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ODE Integration Methods

1.1 INTRODUCTION

Before we start to solve differential equations (DEs) by numerical integration, we will
briefly review some background topics prior to discussing a selection of the available
methods. We will do this in a nonrigorous way, as this aspect is covered in detail in any
textbook dealing with the calculus; for example, see [Joh-08] for an excellent basic intro-
duction to differentiation and integration and [Kre-11] for a more in-depth and broader
coverage of the calculus and its application. The latter book is considered by many sci-
ence, technology, engineering, and mathematics (STEM) students to be their math bible.

When we first start to study the calculus, we learn a little about the historical context
in which it was conceived and the priority dispute between Newton1 and Leibniz2 over
who invented it. Today, this dispute is considered moot, and historians credit both with
independent discovery.We are then introduced to the concept of a limit,wherebywe eval-
uate a continuous function, f (x), over the interval [a,b]—written as f (x) ∈ C[a,b]—as x
moves closer to a particular value, say,x = x0.This is,of course,only necessary when f (x0)
is indeterminate, as otherwise we could just plug x = x0 into f (x). Later in the course, we
learn advanced methods for dealing with indeterminate situations by obtaining limits
that require the use of derivatives.

The study of limits leads naturally to the idea of a derivative, being equal in one-
dimensional space to the slope of a tangent to the curve of our function f (x). We write
the derivative of f (x) with respect to x as df (x)

dx or,alternatively,as f ′(x),where the leading
d in the numerator and denominator is an operator representing an infinitesimal change
in f (x) and x, respectively. Usually, our first attempt at obtaining an approximation to
the tangent is to consider a straight line constructed between two points: one located at
the point on the curve where we wish to evaluate the derivative, x0, and the other a short

1 Sir Isaac Newton, English mathematician and scientist (1642–1727), also famous for discovering the inverse
law of gravity, which he published in 1687 in his famous book Philosophi Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy), commonly known as the Principia.

2 Gottfried Wilhelm von Leibniz, German mathematician and philosopher (1646–1716). He was also linguist
and wrote extensively on a wide range of subjects, including philosophy, politics, law, ethics, theology, history,
and philology.
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2 Numerical Analysis Using R
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Figure 1.1. Diagram of a two-sided derivative construction. In the limit as �x → 0, the slope at
point P will be equal to the derivative of f (x) evaluated at x = x0, that is,

d f (x)
dx

∣∣
x=x0 .

increment away. This is called a single-sided approximation, and the tangent slope, s, can
be calculated in two different ways:

sR = f (x0 + �x) − f (x0)
�x

, right-sided

sL = f (x0) − f (x0 − �x)
�x

, left-sided,

(1.1)

where the symbol �xmeans a small increment in x.
A more accurate approximation is the two-sided approximation,where the points are

located equidistantly either side of the point f (x0).The slope of this approximate tangent
is given by

s = f (x0 + �x/2) − f (x0 − �x/2)
�x

; (1.2)

see Fig. (1.1).
Clearly the approximation of eqn. (1.2) will become increasingly more accurate as �x

becomes smaller and the points move closer to x0. In the limit when �x = 0, we obtain
a value for the actual tangent slope at x0 and, consequently, the derivative. This is why
we were introduced to the concept of a limit prior to discussing derivatives. A two-sided
derivative of f (x) at x = x0 can be defined as

df (x = x0)
dx

= lim
�x→0

f (x0 + �x/2) − f (x0 − �x/2)
�x

, f (x) ∈ C1, (1.3)

where the symbol C1 means that this definition applies to a function f (x) that is both
continuous and has a continuous first derivative at x = x0.

Figure 1.2 includes a plot showing how a two-sided derivative approximation con-
verges rapidly as�x → 0.The function under consideration is f (x) = x

1
3 , and the tangent

slope is evaluated at x = 0.5.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-11561-3 - Numerical Analysis Using R: Solutions to ODEs and PDEs
Graham W. Griffiths
Excerpt
More information

http://www.cambridge.org/9781107115613
http://www.cambridge.org
http://www.cambridge.org


ODE Integration Methods 3

2 4 6 8 10 12 14

0.
52

0.
54

0.
56

n

sl
op

e

−0
.0

4
0.

