Index

aberration correction
 benefits for liquid cell microscopy, 165, 173, 434, 443, 452
 lifetime of corrected state, 441
acrosomal process, 366–68
analysis of biological materials, 17–19, 356–69
analytical electron microscopy, 408–32
 challenges, 410, 412
 comparison of techniques, 411
 EELS, 413–20
 Fe mapping, 482
 for biological materials, 19
 principles, 408–9
 XEDS in closed cell SEM, 97
 XEDS in closed cell TEM, 420–30
atmospheric aerosols, 22
atmospheric scanning electron microscopy (ASEM)
 and inverted SEM, 106
 comparison with closed cell SEM, 106
 electrochemistry, 114
for CLEM, 117–20
 principles, 106–8
 sample dish, 107
 temperature control, 115

bacteria
 atmospheric SEM, 119
 correlative light and electron microscopy, 481
 cryoelectron microscopy, 480
 early imaging, 7, 36
 EELS, 415
 magnetotactic, 480–82
 WetSTEM, 62
 batteries, 237–52
 analytical electron microscopy, 250–52
 capacity, 244
 challenges, 238
 closed cell TEM, 238–52
coulombic efficiency, 244
C-rate, 244
Li-ion batteries, 63, 238
open cell TEM, 63–70, 238
battery materials and reactions
 air sensitivity, 242
 anode materials, 241
 cathode materials, 241
 cathodes, 74
 EELS, 250–52, 418
 electrolytes, 241, 246–47
 lithiation, 68, 247–48, 418, 467
 Li electrodeposition, 249–50, 466
 nanoparticle anodes, 68–70
 nanowire anodes, 63–68
 SEI, 68, 244
 Si, 68–70
 SnO₂, 66–67
biological macromolecules, 490–91
 conjugated DNA, 401–4
 electron beam damage, 400
 imaging strategies, 19
 lipoprotein discs, 469
biological materials and processes, 17–19, 356–69
 acrosomal process, 366–68
 analytical electron microscopy, 19
 axonal segmentation, 118
 bacterial cells in water, 119
 biological processes by snapshot imaging, 344
 biomimetics, 488–91
 biomineralization, 479–83
 breast cancer cells, 109–11, 343
 cell edges, 341
 cell trafficking, 118
 cellulose fibers, 123
 chemical stimulation, 24
 coliform bacteria, 7
 COS7 cells, 117, 339–41, 346
 electric field sensitivity, 483–84
 endoplasmic reticulum, 117
 epidermal growth factor receptor, 339–42
 ferritin, 485
 glioblastoma cells, 361

© in this web service Cambridge University Press
index

© in this web service Cambridge University Press
biological materials and processes (cont.)
holography, 484
large numbers of cells, 342, 348
leaf surface, 123
liposomes, 360
live cells, 17, 24, 346, 480–82
lung cancer cells, 348
magnetotactic bacteria, 480–82
megakaryocytes, 111
mesocrystals, 491–95
micelles, 489
muscle protein function, 371–89
myosin, 378–88
protein dimers, 490
protein domains, 489–90
protein structure in water, 476–79
pseudopodia, 111
ribosomal assemblies, 357–58
RNA, 363
root tips, 89
rotavirus, 362–66
STIM1 protein, 117
temperature control, 24
tissue blocks imaged in SEM, 109–10
unlabeled biological materials, 357–68
whole biological cells, 17, 334–51
yeast, 345
biomimetics, 488–91
block copolymers, 488–89
Brownian motion, 11, 16, 112, 177, 458, 479
bubbles
detection by EELS, 416
drift to center of window, 47
formed during Joule heating, 128
formed electrochemically, 227
formed radiallytically, 16, 156
in closed cell SEM, 99
motion, 16
butterfly wing, 91–92
calcium carbonate
attachment and crystallization, 328
growth in organic matrix, 324–26, 328
nucleation and growth, 322–24
phases, 321
capsule SEM. See closed cell SEM
catalysis, 23
