agriculture, value added of, 5
Allen, R.G.D., 155
arbitrage, 327
see also investment
Arrow, Kenneth, 48–9, 76, 84, 85, 92, 147, 155–6, 392
asset value, and Fisher equation, 319–21
asymptotic factors, in consumption per person, 373
asymptotic growth, with labour-augmenting technical progress, 134–44
banks, money creation by, 411–14
Bellman, Richard, 231–2
Beltrami equation, 227–8
Bernoulli, Johan, 192, 210–15
biomass changes, 14–15
brachistochrome problem, 192–6, 210–15
calculus of variations
central equations, 222–30
optimal growth theory, 189–216, 244–9
capital
as factor of production, 26–8
marginal productivity of, 33, 118
and competitive equilibrium, 361–6
optimal time path of, 166–7, 381–2
per efficient labour unit, 135
capital depreciation, and GDP (gross domestic product), 14–15
capital income, 4, 408
capital marginal product, and elasticity of substitution, 80–2
capital productivity, 35
capital share values limitation, 126–7
capital stock value, and Fisher equation, 319–21
capital valuation, 316–21
and Fisher equation, 318–21
investment total return, 317
unit evaluation, 317–18
value of dollar invested in capital good, 316–17
capital-augmenting technical progress, 49, 153, 157
capital-labour ratio, 35, 49, 51, 63, 69–74, 209
and constant elasticity of substitution, 82, 83–4, 110–11, 114, 116–18, 129–30, 133, 152, 155
capital-output ratio, 408, 410–11
and constant elasticity of substitution, 111, 165
time path of, 165, 368–9, 382
central banks, money creation by, 411–14
central limit theorem, 179–80
CES (constant elasticity of substitution), xix, 48–9, 76–91
in aggregative theory of economic growth, 114–15, 156
as boost to economy during development, 128–30
calibrated capital share in total income, 125–6
and capital marginal product, 80–2
capital share values limitation, 126–7
and capital-labour ratio, 82, 83–4, 110–11, 114, 116–18, 129–30, 133, 152, 155
and capital-output ratio, 111, 165
and competitive equilibrium, 156–7, 160, 406
concave power function, 155–6
cross-section estimates, 146–7
capital valuation, 316–21
and Fisher equation, 318–21
value of dollar invested in capital good, 316–17
capital-augmenting technical progress, 49, 153, 157
capital-labour ratio, 35, 49, 51, 63, 69–74, 209
and constant elasticity of substitution, 82, 83–4, 110–11, 114, 116–18, 129–30, 133, 152, 155
capital-output ratio, 408, 410–11
and constant elasticity of substitution, 111, 165
time path of, 165, 368–9, 382
central banks, money creation by, 411–14
central limit theorem, 179–80
CES (constant elasticity of substitution), xix, 48–9, 76–91
in aggregative theory of economic growth, 114–15, 156
as boost to economy during development, 128–30
calibrated capital share in total income, 125–6
and capital marginal product, 80–2
capital share values limitation, 126–7
and capital-labour ratio, 82, 83–4, 110–11, 114, 116–18, 129–30, 133, 152, 155
and capital-output ratio, 111, 165
and competitive equilibrium, 156–7, 160, 406
concave power function, 155–6
cross-section estimates, 146–7
and curvature of isoquant, 79–80
definition of, 78
distribution parameter, economic interpretation of, 108
as efficiency parameter, 104
and elasticity of income per person/wage rate, 82–3
and equilibrium income per person, 130–2
estimate of, 149
factor demand, 76
factors determining magnitude, 151–2
function in growth model, 115–27, 156
general mean of order p, fundamental properties, 94–6
geometrical representation of, 78–80
and growth, 115–26, 127, 151–3, 156, 159
and income distribution, 83–4
and income per person, 105–11, 118–27, 129–32, 155–6, 374–6
increase by country, 146, 151
and initial savings rate, 353–4
measurement as less than 1, 155–66
and national product production cost, 116–18
and order of the mean p, 93
Pitchford constant, 120–2, 136, 156
Index

CES (constant elasticity of substitution) (cont.)