00
0.

04

er
ro

r

Figure 1.2. Plot of two-sided derivative approximate values of the function f (x) = x
1
3 evaluated as

x = 0.5 (stepped) with corresponding errors (circles). Values for the denominator in eqn. (1.3)
are �x = 0.5/i, i = 1, . . . ,15. The slope approximation converges rapidly toward the true value
of 0.529 (thin horizontal line) as i increases.

The R code that produced Fig. (1.2) is shown in Listing 1.1.

# File: derivativeApprox.R

# Two-sided derivative approx. of f(x)=x^(1/3) evaluated at x=0.5

N <- 15; x <- seq(0,1,len=N); slope <- rep(0,N); err <- rep(0,N)

Nrange <- 1:N

x0 <- 0.5; x1 <- 0.25; x2 <- 0.75

Dx <- x0-x1 # equal spacing about x=0.5

s_anal <- 0.5291337 # derivative of f(x) at x=0.5

for(n in Nrange){

dx <- Dx/n # Next spacing of x

xa <- x0-dx; xb <- x0+dx # x points for new slope

fa <- xa^(1/3); fb <- xb^(1/3) # new function values

slope[n] <- (fb-fa)/(xb-xa) # derivative approx.

}

err <- slope-s_anal # error

txt <- sprintf("tangent slope=%5.3e at x0=%3.1f for dx=%5.3e\n",slope[N],x0,dx)

cat(txt) # print summary of final result

#

par(mar=c(4,5,2,5))

plot(Nrange,slope[Nrange],type="s",lwd=3, xlim=c(1,N),

ylim=c(0.52,0.56), xlab="n",ylab="slope") # type="s" means step plot

grid(lty=1); abline(h=s_anal,col="red") # Analytical value

lines(Nrange,slope[Nrange],lwd=3,type="s")

#

par(new = T) # Plot error on second y=axis

plot(Nrange,err[Nrange], col = "blue", axes = F,

xlab = NA, ylab = NA,ylim=c(-0.04,0.04))

axis(side = 4); mtext ( text ="error", side = 4, line = 3 )

Listing 1.1. File: derivativeApprox.R—Code to generate two-sided derivative approximations
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4 Numerical Analysis Using R

Table 1.1. Basic derivative pairs

Function, f (x) Derivative, f ′(x) = df(x)
dx

xan naxan−1

sin ax a cos ax
tan ax a sec2 ax
exp ax a exp ax

...
...

etc.

Once we have grasped the concept of the derivative of a function, we then learn how
to differentiate analytically a whole series of functions, including trigonometrical func-
tions, quotients, powers, and so on. We also learn to differentiate a function f (x) with
respect to x multiple times, where the nth derivative is written as dn f (x)

dxn . From this point
on, we are able to use a lookup table to obtain derivatives of standard functions, such as
those listed in Table 1.1.

At this point,we are equipped to apply differentiation to solving real-world problems
such as min/max of functions, obtaining velocity from distance traveled, and acceleration
from velocity.We also learn more advanced methods of obtaining limits that require the
use of derivatives, for example, l’Hôpital’s rule.3

The next stage in learning the calculus is an introduction to the concept of integration
of a function.We learn that indefinite integration is the opposite of differentiation (i.e., the
antiderivative) and needs to include a constant of integration and that definite integration
(also known as quadrature) is equal to the area under the curve of a function f (x) from
x = xa to x = xb. We are shown how to obtain an approximation to the definite integral
of our function f (x) with respect to x, written as

´ b
a f (x)dx, by dividing the area into a

set of rectangles and summing the areas of the individual rectangles. This is known as a
Riemann sum.4 A Riemann sum can be formed in three ways: left, center, and right (see
Fig. 1.3).

