Contents

<table>
<thead>
<tr>
<th>List of Boxes</th>
<th>page xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
</tbody>
</table>

Chapter 1 Plants Create the Biosphere
1
1.1 Introduction: The Importance of Plants
1.1.1 Plants Are Abundant and They Support Other Life Forms
1.1.2 Fundamentals and Overview
1.1.3 The Number of Species and Their Classification
1.1.4 Vegetation Types and Climate
1.2 The First Land Plants
1.3 Energy Flow Organizes Molecules
1.4 Membranes Are Necessary for Life
1.5 Eukaryotic Cells Originated as Symbioses
1.6 The Origin of Photosynthesis
1.7 The Oxygen Revolution Was a Consequence of Photosynthesis
1.7.1 Ocean Chemistry Changes With Oxygen
1.7.2 Atmospheric Composition Changes With Oxygen
1.7.3 The Ozone Layer Forms From Oxygen
1.8 The Cambrian Explosion of Multicellular Life
1.9 Plants Affect Climate
1.10 Sediment and Ice Cores Provide a Record of Past Environments
1.11 The Biosphere
Conclusion
Review Questions
Further Reading

Chapter 2 The Search for Global Patterns
2
2.1 Introduction: There Are Two Ways to Classify Plants and Vegetation
2.2 Functional Classifications Are Based on Ecological Traits
2.2.1 Functional Classifications by von Humboldt, Raunkiaer and Küchler
2.2.2 Climate Has a Major Impact on Plant Traits
2.2.3 Climate and Life Form Are Summarized as Biomes
2.2.4 Functional Classification Systems Have Limitations
Chapter 3 Resources 65

3.1 Introduction: Plants Must Find Resources to Grow 66
 - 3.1.1 The CHNOPS Perspective 66
 - 3.1.2 The Costs of Acquisition 69

3.2 Carbon Dioxide: Foraging in an Atmospheric Reservoir 69

3.3 Light and Photosynthesis: Harvesting Photons 71
 - 3.3.1 Three Measures of Photon Harvest 71
 - 3.3.2 There are Different Photosynthetic Types 71
 - 3.3.3 An Exception to the Rule: Root Uptake of CO₂ 72
 - 3.3.4 Another View of Photosynthetic Types 73
 - 3.3.5 Architecture Affects Photon Harvesting 74
 - 3.3.6 The Overriding Importance of Height 76

3.4 Below-Ground Resources 77
 - 3.4.1 Water 77
 - 3.4.2 Nitrogen 78
 - 3.4.3 Phosphorus 79
 - 3.4.4 Experimental Tests for Nitrogen and Phosphorus Limitation 81
 - 3.4.5 Other Sources of Evidence for Nutrient Limitation 85
 - 3.4.6 Mineral Nutrients: A Single Cell Perspective 85

3.5 Resources Affect Entire Ecosystems 87
 - 3.5.1 Primary Production is Controlled by Resources 87
 - 3.5.2 Soils Are Produced by Two Causal Factors 89
 - 3.5.3 Life After Death: Soils, Detritivores and Decomposers 92
 - 3.5.4 Soil Resources Have Altered Human History 96
 - 3.5.5 Two Historical Digressions: Jan Baptiste von Helmont and Titus Smith 97

3.6 Resources Vary in Space and Time 98
 - 3.6.1 There is Small-Scale Heterogeneity 98
 - 3.6.2 Resources Often Change Along Gradients 99
 - 3.6.3 Resources Often Occur in Transitory Patches 103
3.6.4 Resource Fluctuations Complicate Short-Term Ecological Studies
3.6.5 Resources Provide a Habitat Template

3.7 Scarce Resources Have Many Consequences
3.7.1 Evergreen Plants Conserve Scarce Resources
3.7.2 Global Patterns in Leaf Architecture: The Leaf Economic Spectrum
3.7.3 Bizarre Botany: Some Strange Evolution for Resource Acquisition

Conclusion
Review Questions
Further Reading

Chapter 4 Competition

4.1 Introduction: Plants Struggle Against One Another for Resources
4.2 There Are Many Kinds of Competition
4.2.1 Intraspecific Competition
4.2.2 Distinguishing Between Intraspecific and Interspecific Competition
4.2.3 Competition Intensity
4.2.4 Competitive Effect and Competitive Response
4.2.5 Competitive Dominance