photocatalysis, 87
TiO2, 87
cathodoluminescence, 121
in AirSEM, 122
in atmospheric SEM, 119–20
in closed cell SEM, 86, 120–21
chromatic aberration correction, 446–52
for energy filtered imaging, 174, 448
for thick samples, 450
in wide gap microscopes, 174, 452
resolution improvement, 166, 174, 446
clays, 21
closed cell design for SEM
2D window materials, 92–97
ASEM sample dish, 107
CLEM, 120–21
commercial, 85–86
electrochemistry, 92–93, 114
fiber optics, 86, 92
flow, 91
for biological materials, 87–88
for cathodoluminescence, 121
for electrochemistry, 91
for STEM, 121
functionalize window, 87
glass slide as window, 121
graphene coated sample, 10, 94
multiple orifices, 100
principles, 86–87
temperature control, 91, 115
window transparency, 82, 87
closed cell design for TEM, 35–52
affinity capture technique, 357–59
analytical electron microscopy, 51
ATP injection, 380–81
carbon nanotubes, 46, 283
cell failure, 46–47
electrolyte bridge, 245
electrolyte choice, 228
flow and electrochemistry, 230, 242
flow of nutrients, 336
for anodic etching, 211–12
for biomimetics, 488–91
for electrochemistry, 49–50, 211–18, 238–42
for extreme environments, 137
for FEBIP, 294–97
for holography, 485
for liquid flow, 49
for multiple stimuli, 51, 137
for muscle protein function, 375–77
for unlabeled biological materials, 357–68
for whole biological cells, 338
for XEDS, 421, 425
graphene flow cell, 395–96
graphene liquid cell, 45–46, 394
heating, 50, 128
hydration chamber, 371
minimize drift, 129
mixing, 323
monolithic chips, 45
non-microfabricated designs, 45–46
paired chips, 39–44
scrolls, 283
closed cell electrodes, 213–16
beam-induced deposition, 241
compatibility with lithium, 240
FIB-cut sections, 215, 241
in SEM, 92
<table>
<thead>
<tr>
<th>Index</th>
<th>503</th>
</tr>
</thead>
</table>

invisible areas, 229
materials, 215–16, 240–41
slurry printing, 215, 241, 248
small size, 230
thickness, 215
wires, 216
closed cell SEM, 78–100
AirSEM, 79, 121–23
applications, 87–90
ASEM, 79
CLEM, 120–21
comparison with closed cell TEM, 80
comparison with ESEM, 80
historical context, 8, 10
image formation, 80–83
inverted SEM, 106–20
resolution, 83–85
terminology, 79
upright ASEM, 123
closed cell TEM
comparison with cryoelectron microscopy, 361–68
historical context, 5
closed cells with paired chips, 39–44
alignment, 44
assembly, 216–17
glued chips, 41, 217
hermetic seal, 217
liquid introduction, 41, 217
o-ring clamping, 42–43
sealing, 41
spacer layer, 41
wafer bonded, 42
compressive sensing, 463–64
correlative light and electron microscopy, 10, 18
for cathodoluminescence, 119–20
for whole labeled cells, 338
in AirSEM, 121–23
in ASEM, 117–20
in closed cell S/TEM, 51, 336, 338–39, 342–44
in SEM, 116–23
magnetotactic bacteria, 480–82
corrosion, 13–14, 258–72
compositional analysis, 265
definition, 258
electrochemical techniques, 263
electrolyte, 268–69
electron beam effects, 263, 269
galvanic displacement, 259, 263
imaging conditions, 269
liquid cell design, 263, 270–71
localized, 259
of alloys, 265
of metal films, 266
of particles, 205, 266
of steels, 266–67
of thin sections, 266
pitting, 261, 264
sample preparation, 267
techniques, 258, 260
cryoelectron microscopy
artifacts, 478
comparison with closed cell S/TEM, 18, 348–50, 361–68
dose and radiation damage, 18, 341, 368, 477
for protein structure determination, 477–78