The area of one rectangle at, say, x = xi is given by Ai = (xi+1 − xi) f (xi). Therefore,
using a left Riemann sum of n rectangles, the total area is given by A =∑n−1

i=0 Ai =∑n−1
i=0 (xi+1 − xi) f (xi). Similar to the derivative discussed earlier, the approximation will

become increasingly more accurate as n increases and xi and xi+1 approach each other
and the rectangle widths reduce.Using our knowledge of limits, we can now define a def-
inite integral of f (x) with respect to x from x = xa to x = xb. This can be done using the
left and right Riemann sums, as follows:

IL =
ˆ x=xb

x=xa
f (x)dx = lim

n→∞

n−1∑
i=0

(xi+1 − xi) f (xi), xa = x1, xb = xn

IR =
ˆ x=xb

x=xa
f (x)dx = lim

n→∞

n∑
i=1

(xi+1 − xi) f (xi), xa = x1, xb = xn,

(1.4)

3 First published by French mathematician Guillaume François Antoine, Marquis de l’Hôpital (1661–1704). If
limx→x0

f (x)
g(x) is indeterminate, but limx→x0

f ′(x)
g′(x) exists, then the method states that the first limit also exists

and is equal to the second limit.
4 After German mathematician Georg Friedrich Bernhard Riemann (1826–1863).
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Figure 1.3. Diagram showing three possible Riemann sums for the area under the curve of func-
tion f (x) between x = x0 and x = xn: (a) A left Riemann sum where the area A =∑n−1

i=0 fi(xi+1 −
xi); (b) a center Riemann sum where the area A =∑n−1

i=0 (fi + fi+1)(xi+1 − xi)/2; and (c) a right
Riemann sum where the area A =∑n

i=1 fi(xi+1 − xi). Here we have used the symbol fi to represents
f (xi ).

where IL represents the leftRiemann sum and IR represents the rightRiemann sum.Note
that it is not a requirement that the xi be spaced equally along the x-axis.

A more accurate approximation is obtained from the centerRiemann sum,where the
height of the rectangle at f (xi) is equal to the average height of the two values f (xi) and
f (xi+1). The integral approximation by this method is given by

IC =
ˆ x=xb

x=xa
f (x)dx = lim

n→∞

n−1∑
i=0

1
2
(xi+1 − xi)( f (xi) + f (xi+1), xa = x1, xb = xn (1.5)

(see Fig. 1.1).
Figure 1.4 includes a plot of the center Riemann sum approximation to the definite

integral of f (x) = x3 evaluated between x = 0 and x = 1. The approximation converges
toward the true integral value of 0.25 as the number of rectangles n increases. The center
sum approximation requires 12 rectangles to reduce the error to below 1%, whereas left

4 6 8 10 12 14

0.
20

0.
30

0.
40

n

ar
ea

−0
.1

0
0.

00
0.

10

er
ro

r

Figure 1.4. Plot of center Riemann sum approximate values of the integral of f (x) = x3 evaluated
between x = 0 and x = 1 (stepped) with corresponding errors (circles). The integral approximation
converges to the true value of 0.25 (thin horizontal line) as n increases.
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6 Numerical Analysis Using R

and right approximations would require more that 200 rectangles to achieve the same
accuracy.

The R code that produced Fig. 1.4 is shown in Listing 1.2.

# File: RiemannSum.R

# Center Riemann sum of f(x)=x^3 evaluated from x=0 to x=1

N <- 15; Nrange <- seq(3,N,by=1)

area = rep (0,N)

I_anal <- 0.25 # Integration of f(x) between x=0 and x=1

for (n in Nrange ){ # calculate Riemann sum for 3 to N intervals

x <- seq (0,1, len=n) # Next sequence from x=0 to x=1

dx <- x[2] -x [1] # equal spacing

f <- x^3 # evaluate f(x), x=0,...,1

area[n] <- dx*(sum(f[2:(n-1)])+(f[1]+f[n])/2)