4.3 Competition Has Many Consequences
4.3.1 Self-Thinning in Monocultures
4.3.2 Dominance Patterns in Monocultures
4.3.3 Density Dependence in Annual Plants
4.3.4 The Relationship Between Intensity and Asymmetry of Competition

4.4 Competitive Hierarchies Are Widespread
4.4.1 Methods for Establishing Hierarchies
4.4.2 The Consistency of Hierarchies Among Habitats
4.4.3 Light and Shoot Size as Key Factors Producing Hierarchies

4.5 Competition Gradients Are Widespread
4.5.1 Measuring Competition Intensity Along Gradients
4.5.2 Competition Intensity Gradients in an Old Field
4.5.3 Competition and Cacti
4.5.4 Competition Intensity Along a Soil Depth Gradient
4.5.5 Competition Intensity Gradients in Wetlands
4.5.6 Competition Along an Altitudinal Gradient

4.6 Foraging Ability Might Be a Competitive Trait
4.7 Mycorrhizae Can Affect Competition

4.8 Two Competition Models
4.8.1 The Problem of Coexistence
4.8.2 Patch Dynamics: A Model
4.8.3 Gradients and Zonation: A Model

4.9 The Role of Models in Ecology
Chapter 5 Disturbance

5.1 Introduction: Disturbance Removes Biomass 164
5.2 Disturbance Has Four Properties 165
 5.2.1 Duration 165
 5.2.2 Intensity 165
 5.2.3 Frequency 165
 5.2.4 Area 165
5.3 Examples of Disturbance 166
 5.3.1 Fire Disturbs Many Kinds of Vegetation 166
 5.3.2 Erosion Creates Bare Ground 173
 5.3.3 Animals Create Gaps in Vegetation 175
 5.3.4 Sediment From Flooding Can Bury Wetlands 178
 5.3.5 Ice Reworks Shorelines 182
 5.3.6 Waves 183
 5.3.7 Storms 183
5.4 Catastrophes Have Low Frequency and High Intensity 185
 5.4.1 Landslides 185
 5.4.2 Volcanic Eruptions 187
 5.4.3 Meteor Impacts 189
5.5 Measuring the Impacts of Disturbance With Experiments: Two Examples 196
 5.5.1 Forested Watersheds at Hubbard Brook 196
 5.5.2 Marshes Along the Ottawa River 198
5.6 Disturbance Creates Gap Dynamics 200
 5.6.1 Many Kinds of Trees Regenerate in Gaps 200
 5.6.2 Buried Seeds (“Seed Banks”) Allow Regeneration After Disturbance 202
 5.6.3 Rivers Create Gaps by Depositing Sediment 204
5.7 Logging is a Disturbance Caused by Humans 205
5.8 Multiple Factors in Plant Communities: Fire, Flooding and Drought in the Everglades 206
Conclusion 208
Review Questions 209
Further Reading 209

Chapter 6 Herbivory

6.1 Introduction: Herbivores Have Large Impacts Upon Plants 212
 6.1.1 Two Cautions Are Necessary 213
6.2 Observations on Wildlife Diets: Four Examples 214
6.2.1 Herbivores in African Grasslands 214
6.2.2 Herbivorous Insects in Tropical Forest Canopies 215
6.2.3 Giant Tortoises on Islands 217
6.2.4 Herbivory in Anthropogenic Landscapes 217

6.3 Plants Have Defences Against Herbivores 217
6.3.1 Evolutionary Context 217
6.3.2 Structures That Protect Seeds: The Strobilus 218
6.3.3 Secondary Metabolites Also Defend Against Herbivores 222
6.3.4 Some Cautions When Interpreting Anti-Herbivore Defences 227
6.3.5 Food Quality Is Predicted by Nitrogen Content 229

6.4 Field Experiments Expand Understanding of Herbivory 230
6.4.1 Caterpillars Consume Deciduous Forest Canopies 231
6.4.2 Land Crabs Can Change the Composition of Tropical Forest 233
6.4.3 A Large Experiment on Grasslands in Tanzania 234
6.4.4 Some Lessons for Exlosure Experiments 235

6.5 Empirical Relationships Uncover General Patterns in Herbivory 237

6.6 Some Theoretical Explorations 241
6.6.1 Bottom-Up or Top-Down? 241
6.6.2 Trophic Cascades 242
6.6.3 Effects of Selective Herbivory on Plant Diversity 244
6.6.4 A Simple Model of Herbivory 245
6.6.5 When Herbivory Becomes Catastrophe 248