of acrosomal process, 367
of biomineralization, 480
of rotavirus, 364–66
reconstruction methods, 365, 478
Cu electrodeposition, 219–27
dendrites
electrochemical, 114, 226–27, 249–50, 466
nanoparticle, 201
detectors
and resolution, 164, 178, 460
backscatter, 82
direct electron detector, 368–69
dose fractionation, 478
gaseous secondary electron detector, 9
image plate, 379–80
phase plate, 368–69
time resolution, 369
diffraction
assessing beam damage, 367
battery materials, 239
calcium carbonate, 325
for phase identification, 323
liquid thickness, 324
diffusion
affinity capture technique, 357
and fast detectors, 369
anomalously slow, 16, 398–99
effect of solute, 112
effect of windows, 491–95
in graphene liquid cell, 398–99
modes of nanoparticle motion, 202
of nanoparticles, 201–2
DNA and RNA, 401–4
holography, 485
RNA transcription, 363
dose
assessing cell viability, 346, 481
calibrating, 184
comparison with cryoelectron microscopy, 341, 350, 478–79, 483
critical dose for protein function, 377–78
definition, 140
dose rate and electron flux, 140
due to single electron, 142
for damage of biomaterials, 341, 345
gray unit, 140
dose (cont.)
in holography, 484
lethal dose, 173, 344, 346
minimizing, 181
noise and contrast, 176–78
tolerable dose, 18, 172, 479, 482–83
dynamic transmission electron microscope (DTEM), 460–63
laser stimulation, 461
pulsed source, 461
spatial resolution, 461
EELS
core loss in liquids, 413–14
energy-filtered imaging, 410
in graphene liquid cell, 400
liquid thickness measurement, 51, 182, 416
of bacteria, 415
of battery materials, 238–52
of biomolecules, 400–83
principles, 409
spectroscopic imaging, 409
valence loss in liquids, 414–15
electrochemical measurements, 217–18, 242–43
chronoamperometry, 219
chronoamperometry (potentiostatic deposition), 218
chronopotentiometry (galvanostatic deposition), 218
cyclic voltammetry, 217, 243
electrical impedance spectroscopy, 218, 243
ultra-low currents, 238
electrochemistry, 12–14, 210–33, 243–44
additives, 224
Ag on TiO$_2$, 93
analytical microscopy, 250–52
and benchtop experiments, 13, 168, 229
Au deposition, 114
batteries. See battery materials and reactions
beam effects, 230–32, 246–47
corrosion, 258–72
Cottrell equation, 221, 243
counter electrode, 213
Cu, 219–27
dendrites, 226–27, 249–50, 466
double layer, 23
electrocatalysts, 253
electrode design, 213–16
Fe(CN)$_6^3$–, 260
future prospects, 22–23
gas evolution, 225, 227
growth models, 12
imaging electrolyte, 215
imaging lateral growth, 224
in atmospheric SEM, 114
in closed cell SEM, 92–93
nucleation and growth models, 219
number of electrodes, 216, 239
ohmic drop, 216, 245
plan view imaging, 219
porous silicon formation, 211–12
potentiostat, 217–18
pseudo-reference electrode, 216
pulse plating, 226
reference electrode, 216
working electrode, 213
electrolyte
acidified copper sulphate, 219–27
beam effects, 230–32, 246–47
choice, 228
detecting ion concentration, 227
flow, 230
ionic liquid, 64
metal oxide, 65
organic, 246, 249
thickness, 229
electron beam effects, 11, 140–63, 194
aerated water, 156
alter surface chemistry, 194
analytical electron microscopy, 412 and flow, 478
bubble formation, 99, 154–56
changes in pH, 157–58
charging, 94, 194
chloride solutions, 160
cryoelectron microscopy, 350, 477
damage of biological materials, 341, 377–78, 482–83