}

err <- area-I_anal # error

txt <- sprintf("Center Riemann sum =%5.3e for n=%d rectangles \n", area[n],n)

cat(txt) # print summary of final result

# Plot results

par(mar=c(4,5,2,5))

plot ( Nrange , area [Nrange], type ="s", lwd =3, ylim =c (0.2 ,0.4),

xlab ="n", ylab ="area") # type ="s" means step plot

grid ( lty =1); abline (h =0.25 , col =" red ") # Analytical value

#

par(new = T) # Plot error on second y=axis

plot(Nrange,err[Nrange], col = "blue", axes = F,

xlab = NA, ylab = NA,ylim=c(-0.1,0.1))

axis(side = 4); mtext ( text ="error", side = 4, line = 3 )

Listing 1.2. File: RiemannSum.R—Code to generate Riemann sums

Once we have grasped the concept of integration, we learn how to integrate ana-
lytically a wide range of functions, including trigonometrical and logarithmic functions,
quotients, and powers.As for derivatives,we are now able to use a lookup table to obtain
integrals of standard functions, such as those listed in Table 1.2.

With our new knowledge of integration,we can now solve additional real-world prob-
lems to those we tackled using differentiation, such as distance traveled from velocity,
volumes of revolution, areas between curves, and lengths of curves.

At this stage in our study, we have learned the basics of the calculus and how to use it
to solve otherwise intractable problems.We are then equipped and ready to be exposed to
the concept of differential equations (DEs), and this opens up a whole new field of study.
Historically, differential equations arose from the analysis of physical system dynamics.
Subsequently, the ideas have moved into other disciplines, such as finance and the social
sciences.
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ODE Integration Methods 7

Table 1.2. Basic integral pairs

Function, f (x) Integral, F (x) = ´ f(x) dx
xan xan+1

an+1

sin ax − 1
a cos ax

tan ax 1
a ln (| sec ax|)

exp ax 1
a exp ax

...
...

etc.

Note: (a) An indefinite integral is equal to F (x) + k,
where k represents a constant of integration. (b) A
definite integral that is evaluated between the limits
x = xa and x = xb is equal to F (xb) − F (xa ). This is
known as the fundamental theorem of calculus and
establishes a formal relationship between differenti-
ation and integration.

A differential equation is an equation that can include constants, functions, and, of
course, derivatives; hence use of the term differential. It is appropriate here to clarify the
following terms that are used to classify differential equations:

� A DE must include one or more derivatives of any order, for example, first, second,
or third and the order of a DE is determined by the highest-order derivative.

� A DE is called linear if all terms containing the dependent variable or its derivatives
are of the first degree and do not contain higher powers or products.

� A DE is defined as homogeneous if all the terms contain the dependent variable
and/or its derivative of any order. Thus a constant term destroys homogeneity and
the DE becomes nonhomogeneous.

For example, the following represents a linear, nonhomogeneous, second-order differen-
tial equation:

d
d2 f (x)
dx2

+ c
df (x)
dx

+ b f (x) + a = 0, (1.6)

where a, b, c, and d are constants and f (x) is an unknown function that we wish to deter-
mine, that is, the solution. However, for a sufficiently smooth function, there exists an
infinite family of functions that will satisfy eqn. (1.6). Depending on the type and order
of DE, to obtain a particular solution, f (x), we also need to specify appropriate initial
conditions (ICs) and/or boundary conditions (BCs). The number of these auxiliary con-
ditions is equal to the highest-order derivative with respect to the independent variable. For
example, a first-order initial value ODE with dependent variable u(t) requires one IC at
the initial value of t, that is,u0 = u(t0).Similarly, the second-orderODEgiven in eqn. (1.6)
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8 Numerical Analysis Using R

requires one IC for the dependent variable at the initial value of x, that is, f0 = f (x0), plus
an initial value for the first derivative of the dependent variable, that is, f ′

0 = f ′(x0), and
so on. These requirements are illustrated by example in subsequent sections and are also
discussed in more detail for PDEs in Chapter 3.

