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C H A P T E R O N E

INTRODUCTION

1.1 NONLINEAR COMPUTATIONAL MECHANICS

Two sources of nonlinearity exist in the analysis of solid continua, namely, mate-

rial and geometric nonlinearity. The former occurs when, for whatever reason,

the stress–strain behavior given by the constitutive relation is nonlinear, whereas

the latter is important when changes in geometry, however large or small, have a

significant effect on the load deformation behavior. Material nonlinearity can be

considered to encompass contact friction, whereas geometric nonlinearity includes

deformation-dependent boundary conditions and loading.

Despite the obvious success of the assumption of linearity in engineering anal-

ysis, it is equally obvious that many situations demand consideration of nonlinear

behavior. For example, ultimate load analysis of structures involves material non-

linearity and perhaps geometric nonlinearity, and any metal-forming analysis such

as forging or crash-worthiness must include both aspects of nonlinearity. Structural

instability is inherently a geometric nonlinear phenomenon, as is the behavior of

tension structures. Indeed the mechanical behavior of the human body itself, say

in impact analysis, involves both types of nonlinearity. Nonlinear and linear con-

tinuum mechanics deal with the same subjects, including kinematics, stress and

equilibrium, and constitutive behavior. But in the linear case an assumption is made

that the deformation is sufficiently small to enable the effect of changes in the geo-

metrical configuration of the solid to be ignored, whereas in the nonlinear case the

magnitude of the deformation is unrestricted.

Practical stress analysis of solids and structures is unlikely to be served by clas-

sical methods, and currently numerical analysis, predominately in the form of the

finite element method, is the only route by which the behavior of a complex com-

ponent subject to complex loading can be successfully simulated. The study of the

numerical analysis of nonlinear continua using a computer is called nonlinear com-

putational mechanics, which, when applied specifically to the investigation of solid
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2 INTRODUCTION

continua, comprises nonlinear continuum mechanics together with the numerical

schemes for solving the resulting governing equations.

The finite element method may be summarized as follows. It is a procedure

whereby the continuum behavior described at an infinity of points is approxi-

mated in terms of a finite number of points, called nodes, located at specific

points in the continuum. These nodes are used to define regions, called finite

elements, over which both the geometry and the primary variables in the gov-

erning equations are approximated. For example, in the stress analysis of a solid

the finite element could be a tetrahedron defined by four nodes and the primary

variables the three displacements in the Cartesian directions. The governing equa-

tions describing the nonlinear behavior of the solid are usually recast in a so-

called weak integral form using, for example, the principle of virtual work or

the principle of stationary total potential energy. The finite element approxima-

tions are then introduced into these integral equations, and a standard textbook

manipulation yields a finite set of nonlinear algebraic equations in the primary vari-

able. These equations are then usually solved using the Newton–Raphson iterative

technique.

The topic of this book can succinctly be stated as the exposition of the nonlin-

ear continuum mechanics necessary to develop the governing equations in contin-

uous and discrete form and the formulation of the Jacobian or tangent matrix used

in the Newton–Raphson solution of the resulting finite set of nonlinear algebraic

equations.

1.2 SIMPLE EXAMPLES OF NONLINEAR
STRUCTURAL BEHAVIOR

It is often the case that nonlinear behavior concurs with one’s intuitive expectation

of the behavior and that it is linear analysis that can yield the nonsensical result. The

following simple examples illustrate this point and provide a gentle introduction to

some aspects of nonlinear behavior. These two examples consider rigid materials,

but the structures undergo finite displacements; consequently, they are classified as

geometrically nonlinear problems.

1.2.1 Cantilever

Consider the weightless rigid bar–linear elastic torsion spring model of a can-

tilever shown in Figure 1.1. Taking moments about the hinge gives the equilibrium

equation as

FL cos θ = M. (1.1)
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FIGURE 1.1 Simple cantilever.

If K is the torsional stiffness of the spring, then M = Kθ and we obtain the fol-

lowing nonlinear relationship between F and θ:

FL

K
=

θ

cos θ
. (1.2)

If the angle θ → 0, then cos θ → 1, and the linear equilibrium equation is

recovered as

F =
K

L
θ. (1.3)

The exact nonlinear equilibrium path is shown in Figure 1.1(b), where clearly the

nonlinear solution makes physical sense because θ < π/2.