dewetting, 285
diffraction spot intensities, 367
droplet motion, 277
effect of liquid flow, 99, 152
effect of windows, 144
etching, 159
FEBIP, 291–310
heating, 131, 146
in electrochemistry, 230–32
in SEM, 97–99
ionic liquids, 61
nanoparticle assembly, 112, 203
nanoparticle growth, 14, 87, 90, 158, 193–94, 397
nanoparticle growth in ionic liquids, 59–61
nanoparticle motion, 204–5, 357
organic electrolyte, 246–47
plant cells, 89–90
electron holography, 484–86
electron microscopy of liquids
closed cell strategies, 5, 8
comparison of techniques, 19–20
comparison with cryoelectron microscopy, 7
future prospects, 21–25
historical perspective, 4
main issues, 10–11
open cell strategies, 5, 8
Index

energy-filtered imaging, 410, 417–20
to improve resolution, 173, 419
energy transfer to liquids, 140–44
backscattered electrons, 81
continuous slow down approximation, 141
heating, 144
in SEM, 80–83, 98
inelastic scattering, 408
mean free path, 143, 413, 421
multiple scattering, 144
radiolysis products, 147
range and straggle, 141
secondary electrons, 81
spurs, 143, 147–48
stopping power, 141
X-ray absorption path length, 421–22
ESEM, 8–10, 19, 78
batteries, 73
condensation of water, 15
for FEBIP, 293
historical context, 8
terminology, 78
thin water films, 62
WetSTEM, 62
whole biological cells, 18, 337
etching
electrochemical stripping, 92, 222, 227
focused electron beam-induced, 306–8
porous Si, 211–12
ferritin, 400, 485
holography, 486
flow. See liquid flow
fluid physics, 16, 22, 276–87
anomalous interfacial layer, 277, 280
condensation on butterfly wing, 91–92
contact line dynamics, 278, 284–85
dewetting, 277, 285
double layer, 276
evaporation, 113
fluids in nanochannels, 282
voids in thin films, 285
focused electron beam-induced processing (FEBIP), 291–310
applications, 291–92
FEBID, 292
FEBIE, 292
gas phase FEBIP, 291–93
limitations, 292–93
liquid phase FEBIP, 293–310
focused ion beam processing
comparison with FEBIP, 293
for cutting lamellae, 63, 241
for patterning windows, 330, 394
for welding materials to electrodes, 50, 64, 215
food science
crystallization of ice cream, 136
melting of chocolate, 134
fuel cells, 238, 252–53
catalyst coarsening, 253
closed cell TEM, 252–53
operation, 238
geological materials, 21
at extreme conditions, 21
graphene liquid cell, 393–405
analytical electron microscopy, 412
benefits, 45, 393, 405
biomaterials, 400–4
electron beam effects, 394
fabrication, 45–46, 393–96
first generation, 394
for holography, 485
for liquid phase FEBIP, 295
liquid flow, 395–96
nanoparticle growth, 197, 396–97
nanoparticle motion, 398–99
second generation, 394–95
third generation, 395–96
holography, 486
for biological materials, 484–86
future prospects, 22–23
hydrated electrons, 11, 147, 158–59
in FEBIP, 200, 309
metal ion reduction, 158, 194
image analysis and simulation
atomic resolution simulations, 179
particle tracking, 253, 464–66, 494
probe broadening simulations, 174
imaging parameters
choice of kV, 180
dark field TEM imaging, 8
imaging mode, 8
TEM or STEM, 181
ionic liquids
definition, 57
for FEBIP, 299
nanoparticle growth, 59–61, 199
thin films, 58
use for passivation, 58, 62
wetting of nanowires, 58
ionizing radiation, 140
iron oxyhydroxide, 197, 327–28
liquid flow
electron beam effects, 99, 152, 478
closed cell design, 49
closed cell design for SEM, 91
do...
