a () (Equation (I.1)) so that d (t) = d a (¢); and (2) replacing
the central mass M with uniformly distributed mass density throughout the spheri-
cal volume encompassed by the two masses, so that M = (4/3) 7 pd>. Using these
relations and the mass conservation condition pd® = podg to eliminate M and d
from the above energy equation yields a differential equation for the expansion
function:

a>  8nGpy  E/m

= —_ . 1.3
a? 3 a a2d(2) (1.3)

Note that the left-hand side of this equation is the square of the Hubble parameter,
H = a/a, as defined in the Introduction.

This is the equation of motion of an object falling upward in a static gravita-
tional field. The form of its solution depends critically on the value of E. If E > 0
the structure is unbound: &> > 0 at all times and the expansion may continue
forever (at an ever-decreasing rate). This is an open expansion corresponding to
velocities exceeding that of escape. But if E <0 the structure is gravitationally
bound: @ — 0 at sufficiently large a and the expansion stops and reverses itself.
This is a closed expansion corresponding to velocities less than that of escape.
The critical case separating these two corresponds to £ = 0 and represents an
object with exactly the escape velocity. Graphical examples of a (¢) for all three
cases are shown in Figure 1.1.

The fate of this Newtonian Universe can be discerned by comparing its mass
density to its expansion rate. From Equation (1.3) at the current time (when
a=1),

81 G

E=0 = H}= 3

Po »

4 See Section 9.2 of Rindler (1977) for examples.
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1.2 Universal expansion 7
! P
- Open (E>0) —_ -
=] v
- L7
c .-
2 Z Critical:
O = _
c - =0
z TN
aft) =1 ~
5 . Closed: =
2 y. E<0
3 N t
n o 0
/ 1
Time, t —
Figure 1.1 Sample expansion functions for Newtonian mechanics, all for the same value

of Hy (which is the slope of these functions at the current time, #y).

where Hy = (a/a),, = a(to) is the current value of the Hubble Parameter and
po = p (to) is the current mass density. The critical mass density — that required

for a zero-energy Universe currently expanding at the rate Hy — is thus

3H;

Peo = 871G .

(1.4)

Inserting this into the expansion equation (1.3) for the current time and solving

for the total energy:

E
2B _ (1 = ﬂ) .
do :Oc,O

(1.5)

The Newtonian Universe is open (E > 0) or closed (E < 0) depending upon
whether its current mass density is less, or greater, respectively, than the critical
density. Low density universes expand forever, high density ones eventually stop

expanding and re-contract.

This is about as far as it is useful to carry the Newtonian analysis of cosmo-
logical expansion. While Equations (1.3) and (1.5) are gratifyingly similar to the
fully relativistic expansion equations to be developed later in this book, and it is
possible to join this Newtonian result to SR kinematics so as to produce a coher-
ent picture of such things as cosmological redshifts; the logical sleights of hand
employed in derivation of the Newtonian expansion equation largely invalidate its
application to the real world. We need to invoke GR in order to realistically model
the Universe on large scales, and that will require the considerable machinery

developed in Parts 1T and III of this text.
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8 Newtonian cosmology

Problems

1. Show that solutions to the expansion equation (1.3) in the critical case
(E = 0) are of the form a (f) o« ¢*/. Find an expression for the current
time 7y in such models in terms of the current mass density, p,. Estimate
the age of the Universe in this model in Gyr (10° years) if its mass den-
sity corresponds to 1 baryon (proton, neutron) per cubic meter, which is
approximately what is currently observed.

2. Find an expression for the Hubble Parameter H = a/a as a function of
time for the model of Problem 1. Find a numerical value for H for the
current time and mass density of Problem 1, in units of both Gyr~! and
km/sec/Mpc.