Equation (1.6) is defined as an ordinary differential equation (ODE) as there is only
one independent variable, x. If a DE includes more than one independent variable, say,
x and t, then this DE is called a partial differential equation (PDE). For example, the
following represents a second-order PDE, the so-called diffusion equation:

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2
, (1.7)

where D is the diffusion constant and the unknown function is represented by u(x, t).
Note that the derivatives are now called partial derivatives and the operator symbol has
changed from d to ∂ . A partial derivative is defined as

∂u(x, t)
∂x

= du(x, t)
dx

∣∣∣∣
t
, (1.8)

which means that ∂u(x,t)
∂x is equal to du(x,t)

dx with all independent variables, other than x,
held constant—in this case, just t. Hence use of the term partial.

Partial derivatives still represent the slope of a tangent, but instead of the tangent
being to a line, it is a tangent line on a surface. In this instance, the tangent line is aligned
in the direction of the variable x. PDEs are discussed in more detail in Chapter 3.

The process of solving a differential equation involves integration, either directly or
indirectly.Hencewe refer to integration of differential equations.We usually start learning
about differential equations by studying certain types of ODEs, some of which can be
solved by substituting an ansatz5 into the equation and solving for the unknowns. For
example, letting a = −1, b = c = 1, d = 0, and f (x) = y(x) in eqn. (1.6) yields the first-
order linear nonhomogeneous ODE

dy
dx

+ y = 1, y = y(x). (1.9)

In our DE course, we learned that for a linear nonhomogeneous ODE, the solution con-
sists of two parts, a homogeneous solution, yh, to the homogeneous part of the ODE and
a particular solution, yp, to the nonhomogeneous part, with the total solution being equal
to y = yh + yp. First we substitute the ansatz y = Aemx into the homogeneous part of
eqn. (1.9) (by setting the nonhomogeneous right-hand side to zero), giving

Amemx +Aemx = 0. (1.10)

If we now divide through by Aemx, we obtain the characteristic equation

m+ 1 = 0, ∴ m = −1. (1.11)

Thus yh = Ae−x is a general solution to the homogeneous part of eqn. (1.9), withA being
an arbitrary constant.

5 The term ansatz is used to describe an assumed form of solution, a trial solution, or an educated guess.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-11561-3 - Numerical Analysis Using R: Solutions to ODEs and PDEs
Graham W. Griffiths
Excerpt
More information

http://www.cambridge.org/9781107115613
http://www.cambridge.org
http://www.cambridge.org


ODE Integration Methods 9

We now attempt to solve for yp trying the ansatz yp = C × 1, a constant multiplied by
the nonhomogeneous right-hand side of eqn. (1.9),6 which yields

0 +C = 1. (1.12)

Therefore C = 1 and y = yh + yp = Ae−x + 1. However, if we know a value of y for a
particular value of x, we can solve for A. This is known as the particular solution to
eqn. (1.9)—because particular values are assigned to the constants A and m. Letting the
known value be the initial condition y = 0 when x = 0 yields A = −1, and the overall
particular solution satisfying the initial condition becomes

y = 1 − e−x. (1.13)

Of course, for this case, eqn. (1.9) is a separable equation and can be solved by a simple
integration, that is,

ˆ
1

1 − y
dy =

ˆ
dx,

∴ − ln(1 − y) + k1 = x+ k2, ⇒ y = 1 +Ae−x,
(1.14)

where k = k1 − k2 is the combined constant of integration and A = −ek. Thus we have
obtained the same general solution; and using the same initial condition, we obtain the
same overall particular solution, y = 1 − e−x.