liquid phase FEBID, 299–306
alloys, 304–5
droplet geometry in open cell, 297
electrochemical reactions, 309–10
hydrated electron kinetics, 304, 309
liquid injectors, 298
proximity effect, 302
substrate effect, 309
sulphides, 304–6
transition metals, 299–303
liquid phase FEBIE, 306–8
Cu, 308
proximity effect, 309
silicon nitride, 307–8
liquid phase FEBIP in closed cell, 294–97
in ionic liquid, 299
in open cell, 297–98
in water, 297–99
substrate effects, 295
liquid thickness and diffusion, 168, 229
and radiolysis, 11, 144
and resolution, 11, 35, 167–68, 175, 358
effect on EELS signal, 413
effect on XEDS, 421, 423–24
measurement, 47, 182
measurement by EELS, 412, 415
measurement by transmitted current, 184
measurement by XEDS, 409, 427
microwells, 19
non-uniformity, 48
spacern layer, 41
lithiation, 68
EELS, 250–52
of graphitic carbon, 245
of nanowire in closed cell, 248
of SnO₂, 66–67
Si nanoparticle, 68–70
Si nanowire, 71
sodiation of SnO₂, 67
volume change and fracture, 67–68, 247
Li electrodeposition, 249–50, 466
live biological cells
assessing viability, 481–83
imaging strategies, 17
prospects, 24
tolerable dose, 346, 482–83
magnetotactic bacteria
assessing viability, 482
relative light and electron microscopy, 480–82
electron beam effects, 482
holography, 485
mesocrystals, 491–95
growth physics, 491–92
microfabrication, 39–41

electrodes, 215
for closed cells, 37–45
historical context, 7
importance for liquid cell design, 36–37
microwells, 358–59
microscope design
DTEM, 460–63
for closed cell SEM, 8, 120–23
for ESEM, 4
for open cell TEM, 5–6
for SEM, 78
for WetSTEM, 337
mineralization and biomineralization, 16–17, 316–30, 479–83
biomacromolecule/nanoparticle interactions, 490–91
biomimetics, 488–91
growth, 319
importance, 316–17
magnetotactic bacteria, 480–82
nucleation, 317–19
single cell organisms, 479
muscle protein function, 18
cyclic movement, 583
effect of actin, 387–88
myosin head movement, 381–88
response to ATP, 382–83
sliding filament mechanism, 371–75
spatially resolved displacement, 384–86
nanoparticle assembly, 202–3
chains, 196, 492
diffusion-limited aggregation, 203
mesocrystals, 491–92
superlattices, 203
nanoparticle growth physics, 14–15, 194–99
Ag in ionic liquid, 59–61
anisotropic interactions, 197, 493–94
assembly into chains, 492
assembly into mesocrystals, 491–92
attachment and crystallization, 328
calcium carbonate, 322–26
coalessence, 15, 194–96, 326
dendrites, 201
effect of walls, 197
facet-dependent growth rate, 197–98
galvanic displacement, 200
growth trajectories, 194–97
iron oxyhydroxide, 327–28
monomer attachment, 195, 319, 326
oriented attachment, 197, 319, 326–27, 492
reshaping, 196
size oscillations, 199
surfactants, 198
Wulff construction, 197
nanoparticles
Ag, 90, 195
Ag on TiO₂, 87
Au, 197, 201
Au labels, 339, 341, 379
Au nanorods, 357
beam-induced assembly, 112, 202–3
beam-induced growth, 14, 192–94
beam-induced motion, 204–5, 357
Bi, 199
Brownian motion. See Brownian motion
calcium carbonate, 322, 328
cOalescence, 398–99
core-shell, 200
diffusion, 201–2
diffusion in graphene liquid cell, 398–99
diffusion in nanoscale droplets, 279
growth at elevated temperature, 14, 193, 199
growth in graphene liquid cell, 396–97
growth in ionic liquids, 59–61
growth rate measurement, 193
heating effects, 133
heterogeneous, 200–1
hollow, 200
in plant cells, 88–89
interaction with proteins, 490
iron oxyhydroxide, 327–28
Kirkendall void formation, 133
labels for biomaterials, 117
labels for whole cells, 336
laser-induced formation, 462