6.7 Two Final Examples of Large-Scale Changes from Herbivores 252
6.7.1 Mountain Pine Beetles Change Conifer Forests 252
6.7.2 White-Tailed Deer Change Deciduous Forests 254

Conclusion 255

Review Questions 256
Further Reading 256
Table of Contents

7.3.4 Measuring Costs and Benefits
7.3.5 Lichens Are Somewhat Different, and Somewhat Similar
7.3.6 Fungi Can Also Occur in Shoots and Leaves

7.4 Positive Interactions Between Plants and Animals:
Part 1 Pollination
7.4.1 Animals Pollinate Flowers
7.4.2 What Are the Mutual Benefits?
7.4.3 Sexual Reproduction Has Costs
7.4.4 Pollination Ecology Was Founded by Sprengel and Darwin
7.4.5 Another Example: Some Flowers Are Pollinated by Flies

7.5 Positive Interactions Between Plants and Animals:
Part 2 Seed Dispersal
7.5.1 Animals Eat Fruits and Spread Seeds
7.5.2 Rodents, Nuts and Mast Years
7.5.3 Ants Disperse Seeds
7.5.4 Can Seed Dispersal Become an Obligate Mutualism?

7.6 Animals Can Defend Plants From Herbivores and Competitors

7.7 Mathematical Models of Mutualism
7.7.1 A Population Dynamics Model
7.7.2 A Cost–Benefit Model

7.8 Mutualism Generates Complex Networks
Conclusion
Review Questions
Further Reading

Chapter 8 Time

8.1 Introduction: There Are Many Time Scales in Ecology
8.1.1 Each Ecological Process Has a Time Scale
8.1.2 Some Sources of Evidence: Tree Rings, Sediment Cores and Fossils

8.2 Millions of Years: Flowering Plants and Continental Drift
8.2.1 Flowering Plants Appear in the Cretaceous Era
8.2.2 Continents Derived from Gondawa Have Remarkable Plant Diversity

8.3 Thousands of Years: The Pleistocene Glaciations
8.3.1 Erosion and Deposition Were Caused by Glacial Ice
8.3.2 Loess Was Deposited by Wind
8.3.3 Pluvial Lakes Expanded
8.3.4 Drought Affected Tropical Forests
8.3.5 Sea Levels Fell as Ice Sheets Expanded
8.3.6 Plant Distributions Changed
8.3.7 Humans Appeared and Spread to New Continents
8.3.8 Sea Levels Rose as Ice Sheets Melted
Chapter 9 Populations

9.1 Introduction: Working With Single Species 340
9.2 Population Models and Exponential Growth 341
9.3 How Many Seeds Will a Plant Produce? 343
9.4 The Fate of Seeds 344
 9.4.1 A Typical Type III Survival Curve 344
 9.4.2 Quantitative Studies of the Fates of Seeds 346
 9.4.3 Dragon’s Blood Trees in Deserts and Seedlings in Forests 348
 9.4.4 More on Saguaro Seedlings 349
9.5 What Determines the Size of Seeds? 350
9.6 Clones and Genets 351
 9.6.1 The Strawberry–Coral Model 353
 9.6.2 The Elm–Oyster Model 353
 9.6.3 The Aphid–Rotifer Model 354
9.7 A Population Study on the Effects of Herbivores 354
9.8 A Population Study on the Effects of Seed Transport Along a Gradient 355
9.9 Plant Life Spans 358
9.10 Population Ecology of the Brazil Nut Tree: A Size-structured Model 361
 9.10.1 Economic Importance 361
 9.10.2 Ecology 361
 9.10.3 A Size-structured Model Using the Lefkovitch Matrix 361
Conclusion 364
Review Questions 364
Further Reading 365