Higher-order ODEs can, in general, be transformed into a set of coupled first-order
ODEs. By “coupled,” we mean that the dependent variables occur in more than one
equation. Thus transformation often facilitates analysis and can simplify the process of
obtaining a general or particular solution. Consider the following second-order ODE:

d2y
dx2

= a
dy
dx

+ by+ c, y = y(x). (1.15)

This equation can be transformed into two coupled first-order equations by letting y1 = y
and y2 = dy1

dx , when we obtain, in matrix form,⎡⎢⎢⎣
dy1
dx
dy2
dx

,

⎤⎥⎥⎦ =
[
0 1
b a

] [
y1
y2

]
+
[
0
c

]
. (1.16)

In the same way, a third-order system can be transformed into a set of three coupled
first-order equations, and so on for higher-order systems. This form of mathematical pre-
sentation is very useful for analytical analysis when eigenvalues can be obtained that
provide insight into the stability and dynamic behavior of the system being investigated.
This approach can also be applied to the solution of PDEs and is discussed in later
chapters.

The analysis of nonlinear differential equations is beyond the scope of this brief intro-
ductory overview.A wide discussion on DEs in general may be found in [Zwi-98], and an

6 If the homogeneous solution contains the nonhomogeneous part, then we try letting yp equal the nonho-
mogeneous part multiplied by xn, where n is the minimum integer that makes yh + yp linearly independent.
There are many tricks for solving nonhomogeneous ODEs, for example, see [Kre-11].
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10 Numerical Analysis Using R

interesting book that discusses nonlinear DEs and provides an introduction to nonlinear
dynamics is [Tel-06].

An amazing characteristic of DEs is that very similar equations crop up in many
different disciplines, for example, rate of reaction and continuity in chemistry, celes-
tial mechanics and diffusion in physics, natural modes of vibration and inertial systems
in mechanical engineering, and resistance–capacitance–inductance circuits and electro-
magnetic waves in electrical engineering. Even in financial analysis, there is the Black–
Scholes PDEmodel7 for describing stochastic8 processes involved in the financial instru-
ments known as derivative options. These PDEs include convection- and diffusion-like
terms. Consequently, from their wide application, it is clear that the solution of DEs is an
immensely important area of applied mathematics.

For many problems, ODEs cannot be solved analytically by the preceding or simi-
lar methods. This can be due to the presence of nonlinear terms, parameters that vary
over the solution domain, difficult boundary conditions, or just the sheer complexity of
the problem. In these situations, we have to resort to numerical methods. The process
of solving ODEs/PDEs numerically is called numerical integration and is performed by
a numerical integrator, alternatively referred to as a numerical solver. The matrix form
of eqn. (1.16) is particularly useful in numerical analysis as standard numerical solvers
usually expect ODEs in this form. A numerical solution to a differential equation is one
where the differentials are replaced by a set of algebraic equations and whose solution
provides an approximation to the true solution. The job of the numerical analyst is to
find an approximate solution that is sufficiently close to the true solution.

The idea of numerical integration is to use one ormore past values to approximate the
derivative of the dependent variable, and then to use this to project the solution forward,
either in time or space. The new solution in turn becomes a past value that is used to
project forward to the next solution value, and so on. In this step-by-step approach, a
solution trajectory gradually evolves until the problem is solved to the satisfaction of the
analyst.Of course, this is a rather simplistic overview,andmany considerations need to be
taken into account to obtain a good numerical solution. For example, in later sections,we
discuss integration errors and methods for keeping the solution within desired accuracy
bounds, and in the next chapter, we learn about methods to investigate solution stability.

Numerical integration methods is a vast subject that we can only discuss briefly here,
and we shall only cover a small selection of the more common integrators to give some
insight into the numerical solution of initial value problems. The integrator methods we
consider are suitable for solving initial value problems described by ordinary differential
equations (ODEs) of the form

dy
dt

= f (y, t) , [y (t0) = y0] , y ∈ Rm, t > 0. (1.17)

7 The so-called Black–Scholes model, shown here without discussion, was published by Fischer Black and
Myron Scholes in their 1973 paper “The Pricing of Options and Corporate Liabilities,” published in the Jour-
nal of Political Economy:

∂V
∂t

+ 1
2
σ 2S2

∂2V
∂S2

= rV − rS
∂V
∂S

.

8 A stochastic process is a random process that is governed by its statistics. It can be considered to be the
opposite of a deterministic process.
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