1.2.2 Column

The same bar–spring system is now positioned vertically (Figure 1.2(a)), and again

moment equilibrium about the hinge gives

PL sin θ = M or
PL

K
=

θ

sin θ
. (1.4)

The above equilibrium equation can have two solutions: first, if θ = 0 then

sin θ = 0, M = 0, and equilibrium is satisfied; and second, if θ �= 0 then

PL/K = θ/sin θ. These two solutions are shown in Figure 1.2(b), where the ver-

tical axis is the equilibrium path for θ = 0 and the horseshoe-shaped equilibrium

path is the second solution. The intersection of the two solutions is called a bifur-

cation point. Observe that for PL/K < 1 there is only one solution, namely θ = 0,

but for PL/K > 1 there are three solutions. For instance, when PL/K ≈ 1.57,

either θ = 0 or ±π/2.
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FIGURE 1.2 Simple column.

For very small values of θ, sin θ → θ and Equation (1.4) reduces to the linear

(in θ) equation

(K − PL)θ = 0. (1.5)

Again there are two solutions: θ = 0 or PL/K = 1 for any value of θ, the latter

solution being the horizontal path shown in Figure 1.2(b). Equation (1.5) is a typi-

cal linear stability analysis where P = K/L is the elastic critical (buckling) load.

Applied to a beam column, such a geometrically nonlinear analysis would yield

the Euler buckling load. In a finite element context for, say, plates and shells, this

would result in an eigenvalue analysis, the eigenvalues being the buckling loads

and the eigenvectors being the corresponding buckling modes.

Observe in these two cases that it is only by considering the finite displacement

of the structures that a complete nonlinear solution has been achieved.

1.3 NONLINEAR STRAIN MEASURES

In the examples presented in the previous section, the beam or column remained

rigid during the deformation. In general, structural components or continuum bod-

ies will exhibit large strains when undergoing a geometrically nonlinear deforma-

tion process. As an introduction to the different ways in which these large strains

can be measured we consider first a one-dimensional truss element and a simple

example involving this type of structural component undergoing large displace-

ments and large strains. We will then give a brief introduction to the difficulties

involved in the definition of correct large strain measures in continuum situations.

1.3.1 One-Dimensional Strain Measures

Imagine that we have a truss member of initial length L and area A that is stretched

to a final length l and area a as shown in Figure 1.3. The simplest possible quantity

www.cambridge.org/9781107115798
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-11579-8 — Nonlinear Solid Mechanics for Finite Element Analysis: Statics
Javier Bonet, Antonio J. Gil, Richard D. Wood
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 NONLINEAR STRAIN MEASURES 5

L  

l  

A 

a 

FIGURE 1.3 One-dimensional strain.

that we can use to measure the strain in the bar is the so-called engineering

strain εE , defined as

εE =
l − L

L
. (1.6)

Clearly different measures of strain could be used. For instance, the change in

length ∆l = l − L could be divided by the final length rather than the initial

length. Whichever definition is used, if l ≈ L the small strain quantity ε = ∆l/l is

recovered.

An alternative large strain measure can be obtained by adding up all the small

strain increments that take place when the rod is continuously stretched from its

original length L to its final length l. This integration process leads to the definition

of the natural or logarithmic strain εL as

εL =

∫ l

L

dl

l
= ln

l

L
. (1.7)

Although the above strain definitions can in fact be extrapolated to the deformation

of a three-dimensional continuum body, this generalization process is complex and

computationally costly. Strain measures that are much more readily generalized

to continuum cases are the so-called Green or Green’s strain εG and the Almansi

strain εA, defined as

εG =
l2 − L2

2L2
; (1.8a)

εA =
l2 − L2

2l2
. (1.8b)

Irrespective of which strain definition is used, a simple Taylor’s series analysis

shows that, for the case where l ≈ L, all the above quantities converge to the small

strain definition ∆l/l. For instance, in the Green strain case, we have

εG(l ≈ L) ≈
(l + ∆l)2 − l2

2l2

=
1

2

l2 + ∆l2 + 2l∆l − l2

l2

≈
∆l

l
. (1.9)
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1.3.2 Nonlinear Truss Example

This example is included in order to introduce a number of features associated

with finite deformation analysis. Later, in Section 1.4, a small MATLAB program

will be given to solve the nonlinear equilibrium equation that results from the truss

analysis. The structure of this program is, in effect, a prototype of the general finite

element program presented later in this book.