production function applications, 96–8
production function constants, 87–8
production function determination, 85–8
production function as general mean, 92–113
production function isoquants, 99–105
production function special cases, 98
production function theorems, 116–18, 132, 133–4
production per person, 105–8
properties of, 80–3
qualitative behaviour of CES function, 98–111
and savings-investment rate, 116–18, 124, 125–6
and technical progress
wage-rental ratio/capital-labour ratio relationship, 76–83, 114, 152, 155
Walras-Leontief production function, 97
Chenery, Hollis, 48–9, 76, 84, 85, 92, 147, 155–6
China, popular communes in, 401–3
Cobb-Douglas case, 43, 49, 106, 107
Cobb-Douglas function, xix, 60–1, 64–6, 79, 84, 152, 164–5
collective farming see planned economies
commercial banks, money creation by, 411–14
capital-output ratio time path, 165, 368–9, 382
and concavity of utility functions, 349–57, 359, 360
and consumption flows, 297, 408–11
economy in, 410–11
and elasticity of substitution, 156–7, 160, 406
and Euler equation, 357–60, 376–7
and initial income per person growth rate, 353–4
and savings rate, 353–4
intertemporal optimality of, 361–6
labour share in net national income, 408–10
labour share in total income, 165–6
and marginal productivity of capital, 361–6
optimal evolution of the economy, 366–9
optimal evolution of income per person, 164–5
optimal location of economy in, 163
optimal savings rate, 165, 367–8
optimal time path of capital, 166–7, 381–2
and remuneration of labour, 163–4, 362, 365
sustainability of, 162–6, 349–60
theorem 1, 163–4
traditional approach incompatibility, 357–60
in traditional model, 337
unsustainability of, 157–62, 337
concavity of utility/production function, 155–6, 163–4, 335, 336, 347, 349–57, 359, 360, 376
see also utility functions
consumers’ surplus, 18–19
consumption
discounted flows, 163–4
goods and services, 3–4
measurement, 11–12
private, 4–5
consumption flows, 360–1
consumption per person, asymptotic factors, 373
Cost of the Theory of Economic Growth, 43
cost function, derivation with capital and
labour-augmenting process, 153
currency valuation, 11–12
curvature of isoquant, 79–80
demographic growth factors, 394
derivatives, concept of, 52–3
descriptive growth theory, 35–6
differential equation, solutions of first order, 57–60
discounted consumption flows, xviii–xix, 362, 408–11
disequilibrium, 127–8, 139–40
DOPRI program, xx–xxi
Dorffman, Robert, xx, 231–2
Dorffmanian approach, xx, 231–42, 251, 270–1, 363–6
Dorffmanian extensions, 238–42
Easterly, William, 417
economic activity
factors neglected in calculation, 13
and income, 3–12
measuring
approaches to, 4–5
expenditure approach, 4–5
income approach, 5
income per person, 3–14, 15
input-output table, 5–8, 20
national income at current/constant prices, 9–12
output (value added) approach, 5
NNP see NNP
economic growth see growth
economic welfare see welfare
economy sectors, 5
elasticity
concept of, 52–7
and growth rates, 55–7
reading function from graph, 54–5
of substitution see CES
Elsgolc, L., 210–15
equation of motion
of capital-labour ratio, 71–4
of the economy, 34–9, 71–4
fundamental property, 35
equilibrium
competitive see competitive equilibrium
disequilibrium, 127–8, 139–40
and income per person, 118–27, 130–2
price equilibrium, 17, 297
saddle-point, 7, 282

© in this web service Cambridge University Press
www.cambridge.org
spot price, 297
and technical progress, 139–40, 403–5
in utility functions, 336
equilibrium instability, 69–75
equilibrium interest rates, 297, 298–300
equilibrium investment, 327, 332–4, 349–60
equilibrium point
and fixed prices, 18, 23
and negative exponential, 347
equilibrium values, 49
Euler equation, 192–6, 222–5, 230, 237–8, 363–6
additional gain, 224, 226
and Beltrami equation, 227–8
and calculus of variation, 245–6
and competitive equilibrium, 357–60, 376–7
end-point conditions, 228–9
fundamental properties of, 197
and Hamiltonian, 234, 270–1
and improper integrals, 207–8
and integration constants, 207
and optimal savings rate, 336
particular equations, 197–9
transversality conditions, 206, 207–8, 228–9