lithiation of Si, 68–70
magnetite, 360, 480–82, 486, 490
magnetization, 487
need for controlled synthesis, 191
oxidative etching, 205, 263
Pd, 196, 200
Pt, 195, 197–98, 397
PtFe, 196, 199
PtPd, 197
quantum dot fluorescent labels, 342
shape evolution, 194, 197–98, 223
tracking algorithm, 464–66, 494
twinned, 201
uptake into biological cells, 347–48, 361
uptake into vesicles, 486
ZnO, 195
nanoscale droplets
diffusion of nanoparticles, 279
nucleation and growth, 280
stick-slip motion, 277
nucleation
Avrami kinetics, 222
biomimetics, 488
block copolymers, 488–89
calcium carbonate, 322–26
classical nucleation theory, 317, 324
critical nucleus size, 222
Cu, 219–24
electrochemical, 219–24
heterogeneous, 193, 324
homogeneous, 193
in organic matrix/template, 201, 324–26, 490
on electrode, 215
on existing nanoparticles, 200
preferred sites, 221
threshold dose, 194
open cell design
challenges, 70–72
for battery reactions in TEM, 63–70
for liquid phase FESEM, 297–98
open cell electron microscopy, 56–74
ESEM, 57, 73, 78
ETEM, 57
principles, 56–57
SEM, 56, 73
TEM, 56–72
WetSEM, 62
open cell SEM. See ESEM
open cell TEM, 57–72
battery experiments, 58, 63–70
comparison with closed cell, 70–72
geometry for thin film experiments, 58
historical context, 5
in atmospheric science, 22
oriented attachment, 327–28
iron oxyhydroxide, 197, 327
jump to contact, 197, 328
lattice resolution, 326
Pb electrodeposition, 225
phase plate, 24
phase transformations
boiling, 133
calcium carbonate, 322–24
cooling of solder, 116
freezing of saline solution, 135
hydrothermal precipitation, 133
lithiation of Si, 70–71
lithiation of SnO$_2$, 67
overview, 15
sodiation, 68
phytotoxicity, 88–89
pressure
effect on gas solubility, 155
prospects for control, 21
protein structure
comparison of techniques, 477–78
radiation chemistry, 140
radiolysis
in biological imaging, 479
in non-aqueous liquids, 160
of water, 11
scavengers, 147
radiolysis products
diffusion, 149–50, 152
G-value, 147
Index

radiolysis products (cont.)
 homogeneous formation, 150
 hydrated electron, 147, 154, 158–59
 hydrogen, 154–56
 hydrogen ions, 157
 initial yield, 147
 oxygen, 155, 157
 reaction-diffusion equation, 148
 recombination, 149
 steady state concentration, 150, 152
resolution
 cryoelectron microscopy, 477
 overview, 10
 SEM, 11, 83–85, 121
 STEM, 174–77
 TEM, 165–74
 temporal, 456–62
 rotavirus, 362–66
 attachment to membrane, 363
 imaging mRNA transcripts, 363
 internal structure, 365–66

sample design
 for battery reactions in open cell TEM, 58, 63
 for battery reactions in SEM, 73
 for live cell imaging, 344–45
 for WetSTEM, 62, 337
 for whole biological cells, 336–37, 340
 for liquid droplets in SEM, 57
 for sample passivation with ionic liquids, 62
 for thin foil, 267, 429
sample holder design
 control by potentiostat, 217–18, 239, 263
 examples, 43–44
 for anodic etching, 211–12
 for fluid mixing, 319–21
 for gas diffusion, 325
 for magnetization experiments, 487
 for open cell battery reactions, 63–70
 for XEDS, 422, 425
 glove box loading, 65, 229
 historical context, 6, 8
 laser heating, 130, 462
 liquid injection via glass capillary microelectrode, 380–81
 resistance furnace, 129
 temperature-controlled electrochemistry, 136
 thermoelectric device, 130
silicon nitride
 etching, 307–8
 for liquid phase FEBIP, 295–96
 materials properties, 39
 window fabrication, 39–41
 with patterned electrodes, 213–16
 solder, 115
 solid electrolyte interphase, 238, 244
 dendritic growth, 245
formation, 245