We consider the truss member shown in Figure 1.4 with initial and loaded

lengths, cross-sectional areas, and volumes: L, A, V and l, a, v respectively. For

simplicity we assume that the material is incompressible and hence V = v or

AL = al. Two constitutive equations are chosen, based, without explanation at the

moment, on Green’s and a logarithmic definition of strain, hence the Cauchy, or

true, stress σ is either

σ = E
l2 − L2

2L2
or σ = E ln

l

L
, (1.10a,b)

where E is a (Young’s modulus-like) constitutive constant that, in ignorance, has

been chosen to be the same irrespective of the strain measure being used. Physi-

cally this is obviously wrong, but it will be shown below that for small strains it

is acceptable. Indeed, it will be seen in Chapter 5 that the Cauchy stress cannot

be simply associated with Green’s strain, but for now such complications will be

ignored.

The equation for vertical equilibrium at the sliding joint B, in nomenclature

that will be used later, is simply

R(x) = T (x) − F = 0; T = σa sin θ; sin θ =
x

l
; (1.11a,b,c)

where T (x) is the vertical component, at B, of the internal force in the truss mem-

ber and x gives the truss position. R(x) is the residual or out-of-balance force,

B 

D 
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x 

l , 
a , υ
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θ 

FIGURE 1.4 Single incompressible truss member.
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1.3 NONLINEAR STRAIN MEASURES 7

and a solution for x is achieved when R(x) = 0. In terms of the alternative strain

measures, T is

T =
Evx

l2

(

l2 − L2

2L2

)

or T =
Evx

l2
ln

l

L
. (1.12a,b)

Note that in this equation l is function of x as l2 = D2 + x2 and therefore T is

highly nonlinear in x.

Given a value of the external load F , the procedure that will eventually be

used to solve for the unknown position x is the Newton–Raphson method, but

in this one-degree-of-freedom case it is easier to choose a value for x and find

the corresponding load F . Typical results are shown in Figure 1.5, where an ini-

tial angle of 45◦ has been assumed. It is clear from this figure that the behavior

is highly nonlinear. Evidently, where finite deformations are involved it appears as

though care has to be exercised in defining the constitutive relations because differ-

ent strain choices will lead to different solutions. But, at least in the region where x

is in the neighborhood of its initial value X and strains are likely to be small, the

equilibrium paths are close.

In Figure 1.5 the local maximum and minimum forces F occur at the so-called

limit points p and q, although in reality if the truss were compressed to point p it

would experience a violent movement or snap-through behavior from p to point p′

as an attempt is made to increase the compressive load in the truss beyond the limit

point.

By making the truss member initially vertical we can examine the large strain

behavior of a rod. The typical load deflection behavior is shown in Figure 1.6,

where clearly the same constant E should not have been used to represent the same

material characterized using different strain measures. Alternatively, by making the
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FIGURE 1.5 Truss example – load deflection behavior.
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FIGURE 1.6 Large strain rod – load deflection behavior.

truss member initially horizontal, the stiffening effect due to the development of

tension in the member can be observed in Figure 1.7.

Further insight into the nature of nonlinearity in the presence of large deforma-

tion can be revealed by this simple example if we consider the vertical stiffness of

the truss member at joint B. This stiffness is the change in the equilibrium equa-

tion, R(x) = 0, due to a change in position x, and is generally represented by

K = dR/dx. If the load F is constant, the stiffness is the change in the verti-

cal component, T , of the internal force, which can be obtained with the help of

Equations (1.11b,c) together with the incompressibility condition a = V/l as

K =
dT

dx

=
d

dx

(

σV x

l2

)

=

(

ax

l

dσ

dl
−

2σax

l2

)

dl

dx
+

σa

l
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FIGURE 1.7 Horizontal truss – tension stiffening.
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1.3 NONLINEAR STRAIN MEASURES 9