and utility functions, 357–60
and welfare, 361
Euler-Lagrange equation, 199, 201–3, 231–2, 270–1
Euler-Ostrogradski equation, 225–7, 230
Euler-Poisson equation, 231–2, 238–42
Euler’s theorem, 30–4, 60, 61
expenditure
growth factors, 9–12
with individuals’ consent, 12
without individuals’ consent, 12
exports, 4–5
factor demand, 76
factors of production, 26–8, 407
first-order differential equation, 57–60
Fisher equation, 318–21, 332–3
Fisher-Solow equation, 408
fixed prices
and equilibrium point, 18, 23
and supply and demand, 17–18
foreign competition, 24
fundamental equation of positive, 35–6
future price equilibrium, 297
GDP (gross domestic product)
approaches to measuring, 4–5, 20
and capital depreciation, 14–15
excluded expenditures, 12–13
GDP/public debt ratio, 335
and GNP, 8–9
implicit GDP deflator, 11–12
input-output table, 5–8, 20
and NNP see NNP
real GDP per person, third world countries, 68–71
general mean, proofs of, 111–13
general mean of order p, fundamental properties, 94–6
GNP (gross national product), 8–9
Goodwin model, 343–4, 376
Goodwin, Richard, 266, 335–6, 338–43, 376
growth
agreed hypotheses, 407
alternate production functions, 41–9
asymptotic growth with labour-augmenting
technical progress, 134–44
demographic, 394
descriptive growth theory, 35–6
equation of motion of the economy see motion of
the economy
equilibrium points, 41–3
excessive taxation transgression, 397–8
factors of production, 26–8
homogenous functions, 30–4, 60
illustration of, 26–8
and institutional soundness, 398–400
investment behaviour of society hypothesis, 28–30,
34
monopolies transgression, 397, 398
optimal, 163–4
and popular communes, 384–8, 401–3
population growth hypothesis, 34
production function hypothesis, 28–34
significance of elasticity of substitution, 151–3
slavery transgression, 396, 398
solution of first-order differential equation, 57–60
speed of convergence toward equilibrium, 39–41
technical progress hypothesis, 5, 34, 49–52, 115,
407
and threshold value of elasticity of substitution,
122–7
growth factors
Ibn Khaldun’s, 393–400
individual profit, 394–5, 400–5
private property, 394–5
technical progress, 394, 403–5
growth model, 28–49
growth problems
and planned economies, 383–90, 401–3
see also planned economies
growth rate
and elasticity, 55–7
long-term see long-term growth rate
growth stability analysis, 41–9
Hahn, Frank, 392
Hairer, Ernst, xx–xxi, 347
Hamiltonian approach, xx, 231–2, 233–4, 236–7,
250, 270–1
Hammond, P., 271
Han Fei Tzu, 383
Harrod-Domar case, 43–6
Hicks, John, 114, 151–2, 155
homogenous functions, 30–4, 60, 62–3, 71
Ibn Khaldun, 1–2, 392–405, 415
and Tahir b. al-Husayn, 399–400, 415
import duty, 24
import quotas, 25
imports, 4–5
income
and democracy, 13–14
as measure of economic activity, 3–12, see also
economic activity
optimal growth rate, 368
and society’s welfare, 12–13
income distribution, and elasticity of substitution, 83–4
individual profit growth factor, 394–5
industry, value added of, 5
inflation, and interest rates, 298
input-output table, 5–8, 20
interest rates
artificially fixed, 299–300
and capital valuation see capital valuation
continuous compounded forward rate, 301–4
continuous compounded spot rate, 304–7
continuous compounded total return, 307–11
continuous compounding, 301, 304–7
economic interpretation of e, 309–11
economic interpretation of log x, 311–15
equilibrium, 297, 298–300
forward rates, 301–4, 308, 315–16
and inflation, 298
instantaneous forward rate, 304
properties of, 315–16
real interest rate, 345
reason for existence of, 298–300
and savings rate, 353–4
spot rates, 301–2, 304–7, 308, 309, 315–16
total return, 307–11
types of, 301–16
Introduction to History, 1–2, 392–405
five growth factors, 393–400
investment
arbitrage, 327–8
equilibrium, 327, 332–4, 349–60
Fisher equation, 318–21, 332–3
investors’ behaviour, 327–8, 330
overvalued capital good/asset
and arbitrageurs, 331–2
and investors’ behaviour, 332
private, 4–5
public, 4–5
risk premium, 332–4, 376–7
risk-free transactions, 327, 361
supply-demand curves, 327–8
uncertainty, 327
undervalued capital good/asset