Chapter 10 Stress

10.1 Introduction: Stress Constrains Growth 368
10.2 Habitats That Lack Resources: Drought as a Widespread Example 369
 10.2.1 Deserts 369
 10.2.2 Grasslands 373
 10.2.3 Mediterranean Shrublands 375
 10.2.4 Rock Barrens 379
10.3 Habitats Where Resources Are Present, Yet Unavailable: Peatlands 382
10.4 Habitats Constrained by a Regulator: Cold 386
 10.4.1 Arctic and Alpine Plants 386
 10.4.2 Deciduous Forests 390
10.5 Habitats Constrained by a Regulator: Salinity 392
 10.5.1 Salinity, Plant Zonation and Physiological Drought 392
 10.5.2 Stress, Zonation and Competition 392
 10.5.3 Salinity and Pulses of Regeneration 393
10.6 Two Extreme Cases of Stress Tolerance 394
 10.6.1 Endolithic Plants 394
 10.6.2 Flooded Plants 394
10.7 Pollution Is a Source of Stress for Plants 397
 10.7.1 Acid Rain: Lessons From the Smoking Hills 398
 10.7.2 Radiation: Lessons From the Brookhaven National Laboratory 398
10.8 Some Theory 399
 10.8.1 Concepts of Stress and Strain 399
 10.8.2 Competition Is a Source of Stress 400
 10.8.3 Stress Creates Metabolic Costs 400
 10.8.4 Evolution and Risk Aversion 401
 10.8.5 Plants in Stressed Habitats Have Low Growth Rates 402
 10.8.6 The CSR Synthesis 402
10.9 Stress Acts at Many Scales 406
 Conclusion 408
 Review Questions 409
 Further Reading 409

Chapter 11 Gradients and Plant Communities 411
11.1 Introduction: Gradients Create Pattern in Plant Communities 412
11.2 Describing Pattern Along Obvious Natural Gradients 412
11.3 Multivariate Methods for Pattern Detection 418
 11.3.1 The Data Matrix 418
 11.3.2 Measuring Similarity 419
 11.3.3 Ordination Techniques 420
 11.3.4 Ordinations Based Upon Species Data 421
 11.3.5 Ordinations Can Combine Species and Environmental Data 422
 11.3.6 Functional Simplification in Ordination 425
11.4 Vegetation Classification 426
 11.4.1 Phytosociology 427
 11.4.2 Classification for Land Management 431
11.5 Gradients and Communities 435
 11.5.1 Clements and Gleason 435
 11.5.2 The Temporary Victory of the Gleasonian View 436
 11.5.3 Null Models and Patterns Along Gradients 440
Table of Contents

11.6 Empirical Studies of Patterns Along Gradients 441
- Conclusion 448
- Review Questions 449
- Further Reading 449

Chapter 12 Diversity 451

12.1 Introduction: Why Are There So Many Kinds of Plants? 452
12.2 Large Areas Have More Plant Species 453
12.3 Areas With More Kinds of Habitat Have More Plant Species 455
12.4 Equatorial Areas Have More Plant Species 457
12.5 More Examples of Plant Species Diversity 462
 12.5.1 Mediterranean Climate Regions 462
 12.5.2 Carnivorous Plants 463
 12.5.3 Deciduous Forests 463
 12.5.4 Diversity, Biogeography and the Concept of Endemism 464
12.6 Models to Describe Species Diversity at Smaller Scales 467
 12.6.1 Intermediate Biomass 467
 12.6.2 Intermediate Disturbance 468
 12.6.3 Centrifugal Organization 472
12.7 Relative Abundance: Dominance, Diversity and Evenness 474
12.8 Microcosm Experiments on Richness and Diversity 479
12.9 Field Experiments on Richness and Diversity 482
12.10 Implications for Conservation 484
 - Conclusion 486
 - Review Questions 487
 - Further Reading 487

Chapter 13 Conservation and Management 491

13.1 Introduction: It Is Time to Apply What We Know 492
13.2 Some Historic Examples of Vegetation Degradation 492
 13.2.1 Ancient Assyria 492
 13.2.2 Ancient Rome 493
 13.2.3 Louisiana Wetlands 493
 13.2.4 Easter Island 498
 13.2.5 The Galapagos: Pinta Island 500
13.3 The World Needs Large Protected Areas 502
 13.3.1 Designing a Protected Area System 502
 13.3.2 There Are Different Levels of Protection 504
 13.3.3 Biological Hotspots Are a Priority 507
 13.3.4 Large Forests Are a Priority 510
 13.3.5 Large Wetlands Are a Priority 512
 13.3.6 A Global Assessment of Endemic Plant Conservation 512
13.4 Five Advanced Topics in Conservation Management 514
 13.4.1 Communities and Ecosystems Provide Services 514
 13.4.2 A Full Protected Area System Has Buffers and Corridors 516
 13.4.3 There Are Thresholds in the Process of Degradation 517
 13.4.4 Restoration of Degraded Vegetation Types 518
 13.4.5 Indicators Allow for Efficient Monitoring 520

Conclusion 521
Review Questions 523
Further Reading 524

References 525
Figure and Table Credits 577
Glossary 580
Index 586