solubility
 effect of pressure, 155
 of gases in water, 131, 154
spatial resolution in S/TEM
 aberration-corrected S/TEM, 434–53
 accelerating voltage, 487
 and sample thickness, 10, 166, 168, 450
 beam broadening, 177
 chromatic aberration limited, 166, 446
 contrast transfer function, 435–38
 determining factors, 165, 173
 diffraction limited, 165
 dose limited, 170–73, 176
 energy filtering, 173
 of labels in closed cell STEM, 336–37, 341
 probe broadening, 174
 spherical aberration limited, 166, 435, 444
 thin liquid in microwells, 358–59
 top–bottom effect, 168, 423
spatial resolution in SEM
 beam broadening, 85
 effect of accelerating voltage, 85
 effect of windows, 80–85
 in AirSEM, 122
 interaction volume, 80, 121, 298, 411
 minimum SEM beam current, 84
 noise limited, 83
 probing depth, 81
 through 2D window materials, 92–97
spherical aberration correction
 delocalization, 437
 effect on contrast transfer function, 435
 for nanoparticle growth, 397
 higher order aberrations, 440
 negative Cs imaging, 438
 resolution improvement, 166, 173, 437
 STEM, 444–46
 TEM, 435–44
 steel, 421
 corrosion, 266, 430
temperature control, 127–38
 beam-induced heating, 131
 extreme conditions, 21
 for biological materials and processes, 489
 for nanoparticle growth, 199
 Joule heating, 128
 laser heating, 130
 Peltier heater, 130
 resistance furnace, 129
 thermal reservoir, 130
temperature measurement
 materials transformations, 132
 optical methods, 132
 resistance temperature detector, 129
 thermal diffusion models, 129
thermocouple, 130, 132
temporal resolution, 23, 177–79, 456–62
benefits, 177, 456–57, 466
dose fractionation, 178
dose-limited, 178
for biological processes, 368–69
motion blur, 11, 177, 458, 470
with pulsed electron source, 460
thin film growth physics
dendrite formation, 113, 226–27, 249–50
growth front stability, 226
SEI formation, 244
WetSTEM, 9, 62, 337
dose and damage, 342
examples, 62
of nanoparticle uptake, 348–49
resolution, 9
sample design, 337
whole biological cells, 18, 341–42
wetting, 16, 19, 278
ionic liquids, 58
of windows, 168, 268
void formation, 285
water, 62
whole biological cells, 334–51
bacteria, 415
comparison of imaging techniques, 335–37, 342
imaging strategies, 17, 334–37
lethal dose, 18, 173
live cells in closed cell STEM, 346
preparation of cells on chips, 107, 336, 340–41
viability testing, 346
window spacing and deflection, 35
calculation, 47–48
effect on resolution, 11, 326
electrochemical experiments, 229
graphene liquid cell, 394

liquid phase FEBIP, 295
measurement by EELS, 47, 182, 417
microwells, 358–59
partially filled liquid cell, 377
radiolytic gas, 156
thick liquid for biological imaging, 338
windows, 38–41
carbon, 375–76
design for holography, 485
effect on SEM image, 80–85
etched wells, 358–59
for liquid phase FEBIP, 294–97
graphene, 39, 93, 96
graphene coated onto sample, 10, 94
graphene oxide, 39, 95–96
hexagonal boron nitride, 39
materials properties, 38
microfabrication, 39–41
nitrocellulose, 5
polyimide, 39, 83, 86, 294
preparation of 2D materials, 95–96
silicon nitride, 39, 107, 295, 337
silicon nitride for SEM, 92–93
silicon oxide, 39
surface functionalization, 357–59
thickness and resolution, 168
to seal SEM column, 121
transmittance in SEM, 82

XEDS
composition of liquids, 428
in closed cell SEM, 92, 94, 97
liquid thickness, 423–24
materials in water, 427
principles, 409, 420
spectroscopic imaging, 409
through graphene, 97
X-ray absorption path length, 422

Zn electrodeposition, 225