and arbitrageurs, 328–30
and investors’ behaviour, 330
investment goods, 3–4
investment-savings rate, 74–5
invisible hand, xviii–xix
Johnston, Louis D., 183–4, 342
Jones, Ronald, 152
Kaldor, Nicholas, 164–5
King, Robert, 335–7, 338–43, 347
King/Rebelo model, 335–7, 344–6, 347, 376
Klump, R., 116–18
La Grandville, Olivier de, 111–13, 116–18, 238, 337, 347, 348, 349
labour
as factor of production, 26–8, 63–4
as function of time, 408
in intensive units, 50
productivity, 63–4, 74–5
remuneration of, 163–4, 362, 365, 408–11
rising share of, 408
share in total income, 165–6
labour income, 4
labour units, 135
Lagrange, Ludovico, 193, 199
legal institutional soundness, 398–400
Leibniz formula, 208–10
Leontief, Wassily, 7, 282
Letwin, William, 377
L’Hospital’s rule, 120–1, 315
lognormal variable, 173–7, 181
long-term growth rate, 170–85
10-year expected growth rate, 171–2
arithmetic/geometric means for discrete/
continuous random variables, 182–3
central limit theorem, 179–80
daily growth rate, 172–7
expected value and variance of, 180–1
geometric mean convergence, 182–3
lognormal variable, 173–7, 181
moment generating functions, 185
n-horizon intervals probabilities, 181
in US economy, 183–4
yearly growth rate, 171–7
first moments, 177–83
first moments (methods of obtaining), 178–80
Maastricht Treaty, 335
Malinvaud, Edmond, 152
Mao Tse Tung, 401–3
Markovitz, Harry, 333–4
Minh, Mach Nguyet, 113
Index 427

Minhas, Bagicha, 48–9, 76, 84, 85, 92, 147, 155–6
Mo Tzu, 416
moment generating functions, 185
money creation, by central/commercial banks, 411–14
motion of the economy see equation of motion
Muqaddimah see Introduction to History
net national income, 8–9, 71
net production by sector, 4
NNP (net national product), 8–9
optimal control theory, 231
optimal growth theory
Beltrami equation, 197–9, 212–13, 222–3, 227–8, 380–1
calculus of variations approach, 189–216, 244–9
central model, 267–9
concavity of production functions, 255
concavity of utility functions, 278
cusp area enlargement, 288–9
differentiating integrals, 208–10
Dorfmanian approach, xx, 231–42, 251, 270–1, 363–6
Dorfmanian extensions, 238–42
economy as steady state, 277–80
end-point conditions, 203–7
equilibrium point, 287
Euler equation see Euler
functionals depending on \(n \) functions, 199–200
Goodwin model, 343–4, 376
Hamiltonian approach, xx, 231–2, 233–4, 236–7, 250, 270–1
modified Hamiltonian see Dorfmanian
improper integrals, 207–8
Leibniz formula, 208–10
mainstream problem of, 244
optimal consumption level, 252–6
Ramsey model, 198, 199, 243, 266, 335–6, 338–43, 376
Ramsey optimal savings-investment rate, 377–81
Ramsey rule
differential equations, 251–6
optimal time paths, 251–6
Ramsey utility function, 339, 341–3
real interest rate, 345
Takayama theorem, 201–3, 215–16, 245–6, 270–1, 363
traditional results, 243–63
transversality conditions, 203–7
utility functions see utility functions and welfare, 410–11
see also competitive equilibrium
order of the mean \(\mu \), and elasticity of substitution, 93
Ostrogradski equation, 222–3, 225–7, 230, 231–2, 238–42
Pitchford constant, 120–2, 136, 156
Pitchford, John, 120–1
planned economies
black market, 388
collective farming, 384–8
common traits in poor countries, 388–90
broken growth process, 389
closed economies, 389
equality of chances, 389–90
stability of system, 390
consequences of, 384–8
fixed selling price possibilities, 385–8
and growth problems, 383–90
popular communes, 384–8
rationing consequences, 388
separation of powers, 390
state agencies, 384–8
political institutional soundness, 398–400
Pontryagin, Lev, 231–2
Pontryagin maximum principle, 164, 231–42, 249–51
popular communes, 384–8, 401–3
population growth hypothesis, 34, 74–5, 116–18, 124
positive growth theory, overview, 1–2
poverty traps, 68–75
hypotheses, 71
stability analysis hypotheses, 71
technological, 69–71
price equilibrium, 297
price indexes, 9–12
private property growth factor, 394–5
producers’ surplus, 18–19
production
factors of, 26–8, 407
net by sector, 4
production function, 28–34, 60, 62–4, 66–7, 157, 163–4
applications, 96–8
production function (cont.)
 constants, 87–8
determination, 85–8
 as general mean, 92–113
isoquants, 99–105
 special cases, 98
theorems, 116–18, 132, 133–4
 profits, 4
 US financial sector, 408–10
public debt/GDP ratio, 335

Ramsey, Frank, 198, 199, 243, 266, 335–6, 376
 model/equation see optimal growth theory
Rebelo, Sergio, 335–7, 338–43, 347
 rental rate equilibrium, 297
 risk premium, 361, 376–7, 407
 risk-free transactions, 327

savings, optimal savings rate see optimal growth theory
 savings rate threshold, 116
 savings-investment rate, 116–18, 124, 125–6, 377–81
 separation of powers, in planned economies, 390
 services, value added of, 5
Sfreddo, Claudio, xx–xxi
Sharpe, William, 333–4
Smith, Adam, xviii–xix, 1–2, 377, 392–3, 395, 400–5
 society’s activity, 408–11
 society’s welfare see welfare
Solow, Robert, xx–xxi, 43, 46–9, 76, 84, 85, 92, 111–13, 147, 155–6, 293–5, 316–21
 spot price equilibrium, 297
Stoléru, L., 266
 supply and demand
 and fixed prices, 17–18
 law of, 16–17
Sydsaeter, J., 271
Tahir b. al-Husayn, 399–400, 415
 Takayama theorem, 201–3, 215–16, 245–6, 270–1, 363
taxation, excessive taxation and growth, 397–8
 technical progress, 132–45
 and capital productivity, 156
 capital-augmenting, 49, 153, 157, 163–5, 349
 and change in CES, 145

Index

cross-section estimates, 145–51
equilibrium/disequilibrium in, 139–40
general specifications, 133–4
 and growth, 5, 34, 49–52, 115, 394, 403–5
 introduction to, 49–52
 labour-augmenting, 49, 153, 163–5, 349
 with asymptotic growth, 134–44
 results, 133–4, 403–5
time-series estimates, 145–51
 technical progress growth factor, 394
 technological poverty traps, 69–71
 Thanb, Nam Phan, 113
 Theory of Wages, 114, 151–2
 third case (Solow), 46–8, 49
time-dependent differential equations, 52
 Toynbee, Arnold, 1–2
capital growth rate behaviour, 358
capital-output ratio behaviour, 359
concavity of, 155–6, 163–4, 335, 336, 347, 349–57, 359, 360, 376
consumption behaviour, 357
 and Euler equation, 357–60
 exponential utility functions, 281–9
 negative exponential utility function, 286, 347
 in optimal growth theory see optimal growth theory
 power utility function, 269–81, 347–8
 Ramsey’s see optimal growth theory
 real income per person growth rate, 355
 savings rate behaviour, 356
 Walras-Leontief case, 43–6, 49, 106, 115
 Walras-Leontief production function, 97
 Wealth of Nations, xviii–xix, 1–2, 377
 welfare
 and consumption, 360–1
 and equal opportunity, 13
 and equity, 13
 and expenditure, 22
 and income, 12–14
 and optimal growth, 410–11
 welfare flows, 360, 376–7
 Williamson, Samuel H., 183–4, 342
 world population, 14–15

Yuhn, Ky-Hyang, 116