= a

(

dσ

dl
−

2σ

l

)

x2

l2
+

σa

l
. (1.13)

All that remains is to find dσ/dl for each strain definition, labeled G and L for

Green’s and the logarithmic strain respectively, to give
(

dσ

dl

)

G

=
El

L2
and

(

dσ

dl

)

L

=
E

l
. (1.14a,b)

Hence the stiffnesses are

KG =
A

L

(

E − 2σ
L2

l2

)

x2

l2
+

σa

l
; (1.15a)

KL =
a

l
(E − 2σ)

x2

l2
+

σa

l
. (1.15b)

Despite the similarities in the expressions for KG and KL, the gradient of the

curves in Figure 1.5 shows that the stiffnesses are generally not the same. This is to

be expected, again, because of the casual application of the constitutive relations.

Finally, it is instructive to attempt to rewrite the final term in (1.15a) in an

alternative form to give KG as

KG =
A

L
(E − 2S)

x2

l2
+

SA

L
; S = σ

L2

l2
. (1.15c)

The above expression introduces the second Piola–Kirchhoff stress S, which gives

the force per unit undeformed area but transformed by what will become known

as the deformation gradient inverse, that is, (l/L)−1. It will be shown in Chapter 5

that the second Piola–Kirchhoff stress is associated with Green’s strain and not

the Cauchy stress, as was erroneously assumed in Equation (1.10a,b)a. Allowing

for the local-to-global force transformation implied by (x/l)2, Equations (1.15c)

illustrate that the stiffness can be expressed in terms of the initial undeformed

configuration or the current deformed configuration.

The above stiffness terms show that, in both cases, the constitutive constant E

has been modified by the current state of stress σ or S. We can see that this is a con-

sequence of allowing for geometry changes in the formulation by observing that

the 2σ term emerges from the derivative of the term 1/l2 in Equation (1.13). If x is

close to the initial configuration X then a ≈ A, l ≈ L, and therefore KL ≈ KG.

Equations (1.15) contain a stiffness term σa/l (=SA/L) which is generally

known as the initial stress stiffness. The same term can be derived by consider-

ing the change in the equilibrating global end forces occurring when an initially

stressed rod rotates by a small amount, hence σa/l is also called the geometric

stiffness. This is the term that, in general, occurs in an instability analysis because

a sufficiently large negative value can render the overall stiffness singular. The

geometric stiffness is unrelated to the change in cross-sectional area and is purely

associated with force changes caused by rigid body rotation.
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10 INTRODUCTION

The second Piola–Kirchhoff stress will reappear in Chapter 5, and the mod-

ification of the constitutive parameters by the current state of stress will reap-

pear in Chapter 6, which deals with constitutive behavior in the presence of finite

deformation.

1.3.3 Continuum Strain Measures

In linear stress–strain analysis the deformation of a continuum body is measured in

terms of the small strain tensor ε. For instance, in a simple two-dimensional case ε

has components εxx, εyy, and εxy = εyx, which are obtained in terms of the x and

y components of the displacement of the body as

εxx =
∂ux

∂x
; (1.16a)

εyy =
∂uy

∂y
; (1.16b)

εxy =
1

2

(

∂ux

∂y
+

∂uy

∂x

)

. (1.16c)

These equations rely on the assumption that the displacements ux and uy are very

small, so that the initial and final positions of a given particle are practically the

same. When the displacements are large, however, this is no longer the case and

one must distinguish between initial and final coordinates of particles. This is typi-

cally done by using capital letters X, Y for the initial positions and lower-case x, y

for the current coordinates. It would then be tempting to extend the use of the above

equations to the nonlinear case by simply replacing derivatives with respect to x

and y by their corresponding initial coordinates X, Y . It is easy to show that, for

large displacement situations this would result in strains that contradict the physi-

cal reality. Consider for instance a two-dimensional solid undergoing a 90◦ rotation

about the origin as shown in Figure 1.8. The corresponding displacements of any

given particle are seen from the figure to be

ux = −X − Y ; (1.17a)

uy = X − Y ; (1.17b)

and therefore the application of the above formulas gives

εxx = εyy = −1; εxy = 0. (1.18a,b)

These values are clearly incorrect, as the solid experiences no strain during the

rotation.
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