3. Differentiate the Newtonian expansion equation (1.3) to derive an acceler-
ation equation of the form d/a as a function of the expansion function a,
independent of the total energy. Show that this corresponds to a pure force
of attraction.
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General Relativity

Einstein’s General Theory of Relativity (GR) was motivated principally by his
desire to expand his very successful theory of Special Relativity (SR) to non-
inertial reference frames. SR served to reconcile the invariance of the speed of
light for all observers — as predicted by Maxwell’s Equations of electromagnetism,
and verified by the Michelson—Morley experiment — with Einstein’s Principle of
Special Relativity: that the laws of physics were the same in all non-accelerating
reference frames. General Relativity, as Einstein envisioned it, would require the
laws of physics to be identical in all reference frames, including accelerating ones.
That this extension of the relativity principle leads to a theory of gravitation —
which is what GR has become — was a consequence of the observed equality of
gravitational and inertial mass: since all objects fell with the same acceleration
in a given gravitational field, acceleration and gravitation are, in some sense,
equivalent. Note that this singling out of gravitation distinguishes it from other
fundamental forces, such as electromagnetism: acceleration and gravitation are
connected in a unique manner.

But the details of that connection were totally non-obvious when Einstein set
out to discover them; in particular, it did not seem possible at first to write laws
of mechanics in a manner that is independent of the acceleration of the reference
frame. In fact, Einstein never successfully united all forms of non-inertial motion
into a single theory, but he did manage to do so with gravitation so that his General
Relativity theory has effectively become one of gravitation, relegating Newton’s
theory of gravity to that of an approximation to the full relativistic theory. In
particular, it is Einstein’s theory of gravity that must be employed on the scales
encountered in cosmology for a successful theory of the Universe’s large-scale
structure and evolution to be constructed.

The fundamental concepts underlying Einstein’s theory of gravitation are
these three: General Covariance, which expresses the relativity principle, that
the laws of physics take the same form in all reference frames; Equivalence,
which embodies the equality of gravitational and inertial mass; and Space-Time
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10 General Relativity

Curvature, which provides the means by which gravitation controls dynamics.
These are conceptually summarized in this chapter and are each the detailed
subject of a separate chapter in Part II of this text.

2.1 Covariance

The Principle of General Covariance, as Einstein expressed it, is that the laws
of physics are independent of our choices of reference frames or of coordinate
systems, and that the equations of physics, properly constructed, should take the
same form in all coordinate systems. Insistence on this property in development of
SR proved to be crucial in extending SR to all of physics, including electromag-
netism, in inertial reference frames. What worked so successfully in SR would
apparently be a good choice for development of GR, at least in the basic stages.
The most obvious way to free physical laws from specific coordinate sys-
tems is to make all expressions of physical quantities overtly independent of
coordinates. Thus, the Newtonian expression for gravitational potential ® can
be concisely written as Poisson’s Equation: V2® = 47 Gp, which is true in all
coordinate systems. But such simple representations are not readily extendable
to mechanics in general, so instead we employ covariant forms which, while
changing with coordinate systems, do so all in the same manner so that mathemat-
ical expressions of equalities of physical quantities remain unchanged even when
coordinate systems change. Thus: if we have, say, a generally covariant vector
equation of the form A; = B; in one coordinate system and we change to another
system, so that A; — A’ and B; — B/, it will nonetheless remain that A} = B; as in
the original coordinate system. We say that generally covariant vector components
are not invariant — they do change with changes in coordinate systems — but they
are covariant — they all change in the same manner so as to preserve their equality.

Equations written entirely in terms of generally covariant quantities remain true

in all coordinate systems, including accelerating ones.

That general covariance is a special quality can be seen by considering the
equations of motion of a force-free particle: d’x'/dt> = 0 for all coordinates x'.
This equation is manifestly untrue in, say, a rotating coordinate system defined
by X' = x’ cos(wt), so that the simple equations of Newtonian mechanics are not
generally covariant. To make them so we must write Newton’s laws as, e.g.,a = 0
in which a assumes different (implied) forms in different coordinate systems:
in accelerating systems this would include such complications as Coriolis and
centripedal accelerations.

It turns out that all equations of physics may be written in a generally covari-
ant form if one is willing to accept very complicated expressions, but as a practical